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Several approaches have been proposed to correct point-wise signi®cance thresholds used in interval-
mapping genome scans. A method for signi®cance threshold correction based on the Bonferroni test is
presented. This test involves calculating the e�ective number of independent comparisons performed
in a genome scan from the variance of the eigenvalues of the observed marker correlation matrix. The
more highly correlated the markers, the higher the variance of the eigenvalues and the lower the
number of independent tests performed on a chromosome. This approach was evaluated by mapping
1000 normally distributed phenotypes along chromosomes of varying length and marker density in a
population size of 500. Experiment-wise signi®cance thresholds obtained from the simulation are
compared to those calculated using the Bonferroni criterion and the newly developed measure of the
e�ective number of independent tests in a genome scan. The Bonferroni calculation produced
signi®cance thresholds very similar to those obtained by simulation. The threshold levels for both
Bonferroni and simulation analysis depended strongly on the marker density and size of
chromosomes. There was a slight bias of about 1% in the thresholds obtained at the 5% and 10%
point-wise signi®cance levels. The method introduced here provides a relatively simple correction for
multiple comparisons that can be easily calculated using standard statistics packages.
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Introduction

Whole genome scans have been commonly used to
detect Quantitative Trait Loci (QTLs), especially since
Lander & Botstein (1989) introduced the concept of
interval mapping. In interval mapping studies, a series
of molecular marker genotypes are scored across the
genome at some desired density, often a marker every
10±20 centiMorgans (cM), along each chromosome
(Darvasi & Soller, 1994). Tests for linkage between
chromosomal locations and a phenotype of interest are
then performed at arbitrary map distances, usually in
two centiMorgan intervals (Lander & Botstein, 1989),
through each intermarker segment. One persistent and
sometimes controversial element of QTL mapping
approaches has been the determination of appropriate
thresholds for identifying statistically signi®cant link-
age (Lander & Kruglyak, 1995, 1996; Curtis, 1996;
Witte et al., 1996). In statistical testing it is usual to
reject the null hypothesis of no linkage if the probab-
ility of obtaining observed results under the null

hypothesis is less than a standard threshold, typically
5%. However, when many tests are performed addres-
sing the same issue, such as linkage of a trait across a
genome, we expect that fully 5% of the tests performed
will produce observations `signi®cantly di�erent' from
the null hypothesis at the 5% level even when there
is truly no linkage present. Such linkages are often
referred to as `false positives' because they falsely reject
a true null hypothesis of no linkage. Although a
multiple comparison problem occurs in any research
design involving many comparisons, it is particularly
important in genome-wide QTL mapping where the
phenotype in question is tested repeatedly along the
chromosomes.

Lander & Botstein (1989) carefully considered the
question of appropriate signi®cance thresholds for
sparse and dense map designs in their original paper.
They de®ne a sparse map as one in which consecutive
markers are well separated so that each marker is
inherited independently and the number of independent
comparisons is equal to the number of markers tested.
In this situation, they recommend the commonly used
Bonferroni correction for multiple comparisons in
which the probability of a false positive decision inCorrespondence. E-mail: cheverud@pcg.wustl.edu
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any one of the many experimental tests is limited to 0.05.
The value corresponding to a particular experiment-
wide signi®cance threshold (a) is usually obtained by
dividing the nominal signi®cance threshold for a single
test (c) by the number of independent tests (n), as in
a� (c/n). This is an approximation of a more exact
equation given by Lynch & Walsh (1998) where

a � 1 �1 c��1=n� �1�

Lander & Botstein (1989) also analytically derived an
appropriate Bonferroni correction for a dense map, in
which the number of intervals in a genomic scan
approaches in®nity. In this case they showed that the
required signi®cance level for individual tests approa-
ches a nonzero limit independent of the number of
markers and they provided the appropriate equation.
Most genome studies lie between these two extreme
examples, leaving many researchers still in doubt about
an appropriate signi®cance threshold for their genome
scans. Lander & Botstein (1989) also proposed simula-
tion as an appropriate means of identifying thresholds
for intermediate designs.
Rebai et al. (1994) introduced the Davies approxima-

