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The state of a diploid population segregating for two alleles at each of n loci is described by 22n

genotype frequencies, or equivalently, by allele frequencies and by multilocus moments or cumulants
of various orders. These measures of linkage disequilibrium cannot usually be determined, both
because one cannot tell whether a gene came from the maternal or paternal gamete, and because such
a large number of parameters cannot be estimated even from large samples. Simplifying assumptions
must therefore be made. This paper sets out methods for estimating multilocus genotype frequencies
which are appropriate for unlinked neutral loci, and for populations that are ultimately derived by
mixing of two source populations. In such a hybrid population, all multilocus associations depend
primarily on the number of loci involved that derive from the maternal genome, and the number
derived from the paternal genome. Allele frequencies may di�er across loci, and the contribution of
each locus to multilocus associations may be scaled by the di�erence in allele frequency between
source populations for that locus (dp £ 1). For example, the cumulant describing the association
between genes i, j, k from the maternal genome, and genes i, l from the paternal genome is ji,j,k,i*l*, �
dp2

i dpj dpk dpl j3,2. The state of the population is described by n allele frequencies; n divergences, dp;
and by a symmetric matrix of cumulants, jJ,K (J � 0 ,¼, n, K � 0 ,¼, n). Expressions for these
cumulants under short- and long-range migration are given. Two methods for estimating the
cumulants are described: a simple method based on multivariate moments, and a maximum likelihood
procedure, which uses the Metropolis algorithm. Both methods perform well when tested against
simulations with two or four loci.
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Introduction

Random mating and recombination break down asso-
ciations between alleles at di�erent genetic loci, leading
populations towards ``linkage equilibrium''. Nonran-
dom associations (``linkage disequilibria'') can be gen-
erated by a variety of evolutionary processes; their
observation gives an indirect method for quantifying
the rates of these processes. Thus, there has been con-
siderable interest in estimating the strength of linkage
disequilibria, motivated by varied aims: ®nding gene
order and recombination rates (Hill & Weir, 1994);
detecting genes responsible for human disease (Kaplan
et al., 1995); detecting selection for particular gene
combinations (Langley, 1977); and measuring patterns
and rates of migration (Asmussen et al., 1987; Barton &
Gale, 1993). This paper is concerned with understanding
hybrid populations, in which the mixing of genetically
distinct taxa can maintain strong associations even

between unlinked genes (Li & Nei, 1974). Methods for
estimating and interpreting pairwise associations are
well worked out, both for nuclear±nuclear and nuclear±
cytoplasmic associations (Hill, 1974a; Asmussen et al.,
1987). However, data are usually available from several
marker loci: here, we set out methods for combining
data across loci, paying particular attention to the case
where there are strong associations both between genes
from the same gamete, and between genes inherited
from di�erent parents.
There are three key di�culties. First, estimates of

associations between di�erent pairs of loci are not
independent of each other, especially when associations
are strong. Secondly, we do not usually wish to estimate
individual associations; in any case, there are far too
many such associations with even a few loci. Rather, we
wish to ®nd some composite measure which gives
information about the process responsible for generat-
ing linkage disequilibrium. (For example, random drift
and recombination will generate a distribution whose
parameters might be estimated from the variance in
pairwise disequilibrium; e.g. Langley, 1977.) Thirdly,*Correspondence. E-mail: n.barton@ed.ac.uk
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unless samples are of zygotes freshly generated by
random mating, there will be associations between genes
from di�erent parents; with diploids, these cannot be
distinguished from associations between genes derived
from the same gamete.

Most of the literature on estimating linkage disequi-
librium has been concerned with the third problem, of
resolving genotypes that are confounded in diploid data
(for example, using the EM algorithm; Hill, 1974a, 1975;
Dempster et al., 1977; Long et al., 1995; Slatkin &
Exco�er, 1996). There is also a good understanding of
the distribution of associations generated by random
drift within a single population (Hill, 1974b,c). The
primary motivation for this study is the estimation of
associations generated by the mixing of populations.
This raises particular di�culties, because there are often
strong associations, both within and between genomes;
it is also particularly simple, in that admixture models
make straightforward predictions as to the structure of
associations in a population.

The crucial requirement is for some model which
speci®es the frequencies of genotypes in terms of a
reasonably small number of parameters. Given such a
model, the parameters can be estimated by maximum
likelihood. Such a model is also necessary for other
statistical problems where genotype frequencies must be
speci®ed: for example, estimating paternities or mapping
quantitative trait loci. Here, we show that many kinds of
admixture lead to a model with a simple structure, and
show how the parameters of this model can be estimated
by maximum likelihood. First, however, we justify the
choice of this model by discussing alternative methods
which might be used to determine the structure of
genotype frequencies.

The key di�culties arise because of the very large
number of possible genotypes. For example, with two
alleles at each of ®ve loci, there are 25 � 32 haplotypes
and 35 � 243 distinguishable diploid genotypes. Unless
samples are extremely large, one cannot estimate even
haplotype frequencies. Moreover, if gametes are not
combined at random, the genetic structure is determined
by the much larger number of diploid genotypes; yet,
these cannot be distinguished without knowing which
gene came from which parent. The very large number of
genotypes rules out the most obvious method: to make a
maximum likelihood estimate (MLE) of the genotype
frequencies. Even in large samples, most diplotypes, and
even most haplotypes, may be missing. Therefore, the
MLE would be that only observed genotypes are actually
present, implying complete associations between certain
gene combinations. This can raise serious di�culties.
For example, suppose that we wish to ®nd whether some
family was sired by a known male, or by some unknown
father. If we suppose that genotypes that are absent in

our sample are absent in the rest of the population, then
there will be an undue tendency to assign paternity to
implausible parental genotypes which happen to be
represented amongst the known individuals.

The problem, therefore, is to describe the genotype
frequencies in terms of a small number of parameters;
the description must be simple enough to make calcu-
lations tractable, and must include the structure of the
actual populations under study. A popular solution to
this kind of problem has been to use the method of
``maximum entropy'' (Guiasu & Shenitzer, 1985; Phipps
& Brill, 1995). The entropy of a sample is de®ned as
S �PXg[X ] log[g[X ]], where g[X ] is the frequency of
genotype X. Given the constraint

P
Xg[X ] � 1, entropy

is maximized when all genotypes are equally common.
Given further constraints on allele frequencies, the
maximum entropy is at linkage equilibrium. With con-
straints on pairwise linkage disequilibria, the maximum
entropy solution de®nes the genotype frequencies in
terms of the small number of pairwise coe�cients.
In the haploid case, the solution is g[X] � exp[

P
i kiXi +P

i,j ki, jXiXj]/Z, where Z is a normalizing constant, and
Xi � 0 or 1 de®nes the state of the ith locus. The ks are
determined by the equations ¶ln(Z)/¶ki � pi, ¶ln(Z)/
¶ki,j � pipj+Ci,j, where pi is the allele frequency, and Ci,j

is the covariance (equivalent to the linkage disequilib-
rium) between loci i and j. This method has a tempting
generality, but su�ers two drawbacks. First, numerical
solutions involve complicated transcendental equations,
which become intractable in the diploid case. Secondly,
there is no reason why evolutionary processes should
lead populations to have ``maximum entropy''. The
method has been justi®ed as re¯ecting our ignorance of
unknown frequencies (analogous to arguments justify-
ing parsimony in phylogeny reconstruction; Sober,
1983). However, even though we may not know actual
genotype frequencies, we may know the patterns of
genotype frequencies likely to be produced by evolution:
estimation procedures should be based on these pat-
terns. Moreover, the parameter estimates are not inter-
esting in themselves: they can only be interpreted in the
light of some evolutionary model.

