Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early postnatal nutritional requirements of the very preterm infant based on a presentation at the NICHD-AAP workshop on research in neonatology

Abstract

Normal fetal nutrition is a useful guide for understanding postnatal nutrition of infants born very preterm. Fetal lipid uptake gradually increases towards term and is primarily used to produce fat in adipose tissue, with essential fatty acid uptake providing necessary structural and functional elements in membranes of cells in the central nervous system. Fetal glucose uptake and utilization rates are nearly twice as high at 23–26 weeks gestation as they are at term, contributing primarily to energy production and glycogen formation. Amino-acid uptake by the fetus is two-to threefold greater at 23–26 weeks gestation than at term and is required to meet the very high fractional protein synthesis and growth rates at this gestational period; amino acids also contribute significantly to fetal energy production. In contrast, after birth most of the very preterm infants are fed more lipid and glucose and less amino acids and protein than they need. Not surprisingly, therefore, very preterm infants accumulate fat but remain relatively growth restricted at term gestational age compared to those infants who grew normally in utero, and this postnatal growth restriction has long-term adverse growth, development, and health consequences. More thorough understanding of the unique nutritional, metabolic, and growth requirements of the normally growing fetus and the very preterm infant, once born, are needed to determine optimal nutritional strategies to improve the outcome of preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. American Academy of Pediatrics Committee on Nutrition. Nutritional needs of low-birth-weight infants. Pediatrics 1985; 76: 976–986.

  2. Hay Jr WW . Nutrient delivery and metabolism in the fetus. In: Hod M, Jovanovic L, Di Renzo G, DeLeiva A (eds). Textbook of Diabetes and Pregnancy. Martin Dunitz, Ltd.: London and New York; 2003 pp 201–221.

    Google Scholar 

  3. Ehrenkranz RA . Growth outcomes of very low-birth weight infants in the newborn intensive care unit. Clin Perinatol 2000; 27: 325–345.

    Article  CAS  PubMed  Google Scholar 

  4. Hack M, Schlechter M, Cartar L, Rahman M, Cuttler L, Borawski E . Growth of very low birth weight infants to age 20 years. Pediatrics 2003; 112: e30–e38.

    Article  PubMed  Google Scholar 

  5. Lucas A, Morley RM, Cole TJ, Gore SM . A randomized multicenter study of human milk versus formula and later development in preterm infants. Arch Dis Child Fetal Neonatal Ed 1994; 70: F141–F146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Milley JR . Ovine fetal leucine kinetics and protein metabolism during decreased oxygen availability. Am J Physiol 1998; 274: E618–E626.

    CAS  PubMed  Google Scholar 

  7. Milley JR . Uptake of exogenous substrates during hypoxia in fetal lambs. Am J Physiol 1988; 254: E572–E578.

    CAS  PubMed  Google Scholar 

  8. Groothuis JR, Rosenberg AA . Home oxygen promotes weight gain in infants with bronchopulmonary dysplasia. Am J Dis Child 1987; 141: 992–995.

    CAS  PubMed  Google Scholar 

  9. Stockman II JA, Clark DA . Weight gain: a response to transfusion in the premature infant. Am J Dis Child 1984; 138: 831–833.

    Google Scholar 

  10. Tin W . Oxygen therapy: 50 years of uncertainty. Pediatrics 2002; 110: 615–616.

    Article  PubMed  Google Scholar 

  11. Alverson DC . The physiologic impact of anemia in the neonate. Clin Perinatol 1995; 22: 609–625.

    Article  CAS  PubMed  Google Scholar 

  12. Battaglia FC, Meschia G . Fetal nutrition. Annu Rev Nutr 1988; 8: 43–61.

    Article  CAS  PubMed  Google Scholar 

  13. Battaglia FC, Meschia G . An Introduction to Fetal Physiology. Academic Press, Inc.: Orlando; 1986 pp 100–135.

    Google Scholar 

  14. Molina RD, Meschia G, Battaglia FC, Hay Jr WW . Gestational maturation of placental glucose transfer capacity in sheep. Am J Physiol 1991; 261: R697–R704.