tion as an appropriate method for determining thresh-
olds and provided equations useful for a variety of
research designs. They found that the Davies equation
gave a good approximation for thresholds as long as
sample sizes were not too small. However, they pointed
out that the `¼formal calculations needed could be
di�cult to carry out ¼' (p. 238; Rebai et al., 1994) and
that if they were di�cult in any given case, either
numerical approximations or simulations could be used
to obtain thresholds.
Churchill & Doerge (1994) proposed and validated a

very general method for determining threshold levels
with multiple comparisons. They recommended that one
obtain empirical thresholds for rejecting the null model
of no linkage by a permutation test. In a permutation
test the phenotypic data are randomly shu�ed relative
to the genotypic data and the entire genome scan
repeated on the shu�ed data. Permuted phenotypes
should bear no relation to their non-permuted genotypic
counterparts and thereby simulate results expected
under the null hypothesis. These simulations are repea-
ted many times to obtain a distribution of linkage
statistics that is expected under the null hypothesis. The
experiment-wise signi®cance threshold can then be
obtained from the appropriate percentile of this distri-
bution. If the observed linkage statistic exceeds the
threshold, the null hypothesis of no linkage is rejected.
Churchill & Doerge (1994) recommend at least 1000
shu�es to estimate a 0.05 threshold and 10 000 shu�es
to estimate a 0.01 threshold.

The permutation test approach to setting signi®cance
thresholds is very robust and has several advantages.
Primary among these is that it draws the threshold
directly from the data being analysed. Peculiarities of
the observed data, such as deviations of the phenotype
from a normal distribution, biased allele frequencies,
and patterns of missing data are maintained in the
permuted data sets and are included in estimation of
the thresholds obtained. However, this faithfulness to
the observed data also leads to some disadvantages for
this method. It is very computer intensive. Instead of
performing the entire genome scan once with the
observed data, it is necessary to repeat it 1000±10 000
times. A second disadvantage of this method is that the
permutation testing needs to be performed separately
for each phenotypic trait because each trait has its own
distributional peculiarities in any given sample. This
di�culty can be remedied, in part, by using multivariate
QTL mapping approaches (Jiang & Zeng, 1995) but still
can be very time-consuming.
Lander & Kruglyak (1995) addressed the issue of

multiple comparisons in genome scans for a wide variety
of research designs in human populations and in various
model organisms, concentrating on correcting the
threshold for a dense map, as in Lander & Botstein
(1989). A dense map contains an in®nite number of
markers and in®nitely small intermarker intervals. They
point out the very real problem that many false positive
linkages will be reported unless signi®cance thresholds
are adjusted for multiple comparisons. Because, in their
words, they perceive a `glazed-eye indi�erence' (Lander
& Kruglyak, 1995; p. 241) in how biologists often view
statistical issues, they provide signi®cance threshold
guidelines for a dense map research design and suggest
that these be generally followed. The classi®cation
scheme includes criteria for suggestive linkage (false
positive expected to occur one time at random in a
genome scan), signi®cant linkage (false positive expected
to occur 0.05 times in a genome scan), highly signi®cant
linkage (false positive expected to occur 0.001 times in a
genome scan) and con®rmed linkage (signi®cant linkage
con®rmed with new data). Only QTLs with con®rmed
linkage should be named. These thresholds are severe
relative to most QTL mapping experiments in which a
moderate density of one marker every 10±20 cMM is more
common than a truly dense map.
Lander & Kruglyak (1995) defend the assumption of

a dense map based on research designs that may or may
not be used in following up the initial results in the
original mapping population. However, they may
assume too much about individual research plans for
the dense map assumption to be universally valid. In this
paper, I present a general method of adjusting signi®-
cance thresholds for multiple comparisons using the
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Bonferroni procedure. This method allows the calcula-
tion of the number of independent tests performed in
any interdependent set of tests either across independent
chromosomes or across the whole genome, thus provi-
ding appropriate signi®cance thresholds for genome
scans.