A related approach is that taken by Haber (1984)
where a log-linear model is used to parameterize
genotype frequencies. For two loci (labelled i, j), the
frequency of the diploid combination {{Pi, Pj},{Pi*, Pj*}}
(where i and j label the alleles inherited from the mother,
and i*, j* those from the father), is given as exp[l + ai +
aj + ai* + aj* + bij + bi*j* + bii* + bjj* + bij* + bji*].
Only ®rst- and second-order interactions are considered,
but the method could be extended to include higher-
order interactions and multiple loci. A di�culty with
this method is that, in order to determine the parameters
uniquely, some arbitrary reference point needs to be
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assigned, which will not necessarily have a biological
interpretation. For example, Haber (1984) suggests
setting the sums over the indices to zero. With no
higher-order interactions, the allele frequencies for locus
i are then p1 � exp[l + a1] and p2 � exp[l ) a1]; how-
ever, the parameters l, a do not bear a simple relation
to allele frequencies in the presence of interactions.
Another problem is that the parameters of the log-linear
model measure net e�ects; the parameter bjj� , which
measures deviations from random mating with respect
to locus j, could be zero, but if some of the other ®ve sets
of two-way parameters, b, are nonzero, the covariance
between alleles at locus j will not be zero. Finally, there
is still the problem of estimating a large number of
parameters; simply setting parameters for higher-order
interactions to zero may cause erroneous estimates of
lower-order interactions.
Here, we suppose that the population is subject to

continuing immigration by adults, from two source
populations with di�erent allele frequencies. Mixing of
divergent populations builds up associations between
genes inherited from the same parent, and from di�erent
parents. In each generation, associations between genes
inherited from di�erent parents are eliminated by
segregation and recombination, and then built up again
by immigration. We assume that continued migration
does not dissipate di�erences between populations; in
reality, these may decay, or may be maintained by
selection. However, the assumption of a short-term
balance between recombination and migration is accu-
rate even when allele frequencies are homogenizing, or
when selection maintains them in the face of gene ¯ow
(Barton & Gale, 1993; Kruuk, 1997; Barton & Shpak,
2000a; Kruuk et al., 1999).
It would be possible to ®t a speci®cmodel of admixture,

giving estimates of migration rates, allele frequencies in
the source populations, and so on. However, the distri-
bution of genotype frequencies depends on the detailed
migration pattern, which is often unknown. In particular,
migration at a low rate from divergent populations
maintains a small fraction of genetically distinct individ-
uals; a higher rate of immigration from less divergent
populations may maintain the same genetic variance, but
much smaller higher-order associations. We therefore
aim to ®nd a genetic structure which covers this range of
admixture models; estimates of this general structure can
then be compared with particular migration models.
This approach is closely related to the simple practice

of classifying hybrid individuals into various classes of
cross (Arnold, 1997). If hybridization is rare or recent,
then there may be distinct classes of parental and F1

genotypes. Backcrosses can be identi®ed because they
are homozygous only for genes from a single taxon;
given enough markers, the number of generations of

backcrossing could be estimated (Goodman et al.,
1999). However, if hybridization has been extensive,
individuals can no longer be unambiguously assigned (at
least, without an inordinate number of markers). The
classi®cation can then be misleading: for example,
putatively F1 genotypes may be more likely to be
generated by chance than by an actual cross between
parental genotypes. One could still describe a popula-
tion as some mixture of parentals, F1s, backcrosses and
F2s. However, this mix is not uniquely determined by
genotype frequencies. We discuss below the relation
between our description of genotypic structure, and
classi®cation by hybrid status.
The analysis falls into three sections. First, it is shown

that models of admixture, involving both short- and
long-range migration, lead to associations among genes
which depend on the number of genes involved, and
on how many of each kind come from each parent.
Associations involving particular loci are proportional
to the divergence in allele frequency for that locus; this
makes it simple to rescale, so as to allow for variation
in associations across loci. Secondly, an algorithm is
presented for making maximum likelihood estimates of
the within- and between-genome associations, and for
testing hypotheses as to their magnitude. Finally, the
accuracy of this algorithm is demonstrated against
simulated datasets. Procedures for analysing multilocus
admixture models, and for maximum likelihood estima-
tion, are implemented in MATHEMATICAMATHEMATICA 3.0, and are
available from http://helios.bto.ed.ac.uk/evolgen/.

Models of admixture

Suppose that proportions m1, m2 migrate in from two
source demes, with allele frequencies p1;i, p2;i at locus i.
At equilibrium, the allele frequency in the deme of
interest is pi � �m1p1;i � m2p2;i�=�m1 � m2�. The notation
can therefore be simpli®ed by letting p1;i � pi ) Udpi,
p2;i � pi + Vdpi, where the migration rates are m1 �
mU, m2=mV, and where dpi=(p2;i ) p1;i). Thus, m is the
total immigration rate, and U, V are the proportions of
migrants from each source (U+V=1). Note that U is
determined by the ratio of migration rates, and so is the
same for all loci; it is not necessarily equal to the mean
of the pi. If alternative alleles are ®xed in the source
demes, then dpi � 1, and pi � U. However, if dpi < 1,
then the equilibrium allele frequencies pi may vary
across loci.
We must now determine the associations among loci

at equilibrium. Following Turelli & Barton (1994), we
de®ne these as multivariate cumulants across sets of
genes. Consider loci with two alleles, labelled by Xi � 0
or 1; in a diploid, the copies inherited from the mother
and father are labelled Xi, X �i , respectively, and the full
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genotype is de®ned by the pair of vectors {X, X*}.
Deviations from the population mean are de®ned by
fi=(Xi ) pi), where pi=E[Xi]. The pairwise association
between genes at i and j, inherited from the mother, can
be described by the covariance between Xi, Xj, denoted
C{i,j} º E[fifj]. Similarly, the pairwise association be-
tween the gene at i inherited from the mother, and
the gene at locus j inherited from the father, can be
described by Cfi;j�g � E�fif

�
j �, where pi� � E�X �i �. (The

coe�cient Cfi;i�g describes the de®cit of heterozygotes at
locus i). Higher-order associations are described in a
similar way to multilocus moments (Barton & Turelli,
1991.) The genotype frequencies can be reconstructed as
a linear combination of the various multilocus moments.
With two loci, for example, the frequency of the double
homozygote {{1, 1}, {1, 1}} is:

g�ff1; 1g; f1; 1gg�
� pipjpi�pj� � pi�pj�Cfi;jg � pjpj�Cfi;i�g
� pjpi�Cfi;j�g � pipj�Cfj;i�g � pipi�Cfj;j�g � pipjCfi�;j�g
� pj�Cfi;j;i�g � pjCfi;i�;j�g � pi�Cfi;j;j�g
� piCfj;i�;j�g � Cfi;j;i�;j�g: �1�

The frequency of other genotypes is found by replacing pi
by qi, and changing the sign of every coe�cient CU,
whenever an allele Xi=1 is replaced by Xi=0 in (1).
Thus, the 16 genotype frequencies are determined by four
allele frequencies, six pairwise associations, four three-
way associations, and one four-way association. The
frequencies of more complex genotypes could be des-
cribed in a similar way, by use of higher-order moments.

The population can also be described in terms of
multilocus cumulants rather than moments (Turelli &
Barton, 1994). Cumulants are polynomial functions of
the moments; the second- and third-order cumulants are
identical to the central moments, but the fourth- and
higher-order moments di�er. For example, j{i,j,k,l}=
C{i,j,k,l,} )C{i,j}C{k,l} )C{i,k}C{j,l} )C{i,l}C{j,k}. Cumulants
can be thought of as describing the association amongst
a set of genes, over and above those expected from the
lower-order associations amongst the various subsets.
They are de®ned so as to be additive. Thus, if an
additive trait is constructed as the sum of contributions
of all the genes �Pi�Xi � X �i ��, then its kth cumulant is
the sum of all cumulants amongst sets of k genes. We
choose cumulants to describe admixture models because
higher-order cumulants are small in admixture models;
all cumulants of the same kind are of similar magnitude
(see below); and at Hardy±Weinberg, all cumulants
involving genes inherited from di�erent parents are
zero. (This is not the case for moments: for example,
Cfi;j;k�;l�g � Cfi;jgCfk�;l�g for a population in Hardy±
Weinberg proportions.)

Genotype frequencies are readily derived fromeqn 1by
expressing moments in terms of cumulants. For example:

g�ff1; 1g; f1; 1gg�
� � pipj � jfi;jg�� pi�pj� � jfi�;j�g�
� � pjpj� � jfj;j�g�� pipi� � jfi;i�g� � � pjpi� � jfj;i�g�
� � pipj� � jfi;j�g� � � pj�jfi;j;i�g � pjjfi;i�;j�g � pi�jfi;j;j�g
� pijfj;i�;j�g� � jfi;j;i�;j�g 2pipjpi�pj� : �2�

The same rules apply for ®nding the frequency of other
genotypes as above.

These expressions can readily be extended to allow for
multiple alleles, provided that there are ultimately just
two sources of migrants, which are in linkage equilibrium.
Suppose that within deme 2, allele ai at locus i is at
frequency p2;ai ; similarly for deme 1. Now, regardless of
their actual allelic state, label alleles that derive from
either of the two demes asXi=0or 1. Then, the frequency
of an individual entirely composed of alleles derived from
deme 2 is given by eqns 1 or 2; and the chance that this
individual carries alleles ai is the product of the p2;ais. The
net frequency of some allelic combination is given by a
sum over all origins of those alleles, multiplied by their
probability, given that origin. This sum will simplify if
certain alleles are found only in one or other source.

