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ABSTRACT
Intracellular signals mediated by the family of receptor tyrosine kinases play pivotal roles in morphogenesis, cell fate

determination and pathogenesis. Precise control of signal amplitude and duration is critical for the fidelity and robustness
of these processes. Activation of receptor tyrosine kinases by their cognate growth factors not only leads to propagation
of the signal through various biochemical cascades, but also sets in motion multiple attenuation mechanisms that ulti-
mately terminate the active state. Early attenuators pre-exist prior to receptor activation and they act to limit signal
propagation. Subsequently, late attenuators, such as Lrig and Sprouty, are transcriptionally induced and further act to
dampen the signal. Central to the process of signaling attenuation is the role of the E3 ubiquitin ligase c-Cbl. While Cbl-
mediated processes of receptor ubiquitylation and endocytosis are relatively well understood, the links of Cbl to other
negative regulators are just now beginning to be appreciated. Here we review some emerging interfaces between Cbl and
the transcriptionally induced negative regulators Lrig and Sprouty.
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INTRODUCTION
Receptor tyrosine kinases (RTKs) have evolved as pri-

mary mediators of cell-to-cell communication in multi-
cellular organisms. These membrane-spanning proteins
mediate a variety of cellular responses ranging from cell
migration to survival, cell proliferation and differentiation.
Ligand binding to the cognate receptor triggers receptor
dimerization and activation of the kinase domain, render-
ing the receptor catalytically active. Receptor trans- and
auto-phosphorylation on tyrosine residues located within
the cytoplasmic tail create docking sites for proteins con-
taining phosphotyrosine-binding modules. In turn, the
recruited proteins initiate various signaling cascades [1].
Tuning of signaling amplitude and duration is crucial for
induction of the correct physiological outcome [2]. For
example, the patterning of the Drosophila embryonic
ventral ectoderm relies on different levels of epidermal
growth factor receptor (EGFR) signaling for the in-
duction of various cell fates [reviewed in [3]]. In this
vein, ventral midline cells provide the source for Spitz,

a soluble ligand for the Drosophila EGF-receptor (DER).
Cells in close proximity to midline cells experience high
levels of DER activation and express a specific set of
markers, including orthodenticle. More distal cells exhibit
lower DER activation and express other markers such as
fasciclin III.

It is becoming apparent that a large set of inhibitory
proteins act to attenuate the signal emanating from acti-
vated receptors (Tab. 1). These negative regulators can
either exist prior to receptor activation or they are newly
synthesized following signaling initiation (see Fig. 1).
Indeed, receptor activation not only instigates multiple posi-
tively acting pathways, such as the Ras-mitogen-activated
protein kinase (MAPK); and the phosphatidylinositol 3-
kinase (PI3K)-Akt cascades, but also sets in motion
mechanisms that will ultimately terminate signaling. The
induction of negative feedback loops has been well
characterized in insects. Examples of genes that are tran-
scriptionally induced following receptor activation include
the intracellular membrane-bound protein Sprouty [4], the
membrane spanning Kekkon proteins [5] and the antago-
nistic ligand of the insect EGFR, namely Argos [6]. Similarly,
mammalian RTK attenuators such as the pan-ErbB inhibitor
RALT/Mig-6 [7] and the fibroblasts-derived growth factor
receptor (FGFR) inhibitor, Sef [8], are also newly synthe-
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sized in response to growth factors.

REGULATION OF RECEPTOR ENDOCYTOSIS
Of the negative regulators, which are independent of

new transcription, the E3 ubiquitin ligase c-Cbl/Sli-1 is
relatively well understood. Screens for suppressors of

Fig. 1  Activation-dependent mechanisms of signal attenuation. Growth factor binding to a receptor tyrosine kinase induces receptor
auto-phosphorylation, followed by simultaneous activation of multiple positive signaling pathways. Cbl-mediated receptor
ubiquitylation marks the onset of attenuation, starting with pre-existing molecules involved in endocytosis and cytoskeleton
rearrangement (early attenuators), and culminating in transcription-dependent negative regulatory pathways (late attenuators). The
list of up-regulated genes includes those encoding MAPK-specific phosphatases, various adaptors, transcription factors and
secondary growth factors. DSPs, dual-specificity phosphatases; APs, clathrin-associated proteins.