    CAS  PubMed  Google Scholar 

  15. Sunehag A . The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr Res 2003; 54: 480–486.

    Article  CAS  PubMed  Google Scholar 

  16. Carver TD, Quick Jr AN, Teng CC, Pike AW, Fennessey PV, Hay Jr WW . Leucine metabolism in chronically hypoglycemic, hypoinsulinemic growth restricted fetal sheep. Am J Physiol 1997; 272 (Endocrinol. Metab. 35): E107–E117.

    CAS  PubMed  Google Scholar 

  17. Marconi AM, Paolini C, Buscaglia M, Zerbe G, Battaglia FC, Pardi G . The impact of gestational age and fetal growth on the maternal–fetal glucose concentration difference. Obstet Gynecol 1996; 87: 937–942.

    Article  CAS  PubMed  Google Scholar 

  18. Lucas A, Morley R, Cole TJ . Adverse neurodevelopmental outcome of moderate neonatal hypoglycemia. BMJ 1988; 297: 1304–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Das UG, Schroeder RE, Hay Jr WW, Devaskar SU . Time-dependent and tissue-specific effects of circulating glucose on fetal ovine glucose transporters. Am J Physiol 1999; 276 (Regulatory Integrative Comp. Physiol. 45): R809–R817.

    CAS  PubMed  Google Scholar 

  20. Aldoretta PW, Hay Jr WW . Chronic hyperglycemia induces insulin resistance and glucose intolerance in fetal sheep. Pediatr Res 2001; 49: 307A, No. 1758.

    Google Scholar 

  21. Carver TD, Anderson SM, Aldoretta PW, Esler AL, Hay Jr WW . Glucose suppression of insulin secretion in chronically hyperglycemic fetal sheep. Pediatr Res 1995; 38: 754–762.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI . Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 350: 664–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Limesand SW, Jensen J, Hutton JC, Hay Jr WW . Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction. Am J Physiol Reg Integr Comp Physiol 2005; 288: R1297–R1305, E-pub 2005 Jan 13.

    Article  CAS  Google Scholar 

  24. Yau K, Chang M . Growth and body composition of preterm, small-for-gestational-age infants at a postmenstrual age of 37–40 weeks. Early Human Development 1993; 33: 117–131.

    Article  CAS  PubMed  Google Scholar 

  25. Sabita U, Thomas EL, Hamilton G, Doré CJ, Bell J, Modi N . Altered adiposity after extremely preterm birth. Pediatr Res 2005; 57: 211–215.

    Article  Google Scholar 

  26. Sellmayer A, Koletzko B . Long-chain polyunsaturated fatty acids and eicosanoids in infants – Physiological and pathophysiological aspects and open questions. Lipids 1999; 34: 199–205.

    Article  CAS  PubMed  Google Scholar 

  27. Carlson SE, Werkman SH, Rhodes PG, Tolley EA . Visual acuity development in healthy preterm infants: effect of marine oil supplementation. Am J Clin Nutr 1993; 58: 35–42.

    Article  CAS  PubMed  Google Scholar 

  28. Hay Jr WW . Nutrition and development of the fetus: carbohydrate and lipid metabolism. In: Walker WA, Watkins JB, Duggan CP (eds). Nutrition in Pediatrics (Basic Science and Clinical Applications), 3rd edn. BC Decker Inc. Publisher: Hamilton, Ontario, Canada; 2003 pp 449–470.

    Google Scholar 

  29. Meier PR, Peterson RG, Bonds DR, Meschia G, Battaglia FC . Rates of protein synthesis and turnover in fetal life. Am J Physiol 1981; 240: E320–E324.

    CAS  PubMed  Google Scholar 

  30. Ross JC, Fennessey PV, Wilkening RB, Battaglia FC, Meschia G . Placental transport and fetal utilization of leucine in a model of fetal growth retardation. Am J Physiol 1996; 270: E491–E503.

    CAS  PubMed  Google Scholar 

  31. Ziegler EE . Protein in premature feeding. Nutrition 1994; 10: 69–71.

    CAS  PubMed  Google Scholar 

  32. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R . Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr Res 2001; 49: 460–467.

    Article  CAS  PubMed  Google Scholar 

  33. Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 1999; 140: 4861–4873.

    Article  CAS  PubMed  Google Scholar 

  34. Micheli JL, Schutz Y . Protein. In: Tsang RC, Lucas A, Uauy R, Zlotkin S (eds). Nutritional Needs of the Preterm Infant, Scientific Basis and Practical Guidelines. Caduceus Medical Publishers, Inc.: Pawling, NY; 1993 pp 29–46.