The algorithms which de®ne the e�ects of recombina-
tion and randommating within demes are given in Turelli
& Barton (1994); migration simply involves a linear
mixture of moments. The algorithms can be found at
http://helios.bto.ed.ac.uk/evolgen/. Here, we apply them
to ®nd the associations which would be found at equilib-
rium, in a balance betweenmigration and recombination.
We assume no linkage between loci, which is the case of
most practical interest. (Linkage introduces considerable
di�culties, because associations will decrease in a com-
plicated way with recombination rate.) The expressions
below assume symmetry across the two sexes; they also
apply to cytonuclear disequilibria, provided that evolu-
tionary processes apply equally to both sexes.

Below, we give the equilibrium solutions for two
extreme cases. First, migrants might come from source
populations which are in linkage equilibrium. This will
necessarily apply if the sources are ®xed for alternative
alleles, and so we refer to this case as ``long-range
migration''. Secondly, migrants might come from neigh-
bouring demes with di�erent allele frequencies, but with
the same levels of association. This is an approximation to
a stepping-stone model, where migration is between
neighbours which are in a similar state. It ignores the
di�usion of linkage disequilibrium, which tends to reduce
associations in the centre, and increase them at the edge.
(This is the ``quasi-linkage equilibrium'' approximation
of Barton (1986) and Kruuk et al. (1999).) We compare
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the ``short-range migration'' approximation with exact
simulations below.
Assuming symmetry across the sexes, pairwise asso-

ciations under these two approximations are:
short-range migration:

jshort
fi;jg � 3mUV �qdpidpj; jshort

fi;j�g � mUV dpidpj;

long-range migration

�3�
jlong
fi;jg � jshort

fi;j�g
�1 m

3�
�1� m� ; jlong

fi;j�g � jshort
fi;j�g:

Associations between the two copies of an allele at the
same locus, jfi;i�g, which describe heterozygote de®cit,
are given by replacing j* by i* in the expression for jfi;j�g
above. The in¯ux of linkage disequilibrium from the
source populations assumed under the model of short-
range migration increases associations within genomes
by a factor (1+m)/(1 ) m/3), but does not a�ect
associations between genomes. With both kinds of
migration, the associations between genomes are smaller
because they are broken down in every generation by
segregation. All the expressions in eqn 3 are for asso-
ciations measured immediately after dispersal; among
zygotes, there will be no associations between maternal
and paternal genomes. Associations within genomes will
be reduced to j�fi;jg � �jfi;jg � jfi;j�g�=2 by random
segregation and mating.
Three-way associations are given by similar expres-

sions:
short-range migration:

jshort
fi;j;kg �

7

3
mUV �U V �dpidpjdpk;

jshort
fi;j�;k�g � mUV �U V �dpidpjdpk; �4�

long-range migration:

jlong
fi;j;kg � jshort

fi;j;kg
�1 3m

7 �
�1� m

3�
; jlong

fi;j�;k�g � jshort
fi;j�;k�g:

Finally, we give the four-way associations:
short-range migration:

jshort
fi;j;k;lg �

15

7
mUV �1 3UV �1� m��dpidpjdpkdpl;

jshort
fi;j�;k�;l�g � jshort

fi;j;k�;l�g
� mUV �1 3UV �1� m�� dpidpjdpkdpl;

�5�

long-range migration:

jlong
fi;j;k;lg �

mUV ��1� m�2�15 7m� 3�15� 82m 24m2 10m3 � m4�UV �
�1� m2��7� m�

� dpidpjdpkdpl;

jlong
fi;j�;k�;l�g � mUV 1 3

�1� 4m m2�
�1� m� UV

� �
dpidpjdpkdpl;

jlong
fi;j;k�;l�g � mUV 1

�3� 13m� 5m2 � 3m3�
�1� m�2 UV

 !
� dpidpjdpkdpl:

Expressions for higher-order associations become more
complicated, but share a similar structure. In particular,
all associations involving a set of loci U are given by the
product Pi2Udpi, multiplied by a factor independent of
the loci involved. This is important, because it gives a
simple way of scaling out variation across loci, and
because it allows associations between genes at di�erent
loci, jfi;j�g, which are not directly observable, to be
estimated from observations on heterozygote de®cit,
jfi;i�g. It also allows the e�ects of immigration from
near and far to be distinguished: if dp is small, then
associations among many genes become small, whereas
if dp is close to 1 (its maximum value), then all higher-
order associations are proportional to mUV, and may be
large. This is re¯ected in a leptokurtic distribution of the
number of alleles from one or other taxon.
The strength of associations generated by admixture

does not depend directly on allele frequency. It is
proportional to mUV, which is the harmonic mean of
the immigration rates mU, mV. If dpi < 1 (for example,
with short-range migration), then allele frequencies
might vary across loci without directly a�ecting the
associations between them.
Associations between genes inherited from di�erent

parents depend primarily on the numbers of genes
involved. For example, eqn 5 shows that jfi;j;k;l�g;
jfi;j�;k�;l�g are identical to jfi;j;k�;l�g for short-range migra-
tion, and with long-range migration, are extremely close
over the whole range of migration rates (Figs 1 and 2).
Similar calculations show that all ®fth- and sixth-order
cross-genome cumulants are similar; agreement becomes
closer as migration rates become asymmetric (i.e.U � 1/
2 or � 1/2). This similarity between di�erent classes of
association arises because higher-order associations are
almost entirely eliminated by segregation: the nth-order
association decreases by a factor 2n)1 every generation.
Therefore, associations are close to those built up by
admixture in the current generation, which is the same for
all nth-order associations.
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Calculating genotype frequencies

In admixture models with random mating and with just
two sources of immigrants, genotype frequencies can
be speci®ed in terms of allele frequencies, pi ; relative
divergence across loci, dpi; Kth-order within-genome
associations, j0,K; and between-genome associations
involving J genes from one parent, and K from the other,
jJ,K. With n loci, and symmetry across the sexes, there are
(n ) 1) within-genome coe�cients; n(n ) 1)/2 between-
genome coe�cients, jJ,K; n allele frequencies, pi; and
(n ) 1) divergences, dpi. Therefore, the 3n genotype
frequencies are determined by (n2+5n ) 4)/2
parameters. (Note that the dpi only give the relative
importance of each locus, and could be multiplied by an
arbitrary constant; they are therefore associated with
(n ) 1) degrees of freedom.) For example, with four loci,
the 81 distinguishable diploid genotypes are speci®ed by
just 16 parameters; with ®ve loci, the 243 distinguishable

genotypes depend on 23 parameters. The similarity
between all nth-order cross-genome associations (Figs 1
and 2) suggests a further simpli®cation: to equate all
cross-genome cumulants involving the same number
of loci. However, this can lead to negative genotype
frequencies: even the small changes needed to force
equality among cross-genome associations of the same
order can force genotype frequencies outside their valid
range.

If the set of genes U all come from the same parent,
jU � j0;jU j�Pi2Udpi�, where jU j is the number of genes in
U; if a setU come fromone parent, andU* from the other,
then jU ;U � � jjU j;jU �j�Pi2Udpi��Pi2U�dpi� �. The genotype
frequency (1) can then be written compactly as follows:

g�ff1; 1g; f1; 1gg�
� pipjpi�pj� � � pi�pj�dpidpj � pipjdpi�dpj� �C0;2

� � pidpj � dpipj�� pi�dpj� � dpi�p�j �C1;1

� � pj�dpidpjdpi� � pjdpidpj�dpi�

� pi�dpidpjdpj� � pidpjdpi�dpj� �C1;2

� dpidpjdpi�dpj�C2;2

� C � C � C�T

Fig. 1 Comparisons between the three kinds of four-way

association, jfi;j;k� ;l�g, jfi;j;k;l�g, j{i,j,k,l }, (bottom to top) plotted
against migration rate, m; U � 0.1. Values are from eqn 5,
scaled relative to dpi dpj dpk dpl. (a) Long-range migration,

(b) short-range migration. With short-range migration, (b),
jfi;j;k�;l�g is identical to jfi;j;k;l�g. Note that with short-range
migration in a stepping-stone model, (b), m < 1/2, and

dp � 1; therefore, the actual associations may be much
smaller than with long-range migration, even though the scaled
values shown here are larger.