Correction for multiple comparisons

The Bonferroni correction for multiple comparisons is
given in eqn 1 above. It allows an experiment-wide
threshold (a) to be calculated given the corresponding
point-wise (single-test) threshold (c) and the number of
independent comparisons made (n). The point-wise
threshold is determined by the researcher in advance
and takes on an arbitrary value, although 0.05 is most
commonly used. After settling on a point-wise signi®-
cance level, one needs to determine how many inde-
pendent tests are performed in order to calculate the
experiment-wide threshold. The logic behind calculating
the number of independent comparisons is described
below.

Calculation of the number of independent compar-
isons contained within a set is based on measuring the
correlations among independently scored markers
along a chromosome, because it is the interdependence
of these markers that makes for interdependent statis-
tical tests of the null hypothesis of no linkage.
Correlations are measures of marker interdependence
and correcting the total number of tests performed by
their level of interdependence provides the number of
independent tests needed to apply a Bonferroni correc-
tion. It has been known for some time that the total
amount of correlation among traits in a set can be
measured by the variance of the eigenvalues derived
from their correlation matrix (Cheverud et al., 1983,
1989; Wagner, 1984a, 1990; Cheverud, 1989, 1996).
Higher correlation among the traits leads to higher
eigenvalue variance. For example, when there is no

correlation among traits, all of the eigenvalues of the
correlation matrix are equal to one and the set of
eigenvalues has no variance. On the other hand, if all
traits are maximally correlated, the ®rst eigenvalue is
equal to the number of traits represented in the matrix
while the rest of the eigenvalues are equal to zero. In
this situation the variance is at its maximum and equal
to the number of traits in the matrix (M). The variance
of the eigenvalues will range between zero, when all
traits are independent, and M, where M is the number
of traits included in a matrix.

One can calculate the proportional reduction in the
number of elements in a set by the ratio of the
eigenvalue variance to its maximum (Vkobs/M). A
general equation for the e�ective number of independent
traits (Me�), rescaled to vary between 1.0 and M, is

Meff � M�1 �M 1�Vkobs=M2�: �2�

To determine the number of independent tests in a
genome scan, the number of traits (M) is the number of
markers on a chromosome or in the genome as a whole
andVkobs is the observed variance of the eigenvalues of the
correlation matrix for additive genotypic scores at each
marker. One ®rst obtains the marker correlation matrix
and its eigenvalues, calculates the variance of these
eigenvalues, and substitutes the observed eigenvalue
variance into eqn 2. The e�ective number of independent
comparisons (substituting Me� for n) can then be used in
eqn 1 to obtain the Bonferroni-corrected threshold

a � 1 �1 c��1=Meff�: �3�
An example based on the genome scans in the LG/J by
SM/J mouse F2 intercross reported by Cheverud et al.
(2001) is presented in Table 1. We consider mouse
chromosome 1 scored with eight markers in map
positions indicated in Table 1. First, additive genotypic
scores are calculated at each of the markers on a

Table 1 Microsatellite markers scored on chromosome 1 in the LG/J ´ SM/J intercross (Cheverud et al., 2001). Mapped
marker positions are given in Haldane's centiMorgans (cM). Correlations of additive genotypic scores at the markers are
given below the diagonal and the eight eigenvalues associated with this correlation matrix are given along the diagonal

Locus Position (cM) D1Mit3 D1Mit20 D1Mit74 D1Mit7 D1Mit11 D1Mit14 D1Mit17 D1Mit155

D1Mit3 0.0 3.63
D1Mit20 9.4 0.82 1.79
D1Mit74 29.5 0.64 0.65 1.13
D1Mit7 41.4 0.48 0.51 0.75 0.47
D1Mit11 52.1 0.32 0.35 0.57 0.75 0.37
D1Mit14 73.3 0.12 0.12 0.27 0.45 0.60 0.25
D1Mit17 115.2 0.08 0.10 0.15 0.15 0.19 0.33 0.18
D1Mit155 131.7 0.02 0.02 0.06 0.03 0.09 0.35 0.61 0.17
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chromosome. Additive genotypic scores take on a value
of (+1) at one homozygote (0) at the heterozygote, and
()1) at the alternate homozygote (Haley & Knott,
1992). Then marker correlations are calculated as
Pearson product moment correlations among the
additive genotypic scores (see Table 1). The eigenvalues
of this correlation matrix are obtained by principal
components analysis, or more generally by spectral
decomposition. The mean of these eigenvalues is 1.0 by
de®nition and their variance is calculated in the ordin-
ary fashion

