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ABSTRACT

Neutrophils are the first cell type to arrive at the injury

sites and play a critical role in host defense, by virtue of its

ability to adhere and transmigrate through endothelium, to

phagocytose foreign pathogens, and to produce free oxygen

radicals and proteolytic enzymes. Yet, inappropriate neutro-

phil activation causes tissue damage and various inflamma-

tory diseases. These physiological and pathological functions

of neutrophils depend on the engagement of certain surface

receptors, especially α β
2
, the major β

2
 integrin receptor

present on neutrophil surface. Understanding of the molecu-

lar mechanisms underlying ligand binding by α β
2
, as well

as the roles of α β-ligand interactions in neutrophil func-

tions will enable us to regulate more precisely neutrophil

activities: that is, to promote their host defense functions,

and at the same time to minimize their deleterious effects on

normal cells.
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INTRODUCTION

Neutrophils play key roles in the host defense network against pathogens by virtue

of their abilities to phagocytose microorganisms and to produce oxygen free radicals

ABREVIATIONS: EC, endothelial cell; Fg, fibrinogen; ICAM, intracellular adhesion molecule;

leukocyte Adhesion Deficiency; mAb, monoclonal antibody.
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and proteolytic enzymes. Extravasation of neutrophils from the blood stream proceeds

through three coordinated steps: rolling and tethering, firm adhesion, and transmigra-

tion[1]. The first step depends on the selectin molecules expressed on both neutrophils

and endothelial cells (EC)[2],[3]. The second step is mediated through interactions of

the β
2 

 integrins[4],α β
2 

 and α β
2
 , present on the neutrophils and their counter

receptors, ICAM-1 and ICAM-2, on the EC. Neutrophil-EC interaction can also be me-

diated by fibrinogen (Fg)[5]. ICAMs bind directly to  α β
2
 [6]and aMb2[7], whereas Fg

bridges neutrophils and EC by binding to  α β
2 

 and ICAM-1[5]. Neutrophils from

patients with Leukocyte Adhesion Deficiency (LAD) fail to adhere and transmigrate

through EC, resulting in life-threatening bacterial and fungal infections[8]. The role of

α β
2 
 in neutrophil adhesion and transmigration has been well demonstrated in animal

models using function blocking mAbs[9-11],  α β
2
 inhibitors[12], and  α β

2 
 -deficient

mice[13],[14].

Neutrophils and their associated diseases

Despite the essential role of neutrophils in host defense, inappropriate neutrophil

activation has detrimental consequences[15]. The superoxide radicals and proteolytic

enzymes produced by activated neutrophils cause ischemia/reperfusion injury and tis-

sue damage[16],[17]. In addition, activated neutrophils produce a multitude of cytokines

[18],[19] which initiate and sustain the chronic inflammatory process, leading to the

development of various autoimmune diseases[16],[20]. Consistent with these deleteri-

ous effects, blockade of  α β
2 

-mediated ligand recognition by neutrophils using mAbs

or inhibitors decreases ischemia/reperfusion injury[21],[22], reduces myocardial inf-

arction size, myocardial necrosis[23], and liver cell injuries[24], and diminishes

neointimal thickening and restenosis after angioplasty[25]. The  α β
2 

 blocking mAbs

are also effective in the treatment of gram-negative sepsis and hemorrhagic shock[26].

Although therapies using these function-blocking antibodies are very promising, non-

selective blockade of all leukocyte functions, such as neutrophil activation,

transmigration, and phagocytosis, also leads to severe complications, such as bacteriall

and fungal infections[27].

The   α β
2   

 integrin recognizes multiple ligands

 α β
2   

, a heterodimeric surface receptor, belongs to the β
2
 integrin subfamily. These

leukocyte   integrins are composed of a common β
2
 subunit noncovalently linked to

one of four distinct yet highly homologous a subunits, αL, αM, αX, and αD[28], [29].

α β
2   

 is expressed by neutrophils, monocytes and NK cells, and recognizes a multitude

of very different protein and nonprotein ligands. These multiple interactions provide a

molecular basis for the versatile roles of neutrophils and monocytes in host defense.

Protein ligands for  α β
2   

 include extracellular matrix proteins such as fibronectin,

laminin, collagen and vitronectin[30]; counter-receptors of the immunoglobulin super-
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family such as ICAM-1[31] and ICAM-2[32]; blood coagulation proteins such as

fibrinogen[33], factor X[34], and kininogen[35]; and the complement pathway product,

C3bi[36]; as well as haptoglobin[37],denatured albumin[38], KLH[39], myoloperoxidase

[40] and elastase[41]; non-protein ligands for α β
2
 include LPS[42], zymosan, β-

glycans[43], heparin[44],[45] and oligodeoxynucleotide[46]. In addition, a variety of

microorganisms produce α β
2 
 ligands (e.g. NIF[47], WI-1[48] and gp63[49]) as a means

of subverting or bypassing host defense mechanisms [50]. Unlike certain integrins in

the β
1
and 3 sub-families, where a single receptor interacts with many different proteins

through the common RGD sequence[51], the α β
2
 ligands share few, if any, similarities

or conserved sequences. The molecular structure of the α β
2 

 receptor that enables it

to interact with many unrelated ligands is not yet clear, nor are the physiological

functions of these interactions.