Fig. 2 Comparisons between the three kinds of four-way
association, jfi;j;k�;l�g; jfi;j;k;l�g; jfi;j;k;lg (bottom to top at

p � 0.1), plotted against allele frequency, U; m � 1/2. Values
are from eqn 5, scaled relative to dpi dpj dpk dpl. (a) Long-range
migration, (b) short-range migration. With short-range
migration, (b), jfi;j;k�;l�g is identical to jfi;j;k;l�g.
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where C � ( pipj ( pidpj + dpi pj)dpi dpj),

C� � � pi�pj� � pi�dpj� � dpi�p�j ��dpi�dpj� ��; �6�

C �
1 0 C0;2

0 C1;1 C1;2

C2;0 C2;1 C2;2

0B@
1CA

�
1 0 j0;2

0 j1;1 j1;2

j2;0 j2;1 j2;2 � j2
0;2 � 2j2

1;1

0B@
1CA;

where CJ,K represents the multilocus moment, and
jJ,K the multilocus cumulant.
The frequency of other genotypes is found by replac-

ing pi by qi and dpi by )dpi whenever an allele Xi=1 is
replaced by Xi=0 in (1). In general, with n loci, C is the
matrix of scaled moments (with C1,0 º 0, C0,0 º 1), and C
is a vector indexed 0 ,¼, n, whose ith element is the sum
of products of (n ) i ) distinct allele frequencies and the
remaining i distinct dps. The complete matrix of 2n ´ 2n

diploid genotypes can be written as T á C á T*T, where T
is the 2n ´ (n + 1) matrix, each row being a permuta-
tion of the vector C de®ned in (6). For example, with
two loci:

G �

g�ff0; 0g; f0; 0gg� g�ff0; 0g; f0; 1gg� . . . . . .

g�ff0; 1g; f0; 0gg� g�ff0; 1g; f0; 1gg� . . . . . .

� � . . . . . .

� � . . . . . .

0BBBBBB@

1CCCCCCA
� T � C � T�T;

where

T �
qiqj � qidpj d piqj� dpidpj

qipj �qidpj dpipj� dpidpj

piqj � pidpj � dpiqj� dpidpj

pipj � pidpj � dpipj� dpidpj

0BB@
1CCA: �7�

Expressed in this form, genotype frequencies can be
calculated e�ciently, since T depends only on allele
frequencies, and C depends only on the moments or
cumulants. Thus, when exploring the statistical ®t of
alternative moments, T need not be recalculated.
The model discussed so far has assumed migration

from just two source demes. More complex models,
with migration from several demes, will retain the same
structure only under special conditions. The linkage
disequilibrium after migration is a linear sum of the

disequilibria contributed by each source. Therefore,
the e�ects of each locus will scale by a factor dpi only
if the deviations in allele frequency of all the sources
from the target deme are proportional to this quantity.
That is plausible if there is mixing between two taxa,
via some network of demes, with the dpi corresponding
to the di�erence in allele frequency at locus i between
the parental taxa. For example, consider a cline. If
there is di�usion from neighbouring demes, plus a
lower in¯ux from the parental taxa, then associations
will scale with dpi provided that the gradient of the
cline at some locus is proportional to the divergence
between the taxa Ð which will be the case for neutral
models. In general, however, admixture between large
numbers of demes could produce any distribution of
genotype frequencies.

A simple method for estimating multilocus
moments

Suppose that we wish to estimate the pairwise linkage
disequilibria, C0,2, C1,1 from a set of genotype frequen-
cies; assume for the moment that the divergences are
dpi=1. The coe�cient C0,2 is the usual measure of
pairwise linkage disequilibrium between genes derived
from the same gamete, whereas C1,1 is the measure of
the de®cit of heterozygotes. One possibility would be to
use the variance of an additive trait, z �Pi�Xi � X �i �,
where X is the vector giving the states of each
gamete. This variance is just var�z� � P

i

P
j�Cfi;jg�

Cfi;j�g � Cfi�;jg � Cfi�;j�g� � 2�Pi piqi � n�n 1�C0;2 � n2

�C1;1�, since Cfi;ig � piqi. The associations within and
between genomes can be disentangled by estimating
Cfi;i�g from the de®cit of heterozygotes at individual loci.
Because we assume that between-genome associations
are the same whether they involve the same or di�erent
loci �Cfi;i�g � Cfi;j�g � C1;1�, this allows the component
of var(z) attributable to cross-genome associations to be
separated from that attributable to associations within
genomes (see Barton & Gale, 1993; Kruuk, 1997).
This approach extends to give a simple way of

estimating the whole matrix of moments, Cj,k, from a set
of 3ndiploid genotype frequencies. Each locus is described
by the valueXi+Xi

* � 0, 1 or 2. However, the underlying
genotypes {0, 1} and {1, 0} cannot be distinguished in
heterozygotes: this makes it impossible to estimate
directly all the multilocus moments. Nevertheless, pro-
vided that allele frequencies are known, and are the same
amongst male and female gametes, two useful quantities
can be de®ned for each locus. First, the additive e�ect is
given by zi � fi � f�i � Xi � X �i 2pi. Secondly, the devi-
ation from Hardy±Weinberg proportions is described
by /i � fif

�
i , which takes values f p2i ; piqi; q2

i g for
Xi � X �i � f0; 1; 2g. Next, ®nd the average value
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Ma,b of all those terms which contain a factors zi, and
b factors/i, all with distinct indices:Ma;b � hPi2A�fi � f�i �
Pj2B�fjf

�
j �i, where A, B are sets of distinct and nonover-

lapping indices, and <> indicates an average over all
�n!=a!b!�n a b�!� such terms. (For example, with four
loci, M2,2=(z1z2 /3/4+z1 z3 /2/4+� � �)/6.) If the geno-
type frequencies have the form given by the admixture
model, with dp=1, then the expectation of Ma,b is

E�Ma;b� �
P

J�K�a
a
j

� �
CJ�b;K�b. (Note that because the

Ma,b have been de®ned to include only terms with distinct
indices, moments such as C{i,i} � pi qi do not arise; the
expression for E[Ma,b] therefore does not include allele
frequencies.)

Taking all possible Ma,b provides a set of linear
equations which uniquely determine all possible Cj,k.
For example, for three loci, the moments Cj,k are given
in terms of the expectations of Ma,b as follows:

C�E

1 0 1
2 M2;0 M0;1

1
2 M3;0

3
2 M1;1

0 M0;1
1
2 M1;1

1
2 M2;1 M0;2

1
2 M2;0 M0;1

1
2 M1;1 M0;2

1
2 M1;2

1
2 M3;0

3
2 M1;1

1
2 M2;1 M0;2

1
2 M1;2 M0;3

0BBBB@
1CCCCA

266664
377775:
�8�

It would be straightforward to ®nd unbiased estimators
for the Ma,b, based on small samples. However, because
the degree of bias is negligible compared with the
standard deviation of the estimates, the additional
complication is not warranted.

If the dpi vary across loci, the same method can
be used, provided that zi is scaled relative to dpi, and
/i relative to dp2

i . Then, Ma;b � Pi2A�fi � f�i �=dpi

Pj2B�fjf
�
j �=dp2

i . Clearly, this method fails if any of the
dpi are zero. In itself, this poses no di�culty, because
such irrelevant loci could be deleted. However, the high
weight contributed by loci with weak associations
(dp � 1) suggests that the method may be statistically
ine�cient if there is wide variation in the dpi.

This method gives satisfactory estimates of individual
coe�cients. However, it is unsatisfactory as an estimator
of the overall genotypic structure, described by the full
set of moments, because individual genotype frequencies
may be negative. Even if a population has the structure
required by the admixture model, samples from that
population will vary from that structure, and estimates
of allele frequencies and moments made using eqn 8
may not give valid genotype frequencies.

Maximum likelihood estimation

Expressions for the genotype frequencies are linear
combinations of the multilocus moments. The log
likelihood (log(L)) of the parameters (pi, dpi, jj,k) is

given by summing log(g[X ]) over all observed geno-
types, X. The maximum likelihood estimate (MLE) is
found by maximizing log(L), subject to the constraint
that all g[X ] must be non-negative, including those
genotypes which did not happen to arise in the sample.
This is a nontrivial task, because a very large number of
constraints are involved. It can be simpli®ed in two
ways. First, allele frequencies can be set to their
observed values; this considerably speeds the calcula-
tion, because calculating the matrix T (a function of the
allele frequencies) is otherwise the limiting step. The
observed allele frequencies are not quite the same as
their MLE in the presence of linkage disequilibrium;
indeed, with moderate linkage disequilibrium (e.g. with
m > 0.1 below), the sampled allele frequencies may be
incompatible with the true Cs that generated the sample,
leading to negative genotype frequencies. It will there-
fore be necessary to ®t allele frequencies as well as
linkage disequilibria in the simulations below, because
we wish to compare with those true values. However,
that may not be necessary in making estimates from real
data.

