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Msx homeobox gene family and craniofacial development
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ABSTRACT
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle

segment homeobox gene.  These genes are expressed at multiple sites of tissue-tissue interactions during verte-
brate embryonic development.  Inductive interactions mediated by the Msx genes are essential for normal craniofacial,
limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the pheno-
typic abnormalities shown in knockout mice and in humans.  This review summarizes studies on the expression,
regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and
mice.
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INTRODUCTION
Vertebrate craniofacial organs form from multiple

embryonic tissues including the cranial neural crest
derived cells, prechordal mesoderm, and the embryonic
craniofacial ectoderm.  Normal craniofacial morphology
develops as a consequence of complex interactions
between these embryonic tissues, and requires precise
regulation of cell movement, growth, patterning, and
differentiation of craniofacial tissues.  Genetic studies
have revealed the involvement of numerous genes in
these processes, including genes encoding a variety of
transcription factors, growth factors and receptors[1].
Mutations in genes that influence any of these processes
would cause craniofacial abnormalities, such as facial
clefting and craniosynostosis, which are among the most
frequent congenital birth defects in humans[2].  Among
the critical factors involved in craniofacial development
are members of the Msx homeobox gene family.  The
vertebrate Msx genes were initially cloned from mice
and identified as homologous to the Drosophila muscle
segment  homeobox  gene  (msh)[3, 4].  Subsequently,
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Msx genes have been isolated from a variety of orga-
nisms, including ascidians[5, 6], sea urchin[7], zebrafish
[5, 8], frogs[9], birds[10-12], and humans[13].  The
mammalian Msx gene family consists of 3 physically
unlinked members, named Msx1, Msx2, and Msx3[14,
15].  Msx3 is only expressed in the dorsal neural tube, in
a pattern resembling that of the prototypical Drosophila
msh gene[16, 17].  However, in developing vertebrate
embryos, Msx1 and Msx2 are widely expressed in many
organs; particularly at the sites where epithelial-
mesenchymal interactions take place[15].  Most notably,
Msx1 and Msx2 are strongly expressed in the developing
craniofacial regions in an overlapping manner to some
extent, indicating a role for Msx genes in craniofacial
development[18-21].

Craniofacial morphogenesis
During embryonic development, the face and neck

are derived from swellings or buds of embryonic tissue,
the branchial arches that originate bilaterally on the head.
The neural crest cells generate most of the skeletal and
connective tissue structures of the craniofacial region,
while the mesoderm forms the musculature and
endothelial lining of arteries of the future face and neck.
The establishment of pattern in the craniofacial region is
partly determined by the axial origin of the neural crest
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Fig 2.  Histological sections of the mouse embryonic head showing
representative stages of the developing secondary palate. (A) Fron-
tal view of an E11.5 head showing bilateral palatal shelves projecting
internally from the maxillary primordial. (B and C) the paired palatal
shelves at E12.5 (B) and E13.5 (C) are vertically oriented on either
side of the tongue. (D) At E14.5 the shelves are horizontally oriented
above the dorsum of the tongue and are fused medially to form a
closed palate.  Abbreviations: M, molar tooth bud; P, palate; PS,
palatal shelf; T, tongue.

Fig 1. A schematic of the developing face in human and mouse
embryos.  (a) Frontal view of a head from a 37-day-old human
embryo. (b) Frontal view of a head from a E10.5 mouse embryo. The
medial frontonasal prominence (FNP, shown in light pink), the paired
maxillary prominences (MAX, shown in red) and the paired man-
dibular prominences (MAN, shown in orange) constitute the five
facial primordia that surround the primitive oral cavity, the stomo-
deum (ST, shown in grey). The nasal pits (NP, shown in black) are
flanked by the lateral and medial nasal prominences (LNP in yellow
and MNP in dark pink) which originate as placodes in the frontonasal
prominence. The second branchial arch is indicated in green. RP,
entrance to Rathke’s pouch shown in magenta.
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unilateral cleft) or on both sides (producing bilateral
clefts).  Failure of fusion of the paired mandibular
prominences occurs far less frequently and results in
clefts of the lower lip and jaw[42].