Vkobs �
XM
i�1
�ki 1�2=�M 1�: �4�

The eigenvalues of the marker correlation matrix for
chromosome 1 are given along the diagonal of the
matrix in Table 1. The variance of these eigenvalues is
1.266. Placing this value into eqn 3 yields an estimate of
6.89 independent markers (Me�) on the chromosome.
Placing this value into eqn 4 using a nominal point-wise
signi®cance threshold of 0.05 yields a chromosome-wide
threshold value of 0.00725, or 2.14 when considered on
a LOD scale {LOD� log10(1 / Prob.)}. Thus, we expect
probabilities less than 0.00725 to occur somewhere
along this chromosome in 5% of the chromosome scans
even when the null hypothesis of no QTL e�ect is true.
This procedure can then be followed for each chromo-
some in succession. Genome-wide threshold values can
be obtained by summing Me� over all chromosomes
when the chromosomes are in linkage equilibrium, as in
an experimental F2 intercross. Alternatively, a single
correlation matrix can be constructed for all the markers
across the whole genome and then the variance of the
eigenvalues of this matrix obtained and substituted into
eqn 2.
Importantly, di�erent chromosomes in a single study

will have di�erent numbers and densities of markers and
therefore should be tested against their own, chromo-
some-speci®c threshold. Also, the structure and amount
of missing data varies among chromosomes and this
structure is accounted for in calculating the e�ective
number of independent tests. Lander & Kruglyak's
(1995) dense map approximation does not di�er by
chromosome because, with in®nite markers, the number
of markers no longer a�ects the number of tests.
Correction for a whole genome scan, corresponding to
Lander & Kruglyak's (1995) criterion for signi®cant
linkage, can be obtained using the correlation matrix for
all markers together or, in an F2 intercross where
chromosomes are in linkage equilibrium, by summing
the e�ective number of markers across the chromo-
somes.

Simulation

Simulation data and analysis

The proposition that appropriate signi®cance thresholds
for linkage analysis can be obtained from eqn 3 above
was tested by simulation. One thousand independent,
random, normally distributed (N(0,1)) traits were gen-
erated for each of 500 individuals using the appropriate
random value generator in SYSTATSYSTAT 7.0 (Wilkinson,
1997). These traits were tested for deviations from a
normal distribution and 5% of the cases di�ered from
normality at the 0.05 level, as expected. Sets of 500
marker genotypes were produced for each chromosome
tested. The genotype at the most proximal locus on each
chromosome was chosen at random from the genotype
distribution expected in an F2 intercross population.
Subsequent marker genotype values were obtained using
the simulated recombination rate between markers and
the genotype of the next most proximal marker until all
markers on the chromosome were assigned genotypes.
Chromosomes tested were 50, 75 and 100 cM long and
had intermarker distances of 50 cM, 25 cM, 12.5 cM
and 6.25 cM. Short intermarker distance implies higher
density of markers.
Interval mapping was performed using the set corre-

lation approach in SYSTATSYSTAT 7.0 (Wilkinson, 1997). The
random phenotype is the dependent variable whereas
the additive (Xa) and dominance (Xd) genotypic scores
are the independent variables (Haley & Knott, 1992).
The additive genotype score (Xa) is the weighted
probability that the genotype is AA or aa at the position
of interest. The dominance genotypic score is the
weighted probability that the genotype is heterozygous
(Aa) or homozygous (AA, aa) at the position of interest.
The probabilities and genotype scores are obtained
using the recombination rate between the position of
interest and the ¯anking markers (Haley & Knott,
1992). Genotypic scores were estimated every 2 cM in
the intervals between markers.
The 1000 traits serve as 1000 replicates of the null

model in which the phenotypes are unlinked to the
marker data. By performing interval-mapping analyses
on this simulated data, it was possible to compare the
analytical results obtained from eqn 3 with those
obtained by the simulated data in an F2 intercross
composed of 500 individuals. For each trait at each
length and marker density, 1000 chromosomes were
interval mapped. For each replicate, the minimum
probability of obtaining the observed result with no
linkage was extracted from the data and collated into a
distribution of probabilities expected under the null
hypothesis. For example, the 5% threshold for signi®-
cance accounting for multiple comparisons would be
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equal to the 5th percentile, or 50th case in the ordered
distribution of probabilities.