Structural basis of m 2-ligand interactions

At least five structural domains exist in α β
2
: the I-domain, the cation-binding

repeats, and the lectin binding domain in the a subunit, and the putative I-domain and

the protease resistant cysteine-rich region in the b subunit. The I-domain is a region of

~ 200 amino acids and is found only in certain integrin a subunits. The crystal struc-

ture of the αMI-domain was solved[52] and was shown to contain seven helices and six

b sheets connected by short surface loops. Five residues located within several of these

loops form a novel cation binding site, termed the MIDAS motif[52]. Recently, struc-

tures of other I-domains were determined. a-helices/b-sheets folds similar to those of

the αMI-domain have been observed[53-55]. The role of the I-domains in the ligand

binding has been well established. Diamond, et al[56], find that binding of C3bi and

ICAM-1 to  α β
2
  is blocked by mAbs to the aMI-domain, suggesting a spatial proximity

between these ligand-binding sites. We[57] and others[58], [59] showed that the recom-

binant aMI-domain interacts with NIF, ICAM-1, C3bi, and Fg. The importance of the I-

domain in ligand binding has also been demonstrated in other integrins  (α β
2 
,α β

2 
,

α β
1
and α β

1
)[60-63]. Given the similarity of the I-domain structures, it is not well

understood how I-domains can recognize a multitude of very different proteins. Previ-

ous studies have shown that five amino acids (Asp140, Ser142, Ser144, Asp242, and Thr209),

conserved within essentially all I-domains, are critical to ligand-binding activity of all

I-domain-containing integrins[52],[64-68], regardless of the nature of their ligands.

Thus, the specificity of each integrin, which is vital to its individual in vivo roles, can

not be derived from these conserved residues. To determine the molecular basis for

integrin α β
2 
 to interact with multiple ligands, we have used the Homologue- Scanning

Mutagenesis approach[69] and systematically probed the entire outer hydrated surface

of the I-domain of aM. We found that overlapping but non-identical regions within the

I-domain are involved in recognition of different ligands by the α β
2 
 receptor[70]. We

have further mapped the ligand binding pocket for NIF to a narrow region composed of
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Pro147-Arg152, Pro201-Lys217, and Asp248- Arg261 of αm[71].

In addition to the I-domain, the cation binding repeats in integrin a subunits also

have been implicated in ligand binding. D Souza, et al, first implicated the second

cation-binding repeat of aIIb in α
IIb 

β
3
 binding of the Fg-γ chain[72]. The cation-binding

repeats of α β
2 
 are also important in ligand binding. Altieri, et al, showed that a mAb

(OKM1) recognizing an epitope in the cation-binding repeat[56], completely blocked Fg

binding to α β
2 
[73]. Other antibodies mapped to the cation-binding repeats have potent

inhibitory effects on ICAM-1 binding to α β
2  

[56]. In contrast, antibodies recognizing

the region between the cation-binding repeats and the transmembrane region are poor

inhibitors of α β
2   

 functions, and are presumed not to be directly involved in ligand

interaction[56]. The involvement of the cation-binding repeats in ligand recognition

was also illustrated in α β
2 

 and α β
1
using recombinnt fragments[61],[74]. Springer

has recently proposed, based on computational analysis, that the region surrounding

the cation-binding repeats folds into a β-propeller-like structure[75]. Though very

appealing, this model is yet to be confirmed directly with experimental data. To this

end, several recent studies have provided encouraging data consistent with this model

[76],[77]. The ultimate test of this model will rely on structural studies using either X-

ray crystallography or two-dimensional NMR.

In addition to the a subunit, binding of some ligands requires cooperation from the

bsubunit as well. Similar to aIIb β
3  

, the homologous D134XSXS sequence within β
2 
is also

important for α β
2  

 binding to C3bi, Fg, and ICAM-1. Mutations of these oxygenated

residues into Ala abolished α β
2 
binding to these three ligands[70],[78],[79]. Thus, α

β
2   

-ligand interaction involves discrete regions within the I-domain and the β-propeller

of the a subunit, as well as the  β
2 
 subunit. Further studies are required to ascertain the

exact roles of these different regions of α β
2 

 in ligand binding.

Conclusion

α β
2
 is involved intimately in every aspects of neutrophil functions, by virtue of its

ability to recognize multiple different protein and non-protein ligands. The molecular

basis that confers  α β
2
 with such extraordinary capability is, in part, an overlapping

but non-identical ligand binding pocket, and involves the cooperation between the I-

domain and the β-propeller region, as well as the β-subunit. Understanding of the

molecular basis of α β
2
-ligand interactions will enable us to precisely control neutro-

phil functions, that is, to avoid the deleterious effects of neutrophil activation while

keeping intact its host defense function.
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