cells within each arch and partly by regional epithelial-
mesenchymal interactions[22, 23].  In the mouse embryo,
cranial neural crest cells originate from the posterior
midbrain-hindbrain regions and migrate ventrolaterally
into the branchial arches[24-28].  Within the branchial
arches, the different populations of crest cells do not
intermingle, but instead maintain the positional cues
acquired by their rostral-caudal origins in the brain.  This
segregation of crest cell populations is established early
in organogenesis by the apoptotic elimination of crest
cells from specific levels of the hindbrain, giving rise to
three distinct streams of migratory crest cells.  Although
this patterning of crest cells depends upon their rostral-
caudal origin, this pattern does show some level of
plasticity[29-31].  For example, the knockout of Hoxa-2
in mice caused the second arch to produce skeletal
elements normally found in the first arch.  This result
suggests that the Hox genes can specify pattern in arches
caudal to the first arch, which does not express this class
of genes[32].  Further patterning of the crest cells within
the arches involves a reciprocal series of epithelial-
mesenchymal interactions mediated by several growth
factor signaling pathways[33-38].
The mammalian face develops from the coordinated
growth and differentiation of five facial primordia, the
single medial frontonasal prominence, the paired maxillary
prominences, and paired mandibular prominences, which
are located around the primitive mouth or stomodeum,
as illustrated in Fig 1a and 1b.  As development proceeds
in the frontonasal prominence, localized thickenings of
the surface ectoderm called nasal placodes develop.
These placodes invaginate, while their margins thicken,
to form the nasal pits and the lateral and medial nasal
prominences.  The maxillary prominences of the first
branchial arch grow toward the future midline of the
face.  They fuse with the lateral nasal prominence on
each side, then fuse with the medial nasal prominences,
and finally with the intermaxillary segment of the
frontonasal process to form the upper jaw and lip.  In a
similar way, the paired mandibular primordia fuse along
their medial edge to form the lower jaw and lip.  The
frontonasal prominence forms the forehead and nose.
Fusion of these approaching primordia results in the
formation of a bilateral epithelial seam, which is later
replaced by connective tissue[39-41] giving rise to a
confluent lip.  Clefts of the upper lip occur as a result of
the failure of the maxillary prominence to merge with
the medial nasal prominences on one side (producing a
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Fig 3.  The representative stages of early tooth development in the
mouse embryo. (A, C, E, G) molar tooth germ stages; (B, D, F, H)
incisor tooth germ stages.  (A and B)  Dental lamina stage (E11.5): the
oral epithelium thickens locally to form the molar and incisor tooth
germs. (C and D)  Early bud stage (E12.5): the epithelial thickening
invaginates into the subjacent mesenchyme which condenses around
the epithelial bud. (E and F) Late bud stage (E13.5): increased prolif-
eration of the dental epithelium causes it to invaginate further into
the dental mesenchyme; (G and H) Cap stage (E14.5): differential
proliferation within the dental epithelium causes a population of the
dental mesenchyme, the dental papilla, to be surrounded by the
convoluting dental epithelium.  Abbreviations: DE, dental epithelium;
DM, dental mesenchyme; DP, dental papilla; EK, enamel knot.

mal interactions generates the species-specific pattern
of odontogenesis.

Another craniofacial structure pertinent to our
discussion on Msx genes is the skull.  The skull (Fig 4) is
a composite of multiple bones that are organized primarily
into the neurocranium which includes the cranial vault
and the viscerocranium that comprise the facial bones
as well as the palatal, pharyngeal, temporal and auditory
bones.  The neurocranium whose function is to protect
the brain and the sense organs derives from mesenchyme
of both neural crest and mesodermal origin.  The viscer-

Craniofacial morphogenesis continues with the
outgrowth and fusion of tissues that form the palate or
the roof of the mouth.  The palate forms from two
primordia, the primary palate and the secondary palate.
A single, median, wedge-shaped mass of mesenchyme
extending internally from the frontonasal prominence
forms the primary palate.  The secondary palate develops
bilaterally as two vertical projections, the palatal shelves,
from the internal surfaces of the maxillary prominences
(Fig 2).  As morphogenesis proceeds, the shelves become
oriented horizontally allowing them to approach each
other and fuse medially.  Failure of the palatal shelves to
fuse leads to a cleft palate.  A number of human conge-
nital syndromes such as Treacher Collins Syndrome and
Pierre Robin Syndrome have accompanying craniofacial
abnormalities, which include a cleft palate[43].  Misre-
gulation of the timing, rate, or extent of outgrowth of the
palatal shelves results in clefts of the palate[44, 45].  Fai-
lure of fusion of the palatal shelves often, though not
always, occurs in conjunction with cleft lip[46].