Tab. 1  Negative regulators of RTKs and their modes of action

Protein name
Ack1
Argos
c-Cbl
Echinoid
Kekkon
LRIG1
Nedd4
Sef
Senseless
Socs 1 and 3

Spred
Sprouty
Ralt/Mig6

Domain structure
TK, SH3, CRIB, UBA
EGF
SH2, RF, UBA
Ig-like, FN3, TM
LRR, Ig-like, TM
LRR, Ig-like, TM
C2, WW, HECT
None identified
Zinc fingers
SH2, SOCS box

EVH-1, CRD
CRD
None identified

Inhibitory targets
EGFR
DER
Several RTKs
EGFR
DER
ErbB family members
IGF1R, VEGFR
Multiple RTKs
DER
Insulin and cytokine receptors

RTKs
Several RTKs
EGFR, ErbB-2

Mechanism of action
Unknown
Ligand sequestration
Mediates receptor ubiquitylation
Unknown [49]
Inhibits growth factor binding
Enhances receptor ubiquitylation
Mediates receptor ubiquitylation [50,51]
Retains Erk in the cytoplasm [8,52]
Represses pointed- mediated transcription [53]
Mediate IRS1/2
ubiquitylation and block access of substrates [54]
Inhibits Ras-mediated Raf activation [55]
Unknown
Unknown [7]

hypomorphic mutations of EGFR/LET-23 in C. elegans
identified SLI-1 as a negative regulator of the EGFR sig-
naling pathway [9]. In line with genetic evidence indicat-
ing that SLI-1 acts downstream to the receptor and up-
stream of Ras, c-Cbl, a mammalian ortholog of SLI-1,
was shown to be rapidly phosphorylated and to complex
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with the EGFR following EGF stimulation [10]. The
domain structure of c-Cbl consists of a tyrosine kinase
binding (TKB) domain through which it binds tyrosine-
phosphorylated targets, a RING finger domain, which binds
E2-conjugating enzymes, and a C-terminal ubiquitin-asso-
ciated (UBA) domain. Additional studies demonstrated that
c-Cbl facilitates ligand-induced ubiquitylation of the EGFR
[11,12], as well as several other RTKs (reviewed in [13])
by means of RING finger-dependant recruitment of E2
ubiquitin-conjugating enzymes to the receptor’s vicinity.
Receptor ubiquitylation results in accelerated removal from
the cell surface and to subsequent receptor degradation in
the lysosomal compartment, thereby terminating RTK
signaling.

Recent studies have linked RTK ubiquitylation to the
process of receptor endocytosis [14]. This phenomenon
entails the internalization of the receptor from the plasma
membrane and its routing through several intracellular
compartments. Multiple sorting steps, along the endocy-
totic course, ultimately determine whether the receptor
will be destined for degradation or recycle back to the cell
surface. Although receptor degradation is a possible con-
sequence of endocytosis, this process cannot be solely

Fig. 2 Modulators of ErbB signaling. The domain structures of LRIG-1, Cbl and Sprouty proteins are schematically presented.
Arrows indicate direct or indirect interactions. Thus, the extracellular domains of ErbB and LRIG proteins physically interact in a
ligand-independent manner, and ErbB increases tyrosine phosphorylation of Sprouty. Cbl proteins bind in a phosphorylation-
dependent manner to ErbB and Sprouty proteins, but the interaction with LRIG-1 is phosphorylation-independent. All three targets
of Cbl undergo ubiquitylation, which dictates degradation by lysosomes or proteasomes. CRD, cysteine-rich domain; Ig, immunoglo-
bulin-like domain; LRD, leucine-rich region; PRR, proline-rich domain; RF, RING finger.

considered as a signal termination mechanism. Emerging
data indicate that the specificity, kinetics and magnitude
of receptor’s responses may be regulated by the locationof
the activated receptor in the endocytotic pathway [15].