Secondly, the dpi may not need to be estimated. They
may be known a priori, from knowledge of the source
demes. If they are not, then they can be chosen so as to
®t the average pairwise association for each locus. The
covariance between the diploid genotype (scored as
0, 1 or 2) at loci i and j is cov�Xi � Xi� ;Xj � Xj� � �
Ĉi;j � 2�Cfi;jg � Cfi;j�g�, and must equal adpidpj, where
a depends on migration rates, etc. Therefore, the sum of
the covariances involving locus i is:

X
j6�i

Ĉi;j � Ĉi;� � adpi�dps dpi�;where dps �
X

i

dpi:

�9�

Given some a, eqn 9 determines the dpi which will ®t the
observed Ĉi;�. The choice of a is arbitrary, because the
dpi can be increased, and the CJ,K decreased, so as to
leave the predicted linkage disequilibria and genotype
frequencies unaltered. One possibility is to suppose that
the migration rates are in proportions U:V equal to the
mean allele frequencies in the sample, and then take the
largest dpi which still allow valid allele frequencies in
the hypothetical source populations (i.e. 0 <pi ) Udpi,
1 > pi + Vdpi). Heterogeneity across loci can be tested
by comparing the likelihood of this choice with setting
dpi � 1.

Once the pi and dpi are chosen, the likelihood must
be maximized with respect to the jJ,K, subject to
constraints on genotype frequencies. For populations
close to Hardy±Weinberg and linkage equilibrium,
simple Newton±Raphson maximization is adequate.
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However, when linkage disequilibria are strong, this
often leads to solutions with negative frequencies of
unobserved genotypes. We therefore deal with such
cases using the Metropolis algorithm (Metropolis et al.,
1954). A random change is made to parameter k; this is
drawn from a symmetrical uniform distribution, with
maximum value �Dk. If the new parameter set is valid,
and if it increases the likelihood, it is accepted. If it is
valid, but decreases the likelihood by a factor h < 1,
then it is accepted with probability h1/T. The size of
random perturbations is optimized by increasing Dk

slightly if a change in parameter k is accepted, and
decreasing it if the change is rejected. This procedure,
applied to each of the parameters in turn, generates a
random walk with a probability distribution L1/T. The
parameter T determines how closely this distribution
clusters around the optimum (or optima); it is
analogous to a temperature, in that with large values
of T, the system wanders randomly over a wider
range, whereas with small T, it ``freezes'' to some local
optimum. The global optimum can be found by
starting at some high T, and gradually cooling to
T � 0 (``simulated annealing''; Kirkpatrick et al.,
1983). Setting T � 1 gives a distribution proportional
to the likelihood, which can be used to generate
support limits on the parameters.
Likelihood provides a natural way of comparing

nested hypotheses (Edwards, 1972; Mangel & Hilborn,
1996). One can ®nd in turn the likelihood that the
population is in Hardy±Weinberg and linkage equilib-
rium; that gametes are combined at random, but that
there are associations between genes derived from the
same gamete, j0,2; that there are also higher-order
associations within gametes, j0,K (K > 2); that there are
pairwise associations between genes inherited from
di�erent parents, j1,1; and ®nally, that all associations
within and between genomes contribute. One might also
compare the likelihood that all allele frequencies, pi, are
equal, or that the contribution of each locus to linkage
disequilibrium, dpi, is the same. In order to assess the
relative plausibility, one must trade an increase in
likelihood against the number of parameters ®tted.
One approach is to treat the increase in log likelihood
obtained by ®tting m parameters as a statistic, which
approaches a 1

2 v2m distribution in large samples.
However, this asymptotic result may not be accurate
when samples are small, and when estimates are
bounded by constraints. It would be possible (though
extremely tedious) to ®nd the exact distribution of the
likelihood ratio statistic by simulation, or by bootstrap
resampling. An alternative approach treats the likeli-
hood itself as the criterion for inference; a plot of log
likelihood against the parameters gives a measure of
their relative plausibility. A di�erence in log likelihood

of 2 units, which corresponds to one hypothesis being
e2 = 7.4 times as likely as the other, can be used as a
conventional threshold for acceptance. When hypothe-
ses di�er by several degrees of freedom, it is convenient
to take thresholds from the 1

2 v2m distribution, without
applying a signi®cance test as such. An alternative
procedure is the Akioke information criterion (Mangel
& Hilborn, 1996), under which a model is to be
preferred if it has a larger value of log(L) ) 2m, which
trades each degree of freedom against 1/2 a unit of
log(L). Finally, one could use the Metropolis algorithm,
with T � 1, to generate a random walk proportional
to the likelihood. The marginal distribution of each
parameter then gives its likelihood, weighting the other
parameters by their likelihood. This procedure amounts
to Bayesian inference with uniform prior. The method
described here is thus compatible with varied statistical
philosophies.
We illustrate this approach using data on the

genotypes of 37 toads sampled from the hybrid zone
between Bombina bombina and B. variegata in Croatia
(sample 1063 from MacCallum et al., 1998). The toads
were scored for four unlinked and diagnostic allozymes
(IDH, AK, MDH and LDH). The numbers of each
genotype observed are given in Table 1, and are
compared with those expected under several hypotheses.
The log likelihood that the population is in Hardy±
Weinberg and linkage equilibrium is )45.27. On the
assumption that all loci are equivalent (dpi � 1), a
signi®cant improvement is achieved by allowing pair-
wise associations within genomes (log(L) � )36.69;
j0,2 � 0.035). There is a further signi®cant gain in
allowing pairwise associations between genomes, repre-
senting a de®cit of heterozygotes (log(L) � )34.12;
j0,2 = 0.015, j1,1 � 0.035). There is little further gain
in ®tting all the other higher-order associations
(log(L) � )30.15, giving an increase in log(L) of 3.97
for an additional 11 d.f.). Allowing associations to vary
across loci, by ®tting dpi, gives a marginal improvement
(log(L) � )31.31 with j0,2 = 0.021, j1,1 = 0.013;
dp � {0.37, 1.12, 1.18, 2.03}). This increase in log
(likelihood) of 2.81 is not signi®cant when compared
with the asymptotic 1

2 v23 distribution (P � 13%).
Figure 3 shows how the likelihood depends on j0,2

and j1,1. The most accurate estimate is of the net
covariance between loci (j0,2+j1,1); this is re¯ected in
the relative closeness of the contours as both j0,2, j1,1

increase to top right. The hypothesis that j1,1 = 0 can
be rejected: the contour corresponding to 2 units of
log(likelihood) (second down from the peak) does not
cross the horizontal axis (see Table 1). However, the
hypothesis that j0,2 � 0 cannot be rejected: that is,
gametes might be in linkage equililbrium, provided that
there is a strong enough heterozygote de®cit.
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Testing against simulated datasets

In order to test these estimation procedures, samples of
100 individuals were taken from a population subject to
immigration from two source demes, ®xed for alternate
alleles (``long-range migration''). Samples were taken
after migration, at which point the population would
be in linkage disequilibrium and would deviate from
Hardy±Weinberg. Table 2 shows the results of ®tting
various models to 100 replicate datasets, assuming two
unlinked loci at U � 0.2 or V � 0.5, and total migration
rates m � 0, 0.1, 0.2, 0.3. (Note that with just two loci,
the value of dpi is confounded with the values of the
coe�cients, and so may arbitrarily be set to 1.) For this
problem, convergence of the Metropolis algorithm
seems relatively fast. In all cases, parameters were
changed 400 times each at T � 2, 1 and then 200 times
each at T � 0.5, 0. Repeating this algorithm usually
gave values of log(L) which di�ered by less than 0.1. In
each case, allele frequencies were ®tted by maximum
likelihood. Initially, allele frequencies were set at their

sampled values; if that did not give positive genotype
frequencies, then allele frequencies were set equal, at a
value which would give positive frequencies. This
method sometimes failed to ®nd a valid starting point
(see below).

Maximum likelihood estimation of all the cumulants
(second row of each table) gave results close to the true
values; there is little bias, through j1,1 is slightly
underestimated for U � 0.5, m � 0.2, 0.3. The standard
deviation of estimates of j0,2 averages 0.0252 for
U � 0.5, and 0.0194 for U � 0.2; within-genome asso-
ciations can thus be detected reliably for low migration
rates (m � 0.1). The standard deviation of estimates
of j1,1 averages 0.0182 for U � 0.5, and 0.0156 for
U � 0.2; between-genome associations can therefore be
reliably detected for m � 0.2 at U � 0.2 and 0.5. The
standard deviation is expected to scale approximately
with the square root of sample size.