Another important morphogenetic event in the facial
tissues is odontogenesis and this phase of craniofacial
morphogenesis has been extensively studied.  Tooth
formation is regulated by inductive tissue interactions
between the oral epithelium and the subjacent
mesenchyme of the first arch.  The four histologically
distinct stages of tooth development are: 1) the dental
lamina, 2) the bud, 3) the cap, and 4) the bell stage (Fig
3)[47].  In the mouse, tooth initiation becomes
morphologically distinguishable at E11.5 by the thickening
of the dental epithelium to form the dental lamina at the
prospective sites of tooth formation.  The cells of the
dental lamina proliferate and on E12.5, start to invaginate
into the underlying mesenchyme.  At the bud stage, the
mesenchyme proliferates and condenses around the
invaginating epithelial bud.  As a result of differential
proliferation, the dental epithelium next convolutes around
the condensed mesenchyme (now referred to as the dental
papilla) in the cap (E14.5) and bell stages (E16.5).  E14.
5 marks the onset of the definitive stages of tooth
morphogenesis.  In the cap and bell stages, transient
signaling centers called primary and secondary enamel
knots develop in the epithelium.  They serve as organizing
centers of tooth morphogenesis and cusp formation.  In
the final steps of odontogenesis, enamel-secreting
ameloblasts and dentin-secreting odontoblasts
differentiate from the dental epithelium and mesenchyme,
respectively.  Thus, an intricate set of epithelialmesenchy-
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Importantly, this ability to interact with members of the
basal transcription machinery and affect transcription is
not contingent upon their DNA-binding function[51].
Msx proteins also interact with other homeodomain
proteins to regulate transcription.  Heterodimers formed
between Msx1 and other homeodomain proteins such
as Dlx2, Dlx5, Lhx2 and Pax3 result in mutual functional
antagonism in vitro[55-57].  It is believed that tissues in
which expression of Msx1 overlaps these other proteins
there may be such a regulatory mechanism in place.
Although, both Msx1 and Msx2 show similar DNA-
binding site preference as well as the ability to repress
transcription they display different biochemical properties
by virtue of unique N-terminal domains, which confer
Msx2 with a greater affinity for DNA while rendering
Msx1 a more potent repressor.  A study of the three
dimensional structure of Msx1 homeodomain/DNA
complex reveals two major deviations from that of other
homeodomain/DNA complexes[58].  Firstly, the presence
of two non-canonical proline residues confers great
stability and order to the N-terminal arm of the
homeodomain, which tracks the minor groove of the
DNA.  Secondly, the DNA bound by the Msx1 home-
odomain shows a 28° bend compared to the normal 21°
observed with other homeodomain proteins.

Expression of Msx genes during craniofacial
development

Overlapping expression of Msx1 and Msx2 are seen
at multiple sites of tissue-tissue interaction including the
craniofacial regions[20, 48, 59].  Through the course of
murine craniofacial development, both Msx1 and Msx2
are detected in the forming skull and meninges, the distal
aspects of the facial primordia, the associated sense
organs, and teeth[18-20].  In the developing skull, Msx1
and Msx2 are expressed in the suture mesenchyme and
dura mater.  While Msx1 expression extends into the
postnatal stages of skull morphogenesis, Msx2 registers
a sharp decline in expression after birth.

The earliest restricted distribution of Msx1 during tooth
development is evident around E11.0 in the dental
mesenchyme at the lamina stage, and the expression
increases in the condensing dental mesenchyme at the
bud stage (Fig 5).  At the morphogenetic cap stages both
the dental papilla and follicle express Msx1 maximally.
The expression begins to level off prior to the
differentiation of the odontoblasts and ameloblasts.  In
the late stages of tooth morphogenesis, Msx1 expression

Msx genes encode transcription repressors
The Msx proteins are important modulators of

craniofacial, limb, and nervous system development[16,
48, 49]. They are regulatory proteins that function as
transcriptional repressors in vitro and in vivo[48, 50-
55].  Protein-protein interactions, which engage residues
within their homeodomain guide target gene selection
and transcription regulation[53, 54]. The Msx
homeodomain interacts directly with the TATA binding
protein (TBP), the core component of the general
transcription complex to execute transcription repression.

ocranium by contrast is formed solely from neural crest
mesenchyme.  The calvaria or skull vault is formed by
intramembraneous ossification of radially growing,
discrete, mesenchymal condensates over the expanding
brain.  Fibrous, non-osteogenic membranes called sutures
or fontanelles (wider sutures occurring at the juncture
of several bones) separate the resulting calvarial bones
formed by accretion growth.  Further growth of the skull
occurs by apposition at the lateral edges of the sutures,
which are populated by highly proliferative preosteoblasts.
Such a mechanism accommodates the constantly
expanding brain.  Unlike the skull vault, the base of the
skull develops by endochondral ossification of the
cartilaginous chondrocranium.  Failures of inception,
nonsynchronized growth or untimely ossification are
some of the mechanisms contributing to dysmorphic
development of the skull.  The contribution of Msx genes
in maintaining the delicate balance between proliferation
and differentiation during pre- and post-natal skull
morphogenesis will be elaborated upon later in this review.

