Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perinatal/Neonatal Case Presentation

Terminal Deletion of Chromosome 15q26.1: Case Report and Brief Literature Review

Abstract

Terminal deletions of chromosome 15q are rare events, with only six cases previously described. Here we describe a seventh case of a terminal deletion of the long arm of chromosome 15, with the present case exhibiting clinical features not previously described.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Roback EW, Barakat AJ, Dev VG, Mbikay M, Chrétien M, Butler MG . An infant with deletion of the distal long arm of chromosome 15 (q26.1 → qter) and loss of insuline-like growth factor I receptor gene. Am J Med Genet 1991;38:74–79.

    Article  CAS  Google Scholar 

  2. Tönnies H, Schulze I, Hennies HC, Neumann LM, Keitzer R, Neitzel H . De novo terminal deletion of chromosome 15q26.1 characterised by comparative genomic hybridisation and FISH with locus specific probes. J Med Genet 2001;38:617–621.

    Article  Google Scholar 

  3. Siebler T, Lopaczynski W, Terry CL, et al. Insulin-like growth factor I receptor expression and function in fibroblasts from two patients with deletion of the distal long arm of chromosome 15. J Clin Endocrinol Metab 1995;80:3447–3457.

    Article  CAS  Google Scholar 

  4. Okubo Y, Siddle K, Firth H, et al. Cell proliferation activities on skin fibroblasts from a short child with absence of one copy of the type I insulin-like growth factor receptor (IGF1R) gene and a tall child with three copies of the IGF1R gene. J Clin Endocrinol Metab 2003;88:5981–5988.

    Article  CAS  Google Scholar 

  5. Biggio JR, Descartes MD, Carroll AJ, Holt RL . Congenital diaphragmatic hernia: is 15q26.1–26.2 a candidate locus? Am J Med Genet 2004;126A:183–185.

    Article  Google Scholar 

  6. Butler MG, Fogo AB, Fuchs DA, Collins FS, Dev VG, Phillips JA . Brief clinical report and review: two patients with ring chromosome 15 syndrome. Am J Med Genet 1988;29:149–154.

    Article  CAS  Google Scholar 

  7. Mathew S, Murty VVVS, German J, Chaganti RSK . Confirmation of 15q26.1 as the site of the FES protooncogene by fluorescence in situ hybridization. Cytogenet Cell Genet 1993;63:33–34.

    Article  CAS  Google Scholar 

  8. German J, Roe AM, Leppert MF, Ellis NA . Bloom Syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. Proc Natl Accad Sci 1994;91:6669–6673.

    Article  CAS  Google Scholar 

  9. Oh IU, Inazawa J, Kim YO, Song BJ, Huh TL . Assignment of the human mitochondrial NADP+-specific isocitrate dehydrogenase (IDH2) gene to 15q26.1 by in situ hybridization. Genomics 1996;38:104–106.

    Article  CAS  Google Scholar 

  10. Eyre S, Roby P, Wolstencroft K, et al. Identification of a locus for a form of spondyloepiphyseal dysplasia on chromosome 15q26.1: exclusion of aggrecan as a candidate gene. J Med Genet 2002;39:634–638.

    Article  CAS  Google Scholar 

  11. Nagai T, Shimokawa O, Harada N, et al. Postnatal overgrowth by 15q-trisomy and intrauterine growth retardation by 15q-monosomy due to familial translocation t(13;15): dosage effect of IGF1R? Am J Med Genet 2002;113:173–177.

    Article  Google Scholar 

  12. Hu J, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM . Tetrasomy 15q25.3 → qter resulting from an analphoid supernumerary marker chromosome in a patient with multiple anomalies and bilateral Wilms tumors. Am J Med Genet 2002;113:82–88.

    Article  CAS  Google Scholar 

  13. Zirngibl RA, Senis Y, Greer PA . Enhanced endotoxin sensitivity in Fps/Fes-null mice with minimal defects in hematopoietic homeostasis. Mol Cell Biol 2002;22:2472–2486.

    Article  CAS  Google Scholar 

  14. McCammon MT, McAlister-Henn L . Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction. Ach Biochem Biophys 2003;419:222–233.

    CAS  Google Scholar 

  15. Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet 2004;36:400–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhakta, K., Marlin, S., Shen, J. et al. Terminal Deletion of Chromosome 15q26.1: Case Report and Brief Literature Review. J Perinatol 25, 429–432 (2005). https://doi.org/10.1038/sj.jp.7211301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211301

This article is cited by

Search

Quick links