    Google Scholar 

  35. Zlotkin SH, Bryan MH, Anderson GH . Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J Pediatr 1981; 99: 115–120.

    Article  CAS  PubMed  Google Scholar 

  36. Hay Jr WW, Regnault TRH . Fetal requirements and placental transfer of nitrogenous compounds. In: Polin RA, Fox WW, Abman SH (eds). Fetal and Neonatal Physiology, 3rd edn. W.B. Saunders Co.: Philadelphia; 2003 pp 509–527.

    Google Scholar 

  37. Heird WC, Hay Jr WW, Helms RA, Storm MC, Kashyap S, Bell RB . Pediatric parenteral amino acid mixture in low birth weight infants. Pediatrics 1988; 8l: 41–50.

    Google Scholar 

  38. Thureen PJ, Melara D, Fennessey PV, Hay Jr WW . Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res 2003; 53: 24–32.

    Article  CAS  PubMed  Google Scholar 

  39. Wahlig TM, Georgieff MK . The effects of illness on neonatal metabolism and nutritional management. Clin Perinatol 1995; 22: 77–96.

    Article  CAS  PubMed  Google Scholar 

  40. Billeaud C, Piedboeuf B, Chessex P . Energy expenditure and severity of respiratory disease in very low birth weight infants receiving long-term ventilatory support. J Pediatr 1992; 120: 461–464.

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell IM, Davies PS, Day JM, Pollock JC, Jamieson MP . Energy expenditure in children with congenital heart disease, before and after cardiac surgery. J Thorac Cardiovasc Surg 1994; 197: 374–380.

    Google Scholar 

  42. Fitzgerald MJ, Goto M, Myers TF, Zeller WP . Early metabolic effects of sepsis in the preterm infant: lactic acidosis and increased glucose requirement. J Pediatr 1992; 121: 951–955.

    Article  CAS  PubMed  Google Scholar 

  43. Milley JR . Ovine fetal metabolism during norepinephrine infusion. Am J Physiol 1997; 273: E336–E347.

    CAS  PubMed  Google Scholar 

  44. Papile LA, Tyson JE, Stoll BJ, Wright LL, Donovan EF, Bauer CR et al. A multicenter trial of two dexamethasone regimens in ventilator-dependent premature infants. N Engl J Med 1998; 338: 1112–1118.

    Article  CAS  PubMed  Google Scholar 

  45. Thureen PJ, Scheer B, Anderson SM, Hay Jr WW . Effect of hyperinsulinemia on amino acid utilization in the ovine fetus. Am J Physiol 2000; 279, (Endocrinol. Metab.) E1294–E1304.

    CAS  Google Scholar 

  46. Smart JL . Critical periods in brain development. In: Bock GR, Whelan J (eds). The Childhood Environment and Adult Disease. CIBA Foundation Symposium 156: Chichester, Wiley; 1991 pp 109–128.

    Google Scholar 

  47. Carlson SJ, Ziegler EE . Nutrient intakes and growth of very low birth weight infants. J Perinatol 1998; 18: 252–258.

    CAS  PubMed  Google Scholar 

  48. Singhal A, Fewtrell M, Cole TJ, Lucas A . Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. The Lancet 2003; 361: 1089–1097.

    Article  CAS  Google Scholar 

  49. Cianfarani S, Germani D, Branca F . Low birthweight and adult insulin resistance: the ‘catch-up growth’ hypothesis. Arch Dis Child Fetal Neoanatal Ed 1999; 81: F71–F73.

    Article  CAS  Google Scholar 

  50. Lucas A, Morley R, Cole TJ . Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 1998; 317: 1481–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health: M01RR00069 (WWH, Associate Director); RO1 HD42815 (WWH, PI); RO1 HD28794 (WWH, PI); RO1 DK52138 (WWH, PI); T32 HD07186 (WWH, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W Hay Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, W. Early postnatal nutritional requirements of the very preterm infant based on a presentation at the NICHD-AAP workshop on research in neonatology. J Perinatol 26 (Suppl 2), S13–S18 (2006). https://doi.org/10.1038/sj.jp.7211426

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211426

Keywords

This article is cited by

Search

Quick links