Fig 4. A schematic of the human skull showing the calvarial bones,
fontanelles and sutures.
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Fig 5. Murine Msx1 expression in the early molar germs. Msx1 ex-
pression is confined to the dental mesenchyme at E11.5 (A), E12.5
(B), E13.5 (C) and E14.5 (D).  Maximal expression is seen at the bud
stages E12.5 and E13.5.  Abbreviations: DE, dental epithelium; DM,
dental mesenchyme, DP, dental papilla; EK, enamel knot.

ssion is confined to the mesenchyme throughout tooth
development, Msx2 expression can be detected in both
the epithelial and mesenchymal compartments of the
developing tooth germs.  The earliest indication of
asymmetric expression is its buccal distribution seen within
the invaginating dental lamina of molar tooth germs.  At
the cap stage, Msx2 expression is prominently seen in
the components of the enamel organ (the enamel navel,
septum and knot) as well as the inner enamel epithelium.
With the onset of the bell stage, Msx2 expression is lost
from the inner enamel epithelium as they differentiate
into the ameloblasts.  Instead, strong expression of Msx2
is detected in the odontoblasts and the subondontoblastic
regions of the dental papilla.  Thus, the spatial and
temporal expression of Msx1 and Msx2 genes appear
to correlate with crucial aspects of craniofacial
morphogenesis.  In the next section we will consider the
molecular hierarchy controlling their expression as well
as their role in craniofacial patterning.

Regulation of Msx1 and Msx2 expression and facial
patterning

The regulation of Msx gene expression is accomplished
by diverse mechanisms involving retinoids, antisense
‘quenching’, growth factor regulation, and comple-
mentary/antagonistic interaction with other transcription
factors.  Retinoid regulation of Msx genes was speculated
following the identification of a retinoic acid-responsive
enhancer element in the 5´ flanking region of human
MSX1[64].  Functional in vivo evidence was later
provided by Chen et al[65] who showed that endogenous
retinoids control the spatial expression of Msx1 by
delimiting its expression to the posterior regions of quail
embryos at the gastrulation and neurulation stages.  Thus
retinoids are important regulators of normal Msx1
expression in avians.  In contrast, in murine embryonic
palate mesenchymal cells, retinoic acid appeared to inhibit
Msx1 expression[66].  In addition, the 5’ upstream region
of murine Msx1 was characterized as having multiple
enhancer elements including three potential NFkB-binding
sites and an Msx1 consensus binding site[67-71].  These
studies indicate multiple regulations of Msx1 expression.

Blin-Wakkach et al[72] reported the presence of
endogenous Msx1 antisense RNA in mice, rats and
humans. It was suggested that the proportion of the sense
and antisense transcripts determines the amount of
functional protein available. Upregulation of the antisense
RNA appears permissive for the differentiation of
craniofacial structures,  specially those associated  with

MSX2 expression is detectable by 7.5 weeks of human
embryonic development[63].  In humans, the precursors
of the orofacial skeleton such as the mandibular and
maxillary bones, Meckle’s cartilage, and tooth germs all
express MSX2[63].  At the bud stage of developing tooth
germ, MSX2 is detectable in the vestibular lamina, and
both the dental epithelium and mesenchyme.  Later in
development, MSX2 expression is lost from the dental
mesenchyme but is seen in the enamel knot and vestibular
epithelium of the cap stage tooth.  In mice, Msx2 expre-
ssion is continuous in the molar and incisor tooth germs
[20, 61].  Unlike the developing incisors, the molar tooth
germs show asymmetric distribution of Msx2 at all
developmental stages.  Contrary to Msx1, whose expre-

is clearly absent from the root sheath epithelium and is
rather weak in the dental pulp[60].  By extrapolation, it
appears that Msx1 does not support root morphogenesis
in the developing tooth.  Apart from the tooth, Msx1
expression has been examined in the developing palate.
Reports of a weak, diffuse expression of Msx1 in the
palatal mesenchyme provided the first evidence that
Msx1 may have a direct role in palate development[18,
61].  A more detailed analysis by Zhang et al[62] has
reported that Msx1 expression in the palatal mesenchyme
is confined to the anterior portion of the developing palatal
shelves.
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increased proliferation in the mandibular primordia[85].
In mice, Msx1 is expressed downstream of dHAND,

a mesenchymal transcription factor in the Endothelin-1
signaling pathway[86].  Msx1, Msx2 and the bHLH tran-
scription factor dHAND are expressed in an overlapping
fashion in the distal mesenchyme of the branchial arches.
In dHAND-null embryos Msx1 expression is lost and
the branchial arches become hypoplastic. Msx2 expres-
sion remains unaltered in these mutants. Upon detailed
examination of this phenotype it was concluded that
Msx1 is essential for the development of neural crest-
derived mesenchyme of the branchial arches[86].