The simple method of eqn 8 performs comparably
with maximum likelihood estimation: standard devia-
tions are similar, and again, the only evidence of bias is a

Table 1 Numbers of each genotype observed in the sample of Bombina from site 1063, compared with numbers expected
under various hypotheses. The third column gives expectations at Hardy±Weinberg and linkage equilibrium. The next three
columns show the MLE for within-genome associations; pairwise associations within and between genomes; and for all
orders of association. The last three columns show the same, but with the dpi allowed to vary across loci. The estimated
pairwise associations, log likelihoods and residual degrees of freedom are shown below each column. Genotypes at each locus
are represented as homozygotes for B. bombina alleles (0); heterozygotes (1); or homozygotes for B. variegata alleles (2). In
each case, allele frequencies were ®tted by maximum likelihood

Genotype
Observed
number HW, LE j0;2 j0;2; j1;1 All jj;k dp; j0;2 dp; j0;2; j1;1 dp, all jj;k

{0, 0, 0, 0} 9 2.02 5.46 6.54 7.77 4.76 5.99 8.65
{1, 0, 0, 0} 4 2.60 3.71 3.07 2.98 4.07 5.64 3.27
{0, 0, 1, 0} 2 1.94 2.18 1.70 1.32 1.76 2.00 1.56
{1, 0, 0, 1} 1 2.34 2.35 1.34 0.65 1.62 0.57 0.61
{0, 1, 1, 0} 1 0.83 0.52 0.70 0.47 0.76 0.62 0.25
{2, 0, 1, 0} 4 0.80 0.59 0.68 0.62 0.53 0.67 0.53
{1, 1, 0, 1} 1 1.00 0.85 0.66 0.86 1.06 0.94 0.90
{1, 0, 1, 1} 1 2.25 2.25 1.23 1.17 2.01 1.60 1.51
{1, 0, 0, 2} 2 0.53 0.31 0.30 0.25 0.14 0.34 0.56
{2, 1, 0, 1} 1 0.32 0.29 0.34 0.52 0.31 0.28 0.35
{1, 1, 1, 1} 1 0.96 1.23 0.88 1.50 1.85 0.99 1.07
{1, 0, 2, 1} 1 0.54 0.42 0.44 0.53 0.38 0.46 0.65
{1, 0, 1, 2} 1 0.51 0.40 0.35 0.40 0.30 0.46 0.75
{0, 1, 2, 1} 2 0.18 0.13 0.19 0.27 0.29 0.25 0.19
{2, 1, 1, 1} 2 0.31 0.47 0.52 0.96 0.61 0.35 0.94
{1, 1, 1, 2} 1 0.22 0.29 0.31 0.56 0.43 0.48 0.86
{0, 2, 2, 1} 1 0.02 0.02 0.05 0.10 0.079 0.05 0.059
{0, 1, 2, 2} 1 0.04 0.04 0.07 0.10 0.14 0.16 0.11
{2, 1, 1, 2} 1 0.07 0.16 0.23 0.21 0.18 0.19 0.23

j0;2 0 0.035 0.015 0.035 0.038 0.021 0.033
j1;1 0 0 0.035 0.026 0 0.013 0.030
log(L) )45.27 )36.69 )34.12 )30.15 )34.31 )31.31 )28.44
Residual d.f. 76 75 74 63 72 71 60
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slight underestimation of j1,1 for p = 0.5 and large m.
However, this method does not provide a general
method of hypothesis testing, and may not give valid
predictions of genotype frequencies: the cumulants
estimated in this way, combined with the sampled allele
frequencies, often lead to negative genotype frequencies.
Throughout, the distribution of log(L) ®ts reasonably

well with the expected 1
2 v2m distribution, which has mean

and variance m/2 (where m is the number of residual
degrees of freedom). For example, one can compare the
log likelihood, ®tting all coe�cients (second row), with
that obtained by setting coe�cients equal to their true
values (®fth row). The di�erence in mean log likelihood
is close to the expected value of 2 (e.g m � 0.3, p � 0.2;
Dlog(L) � 1.82). However, in a few cases (all for
p � 0.2), ®tting more parameters apparently led to a
lower likelihood. This occurs when the Metropolis
algorithm fails to ®nd the global optimum; in principle,
the di�culty could be solved by cooling more slowly
from a higher temperature. This problem only arose in
2/800 cases when the likelihoods of the true values of all
the cumulants were compared with the likelihood, ®tting
all the cumulants (®fth vs. second rows in Table 2). The
problem was more frequent (30/800 cases) when the
likelihood of the pairwise cumulants (j1,1, j0,2) was
compared with the likelihood, ®tting all cumulants
(fourth vs. second rows in Table 2). This is because here,

both likelihoods involve stochastic optimization using
the Metropolis algorithm.
Hardy±Weinberg and linkage equilibrium was rejected

in all cases for m > 0.1; in three cases for m � 0,
U � 0.5; in 79 cases for m � 0.1, U and in four, 74 cases
for m = 0, 0.1, U � 0.2 (second vs. ®rst rows; 2 d.f.).
Thus, where the population was in fact in Hardy±
Weinberg and linkage equilibrium (m � 0), the true
hypothesis was rejected �5% of the time, whereas for
m ³ 0.1, Hardy±Weinberg and linkage equilibrium was
rejected in most cases.
The number of replicates in which the true values of

the cumulants were rejected, at the 5% level, was close
to expectation. The hypothesis that the pairwise asso-
ciations j1,1, j0,2 equal their true values was rejected in
7, 5, 8, 5 cases for m � 0, 0.1, 0.2, 0.3 and U � 0.5, and
3, 8, 5, 3 cases for U � 0.2 (second vs. fourth rows;
2 d.f.). The hypothesis that the all cumulants equal their
true values was rejected in 3, 5, 7, 5 cases for m � 0, 0.1,
0.2, 0.3 and U � 0.5, and 4, 5, 3, 4 cases for U � 0.2
(second vs. ®fth rows; 2 d.f.). This agreement is some
what surprising, given that the numbers of most geno-
types are small, and the maximum likelihood estimate is
often bounded by constraints on genotype frequencies.
Table 3 shows results of simulations with four

unlinked loci; the migration rate is m � 0 or 0.3, and
U � 0.2 or 0.5. As before, allele frequencies are ®tted by
maximum likelihood, and all loci are equivalent (i.e.
dp � 1). (The case where pairwise associations were
®xed at their true values and the remainder ®tted is not
now shown.) The simple method of eqn 8 (third row of
Table 3) performs well, in that the mean of estimates of
j1,1, j0,2 is close to the true value, and the standard
deviation across replicates is similar to that of maximum
likelihood estimates. However, the matrix of moments
estimated using eqn 8 usually gives negative genotype
frequencies when combined with sample allele frequen-
cies; this re¯ects the strong constraints on the moments
with four loci. With high migration (m � 0.3), maximum
likelihood estimates of j1,1, j0,2 are on average �10%
lower than the true values; with no migration, there is a
small positive bias for j0,2 (0.0136 for U � 0.2, 0.0094
for U � 0.5); a small positive bias for j1,1 with U � 0.2
(+0.0041); and a small negative bias for j1,1 with
U � 0.5 ()0.0051).
Likelihoods now agree poorly with asymptotic theory;

this is to be expected, as there are now stronger
constraints on the parameters, and because the genotype
frequencies are lower. The mean residual log(L) are now
substantially smaller than the expected value, m/2 (®rst
column of Table 3). Comparison of hypotheses also
shows smaller di�erences in log(likelihood) than expected
for m � 0.3. For example, with U � 0.5, the improve-
ment in log(likelihood) obtained by ®tting 13 cumulants

Fig. 3 The log likelihood surface for data from site 1063,

plotted as a function of pairwise within- and between-genome
association, j0,2, j1,1. All other associations are set to zero;
dpi are ®xed at 1, and allele frequencies are ®tted by maximum
likelihood. Contours of log likelihood are drawn at unit

intervals.
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Table 2 Each table shows results from 100 replicate samples of 100 individuals. These were taken after migration from populations with the same allele
frequencies at two unlinked loci (p1 = p2 = 0.2 or 0.5). Immigration is from two source demes, ®xed for alternate alleles �dp1 � dp2 � 1�; the total rate of
migration is m = 0.1, 0.2, 0.3. Populations with m = 0 are in linkage equilibrium and Hardy±Weinberg proportions. For each of the eight sets of replicates,
several alternative models were ®tted. Log likelihoods were calculated for each, relative to a perfect ®t; the mean and variance of these are shown, together with
the number of residual degrees of freedom. Asymptotically, log(L) should follow a 1

2 v2m distribution, with mean and variance v/2. The mean (SD) of each
coe�cient is shown; this was either ®tted by maximum likelihood, estimated from the sample (eqn 8); or ®xed at its true value. HW, LE denotes the null model
of linkage equilibrium and Hardy±Weinberg proportions. The next three rows show estimates ®tting all cumulants, jJ ;K ; setting all cumulants to their values
estimated from the sample by eqn 8; ®xing pairwise cumulants to their true values, but ®tting the remainder; and ®xing all cumulants at their true values. The
last row gives the true values in the population from which the replicates were sampled. In all cases, allele frequencies were ®tted by maximum likelihood. In
some cases, no valid starting point could be found: the number of such cases is listed, and these were excluded from the analysis

log(L)
No.