Ligand binding initiates receptor auto-phosphorylation,
which is followed by the recruitment of the Cbl TKB domain
to a specific phosphotyrosine, such as tyrosine 1045 of
the EGFR [11]. This proximity facilitates Cbl-mediated re-
ceptor mono-ubiquitylation [16,17], which commences at
the plasma membrane [18,19]. It is believed that mono-
ubiquitylation of the receptor on multiple lysine residues
robustly generates docking sites for endocytotic adaptor
proteins possessing ubiquitin-binding domains. Adaptors,
such as Eps15, may recruit receptors to clathrin-coated
pits as they comprise both ubiquitin interacting motifs
(UIMs) [20] and DPF motifs that couple to clathrin adap-
tors [AP2; [21]]. Recruited receptors are thus linked to
AP2 complexes that drive the assembly of clathrin-coated
vesicles (CCVs). The CCVs shed clathrin and fuse with
internal vesicles to form early endosomes that proceed
along the endocytic pathway to the multi-vesicular body
(MVB). At the MVB, endocytotic adaptors sort receptors
for destruction in the lysosome or for recycling vesicles,
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which eventually fuse with the plasma membrane [22].
This final sorting step is also regulated by the E3 ligase
activity of Cbl; sustained ubiquitylation of the EGFR in
endosomes was shown to be necessary for the sorting  to
lysosomal compartments [18], implying that Cbl-mediated
ubiquitylation serves as a switch shunting activated
receptors for degradation

The primordial form of Cbl appeared relatively early
during evolution in nematodes such as C. elegans. Two
negative regulators of RTKs, namely Sprouty and Kekkon,
which have subsequently evolved in insects, retain complex
relationships with Cbl both in insects and in mammals [23-
26]. In addition, the association of these inhibitors with
Cbl leads to the ubiquitylation and degradation of Sprouty
and LRIG in the proteasome, which subsequently limits
their inhibitory capacity (see Fig. 2). Hence, it seems that
evolution has coupled its more recent inventions to the
more ancient ones, designating Cbl not only as a regulator
of RTKs but also as master regulator of secondary regulators,
as described below.

SPROUTY PROTEINS: DUAL REGULATORS OF
RTK SIGNALING

Sprouty was originally identified in Drosophila as an
antagonist of Breathless, the insect equivalent of the fibro-
blast growth factor receptor (FGFR; [27]). Additional studies
demonstrated that Sprouty also inhibits the Drosophila
EGFR (DER), as well as other RTKs [28]. Four orthologs
of the Drosophila sprouty (dspry) have been identified in
mammals. Of these, spry2 exhibits the highest level of
homology to the ancestral gene. Functionally, human Spry2
has retained its regulatory role, impeding activation of the
MAPK by some, but not all RTKs. The negatively regu-
lated mammalian RTKs include the receptors for FGF, the
vascular endothelial growth factor and the hepatocyte
growth factor [29,30]. In contrast, the effect of Spry2 on
signaling downstream to the epidermal growth factor
receptor (EGFR) seems more complex [31]. Likewise, it
is still unclear at which level Sprouty proteins regulate
MAPK signaling. Spry2 appears to physically interact with
multiple components of the Ras-MAPK pathway, includ-
ing Grb2, FRS2, Raf1 the Ras GTPase activating protein
(Ras-GAP; [32]) and c-Cbl [33]. Several regulatory mecha-
nisms have been proposed, including inhibition at the
levels of Grb2 [34], GAP [4], or the Raf1 kinase [35,36].
In contrast, the interactions with c-Cbl may positively
impact on EGFR signaling [26,37].

In addition to its role as a regulator of RTK signaling,
Spry2 itself is subject to tight regulation by RTKs on
several levels. First, the activation of RTKs triggers an
induction in spry2 transcription in epithelial cells [35].
Regulation of the mature protein is mediated by ligand-

induced phosphorylation of Spry2 on a tyrosine residue
located at position 55 [24, 26, 34, 38]. This evolutionarily
conserved tyrosine is essential for the inhibitory activity
of Spry2 [35], although the exact mechanism remains
unknown. In addition to its role as an operational switch,
phosphorylation of tyrosine 55 creates a docking site for
the E3 ubiquitin ligase c-Cbl. Following RTK activation,
c-Cbl binds phosphorylated Spry2 through its TKB domain.
This association results in the ubiquitylation and
proteasomal degradation of active Spry2, thus limiting its
inhibitory effects [24, 26]. On the other hand, the asso-
ciation between Sprouty and c-Cbl may sequester the E3
ligase in a way that prevents ubiquitylation of target
proteins. In summary, the interaction between Sprouty
and Cbl emerges as a focal point not only in Sprouty's role
in restraining RTK signals but also in the life cycle of
Sprouty proteins themselves. We speculate that Cbl plays
a dual role in this web; along with ubiquitylating Sprouty-
associated proteins and sorting them for lysosomal or
proteasomal degradation, Cbl's function as a multivalent
adaptor capable of engaging more than 50 different proteins
[39] may underlie the ability of Sprouty to interfere with
signaling pathways.