Msx1 is common to multiple growth factor signaling
pathways and serves in the orchestration of inductive
events essential to organogenesis.  Therefore, we find
its repeated use in the BMP, FGF, Endothelin and SHH
signaling pathways.  BMP2, BMP4, FGF2, FGF4, FGF8,
and FGF9 represent growth factors from the oral and/or
the dental epithelia that are capable of inducing Msx1
expression in the subjacent mesenchyme of the mandible
and maxilla[87, 88].  The mesenchymal expression of
several growth and transcription factors, namely, Bmp4,
Fgf3, Dlx2, syndecan-1, and Ptc in turn show depen-
dence on Msx1 expression[87, 89-91].

Between E9.5 and E13.5 Msx1 shows a broad dis-
tribution distally, overlapping the presumptive incisor
regions, in the mandible and maxilla.  Subsequently Msx1
expression becomes localized to the condensing
mesenchyme of both the molar and incisor tooth germs.
Curiously this shift in Msx1 expression is preceded by a
shift in Bmp4 expression pattern[92].  Studies show that
Msx1 and Bmp4 are induced in the dental mesenchyme
by epithelial Bmp4[87, 89].  Once induced a positive
feedback loop comes into play between Msx1 and Bmp4
in the dental mesenchyme maintaining the levels of both
genes throughout tooth morphogenesis[47, 89, 92].  This
same mechanism accounts for the spatial restriction of
Msx1 expression around late bud stage to the ondon-
togenic mesenchyme[92]. Thus, Msx1 acts epistatic to
mesenchymal Bmp4, a candidate factor that signals back
to the dental epithelium allowing tooth morphogenesis to
proceed to the cap stage[89, 93].  Msx1 is also required
in the Fgf8 signaling pathway for the induction of Fgf3
in the dental mesenchyme[90]. The two pathways appear
to be independent of each other and occur in parallel
during early odontogenesis.  While BMPs can induce
both Msx1 and Msx2 in dental mesenchyme, FGFs can
only induce Msx1[87, 88, 90].  In vitro experiments  sug-

mineralized matrices, while the sense form maintains the
cells in a proliferating state[72].

Membraneous bone and cranial suture development
rely upon growth factor signals transduced by Msx genes
[11, 73, 74].  In vitro assays indicate that suture patency
is controlled by the differential regulation of Msx genes
by growth factors[74].  It was demonstrated that exo-
genous addition of FGF4 to the suture mesenchyme or
the osteogenic front stimulates mesenchymal Msx1
expression and cell proliferation, which promotes suture
closure.  In similar assays, application of BMP4 could
induce both Msx1 and Msx2 in the suture mesenchyme
resulting in a concomitant increase in tissue thickness.
It is proposed that the BMP4-Msx signaling pathway
regulates the balance between committed and
uncommitted osteogenic cells in the suture.  In addition
to the regulation by BMPs via direct effect of Smad4 on
the Msx2 promoter, Msx2 expression is also activated
by a bi-functional zinc finger protein YY1 independent
of BMP signaling pathway[75, 76].

The branchial arches are largely populated by cranial
neural crest cells that migrate from the midbrain-hindbrain
regions.  The streams of neural crest cells exiting the
dorsal aspects of the hindbrain are sculpted through
apoptotic elimination of crest cells originating in rhom-
bomeres 3 and 5[22, 78-80].  This apoptotic removal of
the neural crest cells is mediated by BMP4-induced
Msx2 expression only in odd-numbered rhombomeres
[81].

In the developing face, complimentary expression of
Msx1 and Barx1 in the mandibular mesenchyme
specifies patterning events including tooth formation[82,
83].  Also, the overlapping expression of Msx and Dlx
genes together with the evidence that members of the
two families form heterodimers in vitro reveals a putative
mechanism for controlling facial patterning events in vivo
[55, 84].  In the mandibular arch of chick embryos Msx1
expression correlates with areas of cell proliferation while
Msx2 shows localization to regions either marked for
programmed cell death or specified towards the for-
mation of nonchondrogenic tissues[21]. The mesial
localization of Msx1 in the chick mandibular arch can
be reconciled with a role in promoting mandibular arch
outgrowth by extrapolation from the truncated mandibular
arch phenotype reported in Msx1 mutant mice.  Further
studies in the chick demonstrate that the expanded
induction of Msx genes by ectopic application of BMP4
or BMP2 results in bifurcation of the facial skeleton and
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accounts for the genetic etiology of Witkop syndrome
characterized by tooth agenesis and nail dysgenesis[100].