Mean Variance v invalid j0;2 (SD) j1;1 (SD) j1;2 (SD) j2;2 (SD)

m = 0, U = 0.2
HW, LE )3.15 2.87 6 0 0 0 0 0
Fit all jJ ;K )1.43 1.04 2 0 0.0024 (0.0178) )0.0012 (0.0103) )0.0002 (0.0033) )0.0005 (0.0029)
Sample jJ ;K )2.01 7.98 2 0 )0.0001 (0.0210) )0.0007 (0.0118) )0.0003 (0.0030) )0.0008 (0.0024)
True j0;2; j1;1 )2.32 1.96 4 0 0 0 0.0002 (0.0033) 0.0004 (0.0030)
True jJ ;K )3.15 2.87 6 0 0 0 0 0
True model 0 0 0 0

m = 0.1, U = 0.2
HW, LE )10.04 27.68 6 0 0 0 0 0
Fit all jJ ;K )1.27 1.17 2 0 0.0420 (0.0204) 0.0166 (0.0154) 0.0091 (0.0080) 0.0057 (0.0050)
Sample jJ ;K )1.28 1.33 2 0 0.0414 (0.0199) 0.0163 (0.0153) 0.0087 (0.0073) 0.0056 (0.0046)
True j0;2; j1;1 )2.39 2.46 4 0 0.0422 0.0160 0.0092 (0.0051) 0.0069 (0.0045)
True jJ ;K )3.39 3.07 6 0 0.0422 0.0160 0.0096 0.0068
True model 0.0422 0.0160 0.0096 0.0068

m = 0.2, U = 0.2
HW, LE )21.26 64.94 6 0 0 0 0 0
Fit all jJ ;K )1.36 0.82 2 0 0.0754 (0.0195) 0.0291 (0.0181) 0.0171 (0.0100) 0.0085 (0.0057)
Sample jJ ;K )1.37 0.95 2 1 0.0745 (0.0190) 0.0277 (0.0160) 0.0167 (0.0092) 0.0088 (0.0041)
True j0;2; j1;1 )2.30 2.18 4 0 0.0747 0.0320 0.0189 (0.0049) 0.0106 (0.0047)
True jJ ;K )3.33 2.86 6 0 0.0747 0.0320 0.0192 0.0113
True model 0.0747 0.0320 0.0192 0.0113

m = 0.3, U = 0.2
HW, LE )37.61 113.42 6 0 0 0 0 0
Fit all jJ ;K )1.34 0.71 2 0 0.1023 (0.0200) 0.0466 (0.0188) 0.0276 (0.0103) 0.0120 (0.0055)
Sample jJ ;K )1.19 0.84 2 0 0.1013 (0.0187) 0.0457 (0.0184) 0.0278 (0.0103) 0.0126 (0.0055)
True j0;2; j1;1 )2.13 1.11 4 0 0.0997 0.0480 0.0293 (0.0055) 0.0142 (0.0052)
True jJ ;K )3.16 1.92 6 0 0.0997 0.0480 0.0288 0.0142
True model 0.0997 0.0480 0.0288 0.0142
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m = 0, U = 0.5
HW, LE )2.99 2.85 6 0 0 0 0 0
Fit all jJ ;K )0.86 0.54 2 0 0.0017 (0.0309) )0.0004 (0.0180) 0.0010 (0.0064) )0.0014 (0.0067)
Sample jJ ;K )0.86 0.55 2 3 0.0014 (0.0315) )0.0002 (0.0182) 0.0010 (0.0063) )0.0015 (0.0067)
True j0;2; j1;1 )1.86 1.33 4 0 0.0000 0.0000 0.0010 (0.0065) 0.0001 (0.0066)
True jJ ;K )2.99 2.85 6 0 0.0000 0.0000 0.0000 0.0000
True model 0 0 0 0

m = 0.1, U = 0.5
HW, LE )9.69 22.60 6 0 0 0 0 0
Fit all jJ ;K )1.03 0.84 2 0 0.0653 (0.0273) 0.0226 (0.0184) )0.0007 (0.0063) 0.0018 (0.0063)
Sample jJ ;K )1.04 0.84 2 0 0.0650 (0.0270) 0.0228 (0.0185) )0.0007 (0.0062) 0.0018 (0.0061)
True j0;2; j1;1 )2.06 1.94 4 0 0.0659 0.0250 )0.0008 (0.0063) 0.0031 (0.0062)
True jJ ;K )3.03 2.61 6 0 0.0659 0.0250 0.0000 0.0025
True model 0.0659 0.0250 0.0000 0.0025

m = 0.2, U = 0.5
HW, LE )25.26 61.41 6 0 0 0 0 0
Fit all jJ ;K )1.14 1.35 2 0 0.1181 (0.0231) 0.0459 (0.0191) )0.0002 (0.0067) )0.0018 (0.0068)
Sample jJ ;K )1.15 1.36 2 0 0.1180 (0.0230) 0.0460 (0.0191) )0.0001 (0.0068) )0.0016 (0.0066)
True j0;2; j1;1 )2.23 2.68 4 0 0.1167 0.0500 )0.0002 (0.0068) )0.0006 (0.0059)
True jJ ;K )3.33 4.02 6 0 0.1167 0.0500 0.0000 )0.0006
True model 0.1167 0.0500 0.0000 )0.0006

m = 0.3, U = 0.5
HW, LE )43.06 77.88 6 0 0 0 0 0
Fit all jJ ;K )1.11 1.03 2 0 0.1534 (0.0194) 0.0692 (0.0173) )0.0013 (0.0077) )0.0072 (0.0070)
Sample jJ ;K )1.09 1.11 2 3 0.1537 (0.0198) 0.0685 (0.0175) )0.0011 (0.0077) )0.0068 (0.0065)
True j0;2; j1;1 )2.06 1.99 4 0 0.1558 0.0750 )0.0011 (0.0080) )0.0077 (0.0052)
True jJ ;K )3.24 2.61 6 0 0.1558 0.0750 0.0000 )0.0074
True model 0.1558 0.0750 0.0000 )0.0074
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Table 3 Results from simulations with four unlinked loci, presented as in Table 2

log(L)
No.

Mean Variance v invalid j0;2 (SD) j1;1 (SD) j1;2 (SD) j2;2 (SD)

m = 0, U = 0.2
HW, LE )23.22 19.09 76 0 0 0 0 0
Fit all jJ ;K )22.30 16.29 63 0 0.0136 (0.0103) 0.0041 (0.0083) 0.0032 (0.0022) 0.0017 (0.0012)
Sample jJ ;K )49.57 1118.41 63 37 0.0012 (0.0105) )0.0013 (0.0093) )0.0002 (0.0013) )0.0001 (0.0010)
True jJ ;K )23.22 19.09 76 0 0.0000 0.0000 0.0000 0.0000
True model 0.0000 0.0000 0.0000 0.0000

m = 0.3, U = 0.2
HW, LE )129.46 655.94 76 0 0 0 0 0
Fit all jJ ;K )17.82 13.16 63 0 0.0894 (0.0172) 0.0419 (0.0150) 0.0198 (0.0074) 0.0081 (0.0032)
Sample jJ ;K )20.24 9.50 63 96 0.0989 (0.0183) 0.0444 (0.0167) 0.0270 (0.0087) 0.0128 (0.0041)
True jJ ;K )19.71 17.15 76 0 0.0997 0.0480 0.0288 0.0142
True model 0.0997 0.0480 0.0288 0.0142

m = 0, U = 0.5
HW, LE )42.46 32.02 76 0 0 0 0 0
Fit all jJ ;K )36.91 26.73 63 0 0.0094 (0.0124) )0.0051 (0.0095) 0.0006 (0.0024) 0.0005 (0.0019)
Sample jJ ;K )37.91 31.70 63 89 0.0002 (0.0150) 0.0003 (0.0112) 0.0007 (0.0026) )0.0003 (0.0026)
True jJ ;K )42.46 32.02 76 0 0.0000 0.0000 0.0000 0.0000
True model 0.0000 0.0000 0.0000 0.0000

m = 0.3, U = 0.5
HW, LE )172.23 433.71 76 0 0 0 0 0
Fit all jJ ;K )25.94 17.78 63 0 0.1446 (0.0136) 0.0688 (0.0171) 0.0002 (0.0050) )0.0048 (0.0045)
Sample jJ ;K )25.89 17.64 63 84 0.1557 (0.0129) 0.0740 (0.0176) )0.0002 (0.0061) )0.0080 (0.0053)
True jJ ;K )29.82 20.33 76 0 0.1558 0.0750 0.0000 )0.0074
True model 0.1558 0.0750 0.0000 )0.0074
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is on average 3.89, with variance 6.35; this compares
with the asymptotic expectation of 6.5 for each. Exam-
ination of the cumulative distribution of Dlog(L) shows
that it is shifted to the left by �2.6 units for U � 0.5,
m � 0.3, and �4.2 units for U � 0.2, m � 0.3. Corre-
spondingly, the true matrix of cumulants is rejected less
often than expected from asymptotic theory: at P � 5%,
it is rejected 0/100, 1/100 times at U � 0.2, 0.5 and
m � 0.3. For populations in linkage equilibrium
(m � 0), and U � 0.5, agreement is better: the mean
and variance of Dlog(L) are 5.55, 5.52, close to the
expectation of 6.5. With U � 0.2, the mean and variance
of Dlog(L) are 0.93, 6.78; the mean is again lower than
the expectation of 6.5. The true cumulants are rejected
in 4/100 cases for U � 0.5, and in 0/100 cases for
U � 0.2.