LRIG1 AS A NEGATIVE REGULATOR OF MAM-
MALIAN RTKS

Shortly following the identification of Sprouty as an
inducible inhibitor of FGF-signaling, another feedback
regulator was shown to inhibit the activity of DER during
oogenesis [40]. This gene, named kekkon-1, encodes a
transmembrane protein that physically binds to and directly
inhibits EGFR molecules [41]. The six leucine-rich repeats
(LRRs) of Kekkon-1 are necessary for recognition of
EGFR, and for consequent inhibition of activation by
growth factors [41,42]. The multiple Kekkon proteins of
insects have no clear orthologs in mammals [43]. On the
other hand, a clear ortholog of mammalian LRIG proteins
exists in flies and nematodes. Nevertheless, the three mam-
malian LRIG genes share domain organization with Kekkons
[44-47]. The extracellular regions of both the murine Lrig1/
Lig-1 [47] and the human LRIG1 [46] share 15 LRRs
followed by three Ig domains. Interestingly, disruption of
the LRIG1 gene in mice resulted in fertile animals that
developed defects in skin [48], a major site of EGFR action.

Similar to kekkon-1 and to other ligand-dependent nega-
tive feedback regulators of ErbB signaling, Lrig1 is tran-
scriptionally up-regulated upon EGF stimulation [23]. The
structural similarity of LRIG1 to Kekkons predicted that
LRIG1 would interact with and restrict ErbB signaling in
mammals. Indeed, LRIG1 localizes to the basolateral surface
of epithelial cells, the site of ErbB function, and physically
interacts with all members of the ErbB family [23,25].
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This recognition involves both LRIG1’s and the receptor’s
ectodomains and it requires no stimulation by the respec-
tive ErbB ligand. However, whereas only the LRRs of
Kekkon-1 are necessary for recognition of the Drosophila
EGFR ectodomain [41,42], the LRRs and the immunoglo-
bulin- (Ig-) like domains of LRIG1 are each sufficient for
receptor binding [23].

Ligand-induced up-regulation of LRIG-1 expression
shortens the half-life of ErbB-1/EGFR, due to enhance-
ment of ligand-induced receptor ubiquitylation and an
associated sorting of ligand-activated receptors to intra-
cellular degradation, thus restricting growth factor sig-
naling [23]. Conclusions derived from both in vivo and in
vitro assays suggest that the N-terminal half of c-Cbl
directly binds to the juxtamembrane region of LRIG1 [23].
By recruiting c-Cbl to the vicinity of EGFR, both LRIG1
and the receptor undergo ubiquitylation and subsequent
degradation [23,25]. Remarkably, Kekkon1-EGFR inter-
action inhibits EGFR signaling in an apparently different
mechanism, which involves inhibition of growth factor
binding, receptor auto-phosphorylation and MAPK acti-
vation in response to EGF [41]. In summary, both
Drosophila’s Kekkon proteins and mammalian LRIG family
members are induced upon receptor activation and in both
cases receptor signaling is subsequently blocked. However,
LRIG and Kekkon proteins have no common genetic origin
and their modes of action differ, implying evolutionary
convergence of negative feedback mechanisms.

PERSPECTIVES
The growing interest in negative regulation of RTK signal-

ing has led to the identification of multiple proteins involved
in the process of signal attenuation. Although in many cases
the mechanism of action has proven elusive, the overall
picture is of regulation at numerous levels, including the
level of the ligand, the receptor, the downstream signaling
components and the respective target transcription factors
(Tab. 1). Of these mechanisms, receptor downregulation
by means of endocytosis emerges as a major player in
signaling attenuation. Central to this process is the role of
the E3 ligase Cbl, which directs ligand-induced receptor
ubiquitylation and subsequent degradation. Interestingly,
additional negative regulators such as Sprouty and LRIG,
which evolved later in the course of evolution, fine-tune
Cbl activity and are themselves subjected to Cbl-mediated
regulation. Unlike Cbl, both Sprouty and LRIG are tran-
scriptionally induced upon receptor stimulation, thus
participating in a large-scale negative feedback program.
Future studies will help untangling the underlying genetic
program and uncovering the many layers of receptor
regulation.
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