In contrast to the haploinsufficiency of MSX1 in human
[102], genetically engineered Msx1 heterozygous
mutation in mice does not result in any visible phenotypes
[103, 104]. However, mice carrying Msx1 null mutation
die right after birth, and exhibit severe craniofacial
abnormalities[103, 104].  These phenotypes include cleft
palate, an absence of alveolar processes, and an arrest
of tooth development at the bud stage, thus mimicking
the phenotype observed in humans carrying MSX1
mutations.

In the mouse Msx1 mutants the dental mesenchyme
fails to condense around the dental epithelial buds causing
a bud stage arrest of molar tooth germs[103].  Msx1-
deficiency leads to significantly reduced expression of
Bmp4 in the dental mesenchyme of arrested tooth germs
[89].  Gene expression studies also indicate that Msx1-/

- embryos show ablation of Fgf3 expression and
downregulation of Lef1, Ptc, Dlx2, and syndecan-1
expression in the dental mesenchyme[89, 90, 91].  On
the other hand, tenascin expression is unchanged in these
mutants.  A non-cell autonomous secondary effect of
Msx1 deficiency is the loss of Shh and Bmp2 expression
in the dental epithelium[93].  The bud stage arrest is
lifted upon the addition of exogenous BMP4 or by
trangenic expression of Bmp4 thereby bypassing the need
for Msx1 function[89, 93, 108].  As a result, tooth deve-
lopment proceeded past cap stage in vitro engendering
a near complete rescue in kidney capsule cultures and a
restoration of alveolar bone formation in transgenic mice
[89, 108, 109].  Analysis of gene expression showed that
Lef1, Dlx2, Shh and Bmp2 expression is restored
following ectopic or exogenous BMP-4 expression.  Thus,
Msx1-dependent mesenchymal expression of Bmp4 is
critical for tooth morphogenesis and alveolar bone
formation.  An accompanying defect in proliferation
observed in Msx1-deficient embryos is attributed to a
separate pathway involving FGFs where Msx1 mediates
the induction of Fgf3 and syndecan-1, a low-affinity
FGF receptor[89, 90].  Bei et al[109] using tissue
recombination established that Msx1 imparts early and
late functions to tooth development.  In the early phase
it acts epistatic to Bmp4 in the bud stage dental mesen-
chyme.  The Msx1-induced Bmp4 from the dental
mesenchyme instructs the overlying dental epithelium to
form the enamel knot, which guides tooth morphogenesis
[93, 110].   After the cap stage, tooth development  be-

gest that Msx1 and Msx2 mediate the inductive effects
of BMP7 on mandibular morphogenesis as well as the
initiation phase of odontogenesis[94].  The induction of
Ptc, a downstream target of Shh signaling, in the dental
mesenchyme is contingent upon Msx1, which is co-
expressed with Ptc[91]. Conditional ablation of Shh
specifically in the dental epithelium does not alter Msx1
or Msx2 expression.  This proves that Msx1 and Msx2
are not targets of Shh signaling.

In conclusion, there appears to be multiple levels of
regulation of Msx expression at the level of transcription,
translation, and protein function, which contribute to the
normal patterning and morphogenesis of the face.

Mutations in Msx1 cause tooth agenesis and cleft
palate

In human, mutations in the MSX1 gene cause orofacial
clefting and tooth agenesis[95-101].  The homeodomain
of MSX1 is pivotal in mediating its multiple functions
such as DNA-binding, protein-protein interactions, protein
stability, and transcription repression. A missense
mutation resulting in an arginine to proline substitution
within the homeodomain of MSX1 causes selective tooth
agenesis in humans, an autosomal dominant phenotype
affecting the second premolars and third molars of the
secondary dentition[95]. Biochemical and functional
analyses of the mutant protein established haploin-
sufficiency of MSX1 as the molecular basis underlying
this phenotype[102]. The mutant protein exhibited
reduced stability as a result of structural perturbations
and failed to interact with DNA or its cognate protein
factors.  Accordingly its ability to function as a trans-
criptional repressor was greatly impaired.  The increased
sensitivity to MSX1 gene dosage appears to be specific
to humans.  Curiously, in mice although a null mutation
in the Msx1 gene resulted in a complete failure of tooth
development, mice heterozygous for Msx1 did not pre-
sent with any tooth abnormalities[103, 104] (see below).
Despite the different phenotypes exhibited by different
dosages of Msx1 in humans and mice, its importance in
tooth morphogenesis remains undisputed.