Simulation results

The signi®cance thresholds obtained from the simula-
tion and from the Bonferroni correction using the
e�ective number of independent tests are presented in
Table 2 for chromosome-wide 1%, 5%, and 10% levels.
It is clear that the Bonferroni-based thresholds are quite
close to the simulation-based values in each case. Both
simulation and Bonferroni-corrected values decrease as

the density of the markers increases and as the length of
the chromosome increases. The squared correlation
between simulated and Bonferroni-calculated thresholds
is very high, greater than 0.96.

However, there is a very slight bias towards less
extreme probability thresholds from the Bonferroni
correction relative to the simulation results. The bias
in Bonferroni-based thresholds is very small and often
not signi®cantly di�erent from zero given 1000 repli-
cates. The percentile position of the Bonferroni-based
threshold within the distribution of simulation results
is a measure of this bias (see Table 2). Bias is small to

Chromosome
length
(cM)

Intermarker
distance
(cM)

Bonferroni-
based

threshold

Simulation-
based

threshold Bias 

1% thresholds
50 6.25 0.00171 0.00125 0.003
75 6.25 0.00109 0.00099 0.001
100 6.25 0.00080 0.00077 0.000
50 12.50 0.00269 0.00192 0.004
75 12.50 0.00189 0.00148 0.001
100 12.50 0.00143 0.00103 0.001
50 25.00 0.00376 0.00343 0.001
75 25.00 0.00284 0.00188 0.004
100 25.00 0.00227 0.00173 0.006
50 50.00 0.00533 0.00360 0.002
100 50.00 0.00361 0.00202 0.004

5% thresholds
50 6.25 0.00871 0.00659 0.007
75 6.25 0.00557 0.00472 0.009
100 6.25 0.00407 0.00411 )0.010
50 12.50 0.01364 0.01109 0.014
75 12.50 0.00962 0.00693 0.010
100 12.50 0.00728 0.00554 0.015
50 25.00 0.01905 0.01763 0.007
75 25.00 0.01442 0.01016 0.012
100 25.00 0.01151 0.00831 0.024
50 50.00 0.02692 0.02135 0.012
100 50.00 0.01830 0.01340 0.019

10% thresholds
50 6.25 0.01781 0.02025 )0.013
75 6.25 0.01140 0.01249 )0.004
100 6.25 0.00833 0.00957 )0.012
50 12.50 0.02782 0.02092 0.020
75 12.50 0.01966 0.01689 0.014
100 12.50 0.01491 0.01269 0.013
50 25.00 0.03874 0.03627 0.006
75 25.00 0.02940 0.02511 0.015
100 25.00 0.02349 0.01793 0.027
50 50.00 0.05452 0.04453 0.015
100 50.00 0.03723 0.02700 0.029

 Bias is the deviation of the percentile rank of the Bonferroni-based threshold in the
Simulation-based distribution.

Table 2 Simulation results for
experiment-wide 1%, 5% and 10%
signi®cance thresholds compared to
thresholds based on Bonferroni
corrections using the calculated
number of independent comparisons
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nonexistent at the 1% threshold. The average bias is
0.002. Bias is more apparent at the 5% and 10%
thresholds, but is still only about 0.01.