Discussion

If linkage disequilibria are generated by the mixing of
two source populations, either directly or across a cline,
they take a simple form: the magnitude of the associ-
ation between a set of loci depends primarily on the
number of each kind of allele derived from the maternal
genome, and the number derived from the paternal
genome (J, K, say). The state of the population can
therefore be described by the allele frequencies, and by a
matrix giving the various associations. These associa-
tions can be described either in terms of multilocus
moments, Cj,k, or multilocus cumulants, jj,k ( j � 0¼n,
k � 0¼n). There is a simple relation between the matrix
of 22n diploid genotype frequencies, G, and the matrix of
moments, C : G = C á C á CT, where C is a matrix
which depends only on the allele frequencies (eqn 7).
This method extends to allow for di�erent allele
frequencies in the male and female gamete pools, and
for di�erent degrees of divergence across loci.
Although the method described here is motivated by

models of neutral admixture, it may apply to other cases
in which di�erent biallelic loci are equivalent: for
example, where selection acts on an additive trait
determined by unlinked loci. If all loci are interchange-
able, such that all genotypes with the same numbers of
`+' alleles contributed by the maternal and paternal
gametes (n,n*) are equally frequent, then the population
can be described by the joint distribution of (n, n*). This
symmetrical polygenic model has been investigated by
Kondrashov (1984), Barton (1992), Doebeli (1996),
Shpak & Kondrashov (1999) and Barton & Shpak
(2000b); the diploid case has been treated by Kondra-
shov & Kondrashov (1999). This description is equiv-
alent to that set out here in terms of a matrix of
moments or cumulants. However, current theory is
restricted to cases where loci are fully interchangeable. It

may be that variation across loci (for example, in their
e�ects on an additive trait) might be described in the
same way as variation in the divergence, dp, in admix-
ture models. It may also be that the full model could be
approximated by a description in terms of pairwise
moments or cumulants (c.f. Turelli & Barton, 1994).
Such possibilities warrant further investigation.
The matrix of moments, CJ,K can be calculated as a

linear combination of various products of additive and
dominance e�ects associated with each locus (eqn 8).
This method performs as well as maximum likelihood
estimation, and is much faster; it also avoids the
uncertainties of the Monte Carlo algorithm used here
to maximize likelihood. However, this simple method
does not allow the plausibility of di�erent hypotheses to
be compared, and more seriously, often leads to sets of
allele frequencies and moments that predict negative
genotype frequencies. In contrast, maximum likelihood
estimation allows ¯exible comparison of nested hypoth-
eses, and necessarily gives estimates consistent with
positive genotype frequencies.
One motivation for this work was the need to

combine information about pairwise linkage disequilib-
ria across loci. When linkage disequilibria are weak, and
samples are large, estimates of pairwise linkage disequi-
librium should be approximately independent, even
when pairs of loci overlap (e.g. E[C{i,j } C{i,k}]=0). The
standard error of an estimate of the average pairwise
disequilibrium should then decrease with the square root
of the number of pairs of loci involved. However, with
strong linkage disequilibria, estimates become strongly
correlated, and so the standard error of estimates of
pairwise associations should decrease more slowly with
the number of loci. Figure 4 shows the standard
deviation of estimates of j1,1, j0,2 as a function of m,

Fig. 4 Standard deviation of estimates of j0,2 and j1,1, plotted
against migration rate, m. The lower grey circles show results
for four loci, the upper solid circles for two loci. Each point is
calculated from 100 replicate samples of 100 individuals

(Tables 2 and 3). (a) U � 0.2, (b) U � 0.5.
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for two and four loci, and for U � 0.2, 0.5. At linkage
equilibrium (m � 0; left of Fig. 4), the standard error is
on average smaller by a factor 0.57 with four loci,
compared with two loci; this is somewhat higher than
1=

���
6
p � 0:41, the factor expected if the six pairwise

associations with four loci contribute independent
information. In contrast, the standard error with
m � 0.3 (i.e. with strong linkage disequilibrium) is
reduced only by a factor 0.84 as the number of loci
increases from two to four.

The methods described here give estimates of
associations of all orders. In principle, higher-order
associations can give additional information: for example,
short- and long-range migration can be distinguished
by the rate at which associations decrease with the
number of loci involved (see above). However,
estimates of higher-order linkage disequilibria have
high sampling errors. With two loci (Table 2) the
third- and fourth-order cumulants j1,2, j2,2 are small
for U � 0.5, and so cannot be distinguished from zero
with samples of 100 individuals. When allele frequen-
cies are asymmetric (U � 0.2), higher-order associa-
tions are stronger, and become detectable for m > 0.2
(Table 2). A more fundamental problem is that the
values of higher-order associations are strongly con-
strained by the requirement that genotype frequencies
be positive, and therefore depend on both allele
frequencies and on pairwise associations. It therefore
makes little sense to make separate estimates of
associations of di�erent orders. If possible, an evolu-
tionary model described by parameters such as
migration rates should be ®tted.

Often, data from hybrid populations are analysed by
classifying each individual on the basis of its genotype
(see Arnold, 1997). Where hybridization is rare, so that
only a few distinct classes of hybrid are present, this is
appropriate. However, there are several di�culties with
this approach. First, loci may not be diagnostic (i.e.
®xed for alternative alleles in di�erent taxa). Even a low
level of polymorphism makes it di�cult to distinguish
between hybrids and parental genotypes. Secondly, even
if loci are initially diagnostic, continued backcrossing
into a population causes polymorphism to build up
within the native gene pool, making it impossible to
distinguish recent hybrids merely by the presence of
marker alleles. Recent hybrids can be distinguished by
the presence of multiple alleles typical of the immigrant
population Ð in other words, by linkage disequilibrium
between introgressing alleles (Goodman et al., 1999). If
hybrids always cross with mates from a large native
population, then individuals could in principle be
classi®ed by backcross generation. The kth backcross
would carry a fraction 2)k of introgressed alleles; if this
fraction is higher than the background level of poly-

morphism, and if enough loci are scored, then the
backcross generation could be inferred. However, such
assignment is inaccurate even with many loci (Boecklen
& Howard, 1997), and is impossible when hybrids mate
with each other to produce F2s or complex backcrosses.
Because the proportion of backcross hybrids in a
population increases with time, t, as 2t, matings between
hybrids soon become likely.

An alternative approach which is often used is to
classify individuals by the fraction of their alleles which
derive from each parental taxon, rather than attempting
to infer their detailed ancestry (Arnold, 1997). Although
this is a convenient and simple way of summarizing
multilocus data, the method may be misleading if loci are
not strictly diagnostic. Even if marker loci are diagnostic,
much information is lost. An improvement would be to
classify individuals according to both the number of
alleles derived from one reference taxon, and by the
number of loci that are heterozygous. This is equivalent
to a description in terms of a matrix of moments,
estimated using eqn 8. However, eqn 8 is more ¯exible in
that it can allow for nondiagnostic loci through varia-
tions in allele frequencies and divergences, dp.

The methods described here give a ¯exible framework
for describing hybrid populations in terms of linkage
disequilibria of various orders. The strengths of pairwise
linkage disequilibria can then be used to infer quantities
such as rates of gene ¯ow and the degree of assortative
meeting. The likelihood of the full set of genotype
frequencies can be calculated, which allows more
elaborate hypotheses to be addressed. For example,
one could ®nd the likelihood that o�spring were sired by
sampled individuals of known genotype, rather than by
some farther from the unsampled population. These
methods make possible a variety of statistical analyses
of hybrid populations.
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