Wolf-Hirschhorn syndrome (WHS) is a congenital
human syndrome results from a deletion of the MSX1
locus on chromosome 4[105].  Phenotypic manifestations
of this syndrome featuring midline fusion defects, ear
defects, supernumerary teeth, and microcephaly involve
regions that express MSX1 in the mouse embryo[18, 19,
106, 107].  Furthermore, a nonsense mutation in MSX1
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tuent part, the processus brevis is absent in these null
mutants. The gross morphology of the remaining middle
ear ossicles, the incus and the stapes appears normal.
Similar to the tooth germs, the malleal primordia in the
mutant embryo show reduced expression of Bmp4[111].
The transgenic expression of Bmp4 in the Msx1 mutant
background failed to affect a rescue and the surviving
mice still lacked the processus brevis, which allows the
measurement of auditory evoked potentials to assess the
functional significance of the malleal processus brevis.
It was demonstrated that the malleal processus brevis is
dispensable for sound transmission and balance in mice
[111].

Craniofacial defects associated with Msx2
mutations

Role of Msx2 in craniofacial development was initially
revealed by a mutation in the MSX2 gene causing Boston-
type craniosynostosis in humans[112]. Boston-type
craniosynostosis is characterized by the premature fusion
of skull bones together with certain orofacial bone
abnormalities.  This mutation in the homeodomain of the
MSX2 protein increased its DNA binding affinity and
was believed to represent a gain-of-function mutation[6,
112].  Conversely, haploinsufficiency of MSX2 causes
midline cranial defects reflected in the occurrence of
wide-open fontanels in the skull vault[113].  Thus MSX2
function is required for normal skull and suture mor-
phogenesis.

A species-specific dependence on MSX2 dosage was
established variously through knock-out strategies,
transgene expression and mutation studies.  While
haploinsufficiency in human MSX2 results in parietal
foramina the Msx2 heterozygous mice manifest no
abnormal phenotype[113, 114].  In contrast, Msx2 homo-
zygous null mice have a calvarial foramen similar to
humans with MSX2 haploinsufficiency[114].  Liu et al
[115] showed that mice carrying a missence mutation
within the Msx2 homoeodomain developed cranio-
synostosis similar to mice that overexpress the wild type
allele.  Again trangenic mice expressing human MSX2
exhibit multiple craniofacial defects including exen-
cephaly[116].

Several studies have been undertaken to divulge the
molecular mechanism and pathophysiology of Boston-
type craniosynostosis.  Essentially a proline to histidine
substitution at position 7 of the homeodomain  of  Msx2

comes independent of Msx1 function.  During the later
cyto-differentiation stage Msx1 maintains the survival
of odontoblasts and the dental pulp[109].

In humans and mice loss of Msx1 function results in
non-syndromic clefts of the secondary palate and tooth
agenesis[95, 97, 103, 104].  Until recently, there has been
much speculation surrounding the role of Msx1 in palate
development.  It was previously believed that the cleft
secondary palate observed in Msx1-deficient mice occurs
as a consequence of a primary defect in tooth develop-
ment[18, 19, 103].  This contention was disproved recently
by functional assays using a transgenic mouse model
where the Msx1 promoter directs the expression of
human Bmp4 in developing tooth and palate in the Msx1-

/- background leading to rescue of neonatal lethality in
some mice[62, 93, 108].  Notably, all of the surviving
Msx1-/-/Tg mice exhibited a closed palate although they
still lacked teeth.  Thus, the transgene could specifically
rescue the cleft palate phenotype independent of the tooth
phenotype.

Msx1 is expressed in the anterior mesenchyme of the
developing palate from E11.5 to E13.5. The posterior
regions of the developing palate do not express Msx1.
The expression of Msx1 in the palatal mesenchyme is
weak relative to its expression in the dental mesenchyme
[62].  In the Msx1 null mutant embryos the paired palatal
shelves elevate normally but fail to make contact and
fuse[103].  This failed fusion between the palatal shelves
of Msx1-/- embryos is the result of significantly lower
levels of cell proliferation in their anterior region leading
to growth impairment[62].  Examination of gene
expression levels revealed significant downregulation of
Bmp4 levels in the palatal mesenchyme, Shh in the medial
edge epithelium and Bmp2 in both the epithelium and
mesenchyme of E13.5 Msx1 mutant embryos.  Following
transgenic rescue of the cleft palate the gene expression
and proliferation levels in the anterior palate are restored
to normalcy.  Bead implantation experiments indicate
that Msx1 directly regulates Bmp4 expression while its
effects on Shh, Bmp2 and mitogenesis are indirect.  Thus,
through its regulation of specific growth factor expression
Msx1 maintains growth of the anterior palate during
mammalian palatogenesis.