Discussion

A simple method for obtaining appropriate thresholds
for genome scans using the Bonferroni correction has
been validated by simulation. Advantages of the method
are its relative ease of use and its speci®city to the
research design actually carried out in any particular
interval mapping study. Unlike the theoretical thresh-
olds suggested by Lander & Kruglyak (1995), these
thresholds are based directly on the amount and pattern
of interdependence among the markers scored in a
particular experiment. Patterns of missing genotypic
data are accounted for in these calculations because the
correlations are obtained directly from the marker data
themselves. The proposed correction can also be directly
applied in cases in which a series of covariates are used
in the analysis, as in some applications of composite
interval mapping (Zeng, 1994). If the covariates are
independent of the markers composing the map of the
chromosome under consideration, there will be no e�ect
because this does not change the level and pattern of
marker correlation along the mapped chromosome. In
cases where covariates are correlated with mapped
marker positions because of linkage disequilibrium,
the covariates should be regressed out of the marker
genotype scores before calculating the intermarker
correlation matrix and its eigenvalues.
The proposed Bonferroni correction can be easily

calculated for any experimental design because it
depends directly on the observed marker correlations.
Thus this approach should prove useful in various
incrossing and outcrossing designs because the e�ect of
the design will be manifest at the level of the observed
marker correlations. Modi®cations may be required
when more than two alleles are present, but the principle
remains the same. Marker correlation matrices and
associated eigenvalues can be calculated with most
statistical packages and the variance of these eigenvalues
quickly calculated in a spreadsheet. Using this method,
appropriate, experiment-speci®c signi®cance thresholds
can be easily calculated.
The relationship between the variance of the eigen-

values of themarker correlationmatrix and the number of
independent comparisons represented on a chromosome
can also be used prospectively in designing genome-
scanning experiments. The relationship between recom-
bination rate and correlation can be approximated by

r � 1 2c; �5�

where r is the intermarker correlation and c is the
recombination rate. This correlation is sometimes
referred to as the linkage parameter (Weir, 1996). Thus,
published map positions can be used to calculate
recombination rates and marker correlations so that
the e�ects of multiple comparisons on chromosome-
wide and genome-wide signi®cance thresholds can be
accounted for in determining the statistical power of
experimental designs.
Churchill & Doerge's (1994) suggestion that appro-

priate thresholds be obtained by simulation depends
even more fully on the characteristics of the data
collected than the proposed Bonferroni correction
because it can also take into account the potentially
non-normal distribution of the mapped traits. The
simulation performed here used normally distributed
traits. However, Churchill & Doerge's (1994) approach
also has the disadvantage of being very time consuming
and computer intensive with a new simulation needed
for every character studied. The Bonferroni correction
described here is speci®c to an experiment, but does not
have to be redone for every character. The loss in
threshold accuracy potentially involved in performing
the proposed Bonferroni correction is likely to be very
small unless trait distributions within genotype classes
deviate strongly from normality.
The multiple comparisons correction method pro-

posed here is based on corrections for individual
chromosomes. This was done because individual chro-
mosomes vary in length and marker density in most
interval mapping studies. Chromosome-speci®c correc-
tions will di�er from one another given di�erences in
chromosome length and marker density. The appropri-
ate chromosome-wide threshold for mouse chromo-
some 1 should be much higher than for mouse
chromosome 19 because, even with the same marker
density, the chromosomes are grossly di�erent in length
and therefore contain di�erent numbers of multiple
comparisons. Likewise, chromosomes of the same
length but with varying marker densities also require
di�erent thresholds.
Genome-wide thresholds can also be obtained by this

method. If the experimental population is from an F2

intercross, di�erent chromosomes are expected to be in
linkage equilibrium. If this is the case, the e�ective
number of independent tests across the whole genome
can be obtained by summing the chromosome-speci®c
values. More generally and even with linkage disequi-
librium among chromosomes, all markers across the
genome can be analysed jointly with a single variance of
the eigenvalues obtained from the genome-wide inter-
marker correlation matrix.
No matter which of the methods discussed above is

used for correcting point-wise signi®cance levels for

MULTIPLE COMPARISONS 57

Ó The Genetics Society of Great Britain, Heredity, 87, 52±58.



multiple comparisons, some correction must be applied.
The simulations reported here and in other papers
(Lander & Kruglyak, 1995) clearly show that point-wise
thresholds will be repeatedly exceeded in a genome scan
even if there is no linkage between markers and
phenotypes.
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