Middle ear defects in Msx1-deficient mice
Msx1-deficient mice show anomalous development

of the malleus, one of the three middle ear ossicles[103].
The malleus is shorter than in wild types and it consti-
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meodomains. Spatial and temporal expressions of Msx1
and Msx2 in mice show a certain degree of co-localization.
Consistent with this co-localization pattern, Msx1/Msx2
double mutant mice exhibit synergistic defects in calvarial,
tooth, ear, limb, hair follicle, and mammary gland
development[90, 111, 114].  Therefore, while the Msx2
single mutant mice show either incomplete or delayed
ossification of the calvarial bones resulting in calvarial
patency, the double mutant mice are deficient in calvarial
ossification.  With respect to tooth, hair follicle and
mammary gland development Msx1 and Msx2 show
functional redundancy through the early stages of
organogenesis, coinciding with their overlapping
expression pattern.  However, the participation of Msx2
in the early stages of tooth development appears non-
essential since mice heterozygous for Msx1 but lacking
functional Msx2 do not exhibit early tooth defects[90].
Tooth development proceeds normally through the lamina,
bud, and cap stages in the Msx2-deficient mice.  A re-
quirement for Msx2 in tooth development is seen in the
late stages of organogenesis following the downregulation
of Msx1 expression.  Anomalous tooth development in
the Msx2-deficient mice becomes evident at E16.5 when
the stellate reticulum and stratum intermedium fail to
develop normally resulting in the degeneration of the
ameloblast and ultimately the enamel organ.  It is
postulated that Msx2 participates in the regulation of the
spatiotemporal expression of the amelogenin gene during
tooth development [124].  In the absence of Msx1, the
phenotype of Msx2 mutant mice is greatly amplified.
Molar tooth development arrests at the dental lamina
stage in Msx1/Msx2 compound mutants unlike Msx1-/-

mice that exhibit a bud-stage arrest[90, 103].  Thus, at
the tooth initiation stages Msx1 and transiently expressed
Msx2 function redundantly.  Similarly additive
hypomorphism is observed in the developing middle ear
of compound Msx mutants.  While Msx1-/- mice lack
the processus brevis, mice double null for Msx1 and Msx2
genes are lacking the manubrium as well as the processus
brevis.  In the Msx1/Msx2 double mutant mice there is
a failure in hair follicle induction unlike Msx2-/- mice
where the pelage hairs form but are lost prematurely
owing to defects in hair maintenance[114, 125].  Similarly,
in the absence of Msx1 and Msx2 the mammary gland
epithelium does not invaginate while a loss of Msx2 alone
results in a sprout stage arrest of the mammary gland.
Therefore in the tooth, hair and mammary gland, a loss
of Msx1 and Msx2 results in a more severe phenotype

missense mutation increases the binding affinity of Msx2
for its target DNA without altering the binding site
specificity while increasing the Msx2-DNA complex
stability[6, 117].  The outcome is an augmentation of the
normal function of Msx2.  Overexpression and misex-
pression of Msx2 transgene in mice gave a similar
phenotype registering pronounced growth of the calvarial
bones and an increased number of proliferating
osteoblasts at the osteogenic front[115, 118].

In a normal developing cranium, Msx2 is required to
maintain a proliferating population of osteoblast
progenitors at the osteogenic front[118].  Functional
studies show that overexpression of Msx2 impedes
osteoblast differentiation while antisense inhibition
promotes differentiation[119].  The reduction in the length
of the axial and appendicular skeleton in Msx2 null mice
lends credence to its role in regulating the proliferation
of bone-forming cells[120].

The temporal and spatial expression of Msx2 in the
suture mesenchyme and dura matter prior to birth appears
to correlate with its role in the regulation of suture
patency during prenatal development.  The widespread
occurrence of BMP4 in the developing suture as well as
its ability to induce both Msx1 and Msx2 in the suture in
vitro has been demonstrated[74].  Furthermore, genes
typically expressed in terminally differentiated osteoblasts
such as collagen-I and osteocalcin were shown to be
regulated by Msx2[54, 121, 122, 123]. These data suggest
that the modulation of Msx genes by BMPs and other
factors in the developing suture regulates the rate of
differentiation of the osteoblasts at the advancing
osteogenic fronts and thereby calvarial osteogenesis.
Collectively, the evidence that both gain- and loss-of-
function mutations in Msx2 cause craniofacial defects
indicates that the precise regulation of Msx2 expression
and optimal level of Msx2 protein are crucial for normal
development of craniofacial organs.

Msx1 and Msx2  function redundantly in craniofacial
development

Several biochemical, expression, and knockout studies
suggest that Msx1 and Msx2 are functionally redundant.
Investigations at the biochemical level reveal that MSX1
and MSX2 have common DNA-binding and tran-
scriptional properties[48].  They both recognize the same
DNA consensus site and function as transcriptional
repressors.  Further, structural comparisons reveal that
Msx1 and Msx2 only differ in one amino acid in their ho-
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