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An important question in QTL mapping is the optimal choice of marker density. Using analytical
results, it is shown for the case of interval mapping in a backcross population, that the power of QTL
detection and the standard errors of genetic e�ect estimates are little a�ected by an increase of marker
density beyond 10 cM. This ®nding con®rms published simulation results by other authors.
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Introduction

An important question in QTL mapping is that of the
optimal spacing of markers. Darvasi et al. (1993)
performed a simulation study on the e�ect of marker
density on the power to detect QTL by interval mapping
(IM; Lander & Botstein, 1989) in a backcross popula-
tion. They concluded with respect to the power or
standard error of the estimate of gene e�ect that
reducing marker spacing below 10 cM or 20 cM does
not provide additional gains, regardless of the popula-
tion size and gene e�ect. In this paper, I will use explicit
formulae by RebaõÈ et al. (1995) to study the e�ect of
marker spacing. The results will be compared to the
simulation study by Darvasi et al. (1993).

Theory

If not indicated otherwise, the formulae presented in this
section are taken from RebaõÈ et al. (1995). Consider an
interval bordered by two codominant markers A and B
with two alleles each (indexed 1 and 2) and a QTL with
alleles Q1 and Q2. Two homozygous lines A1A1Q1Q1

B1B1 and A2A2Q2Q2B2B2 are crossed. The F1 hybrid
is then backcrossed to A1A1Q1Q1B1B1, yielding a BC1

population. The expected values for QTL genotypes
Q1Q1 and Q1Q2 appearing in BC1 are expressed as
l + a and l ) a, respectively. We assume absence
of double crossovers between the ¯anking markers.
Haldane's mapping function is used throughout. Thus,
the model for the BC1 population is

Yi � l� gia� ei; �1�

where Yi is the phenotypic value of the ith individual
(i � 1, ¼, n), gi is a dummy variable with gi � 1 if the
individual is Q1Q1 and gi � )1, if it is Q1Q2, and ei is a
random normal error with variance r2. Without loss of
generality, we will assume r2 � 1.
The score statistic for testing the null hypothesis of no

QTL e�ect at a given position on the chromosome is

T �x� � â�x�=
������������������
var�â�x��

p
; �2�

where â(x) is the maximum likelihood estimator of a
for given x and var[â(x)] its asymptotic variance, and x
is the recombination fraction between the left ¯anking
marker A and the putative QTL position. T(x) is
distributed as N(0, 1) under H0: a � 0 for a given
putative QTL position x. S(x) � [T(x)]2 is asymptoti-
cally equivalent to a likelihood-ratio (LR) test statistic
for H0 and conditional on x is distributed as a central
v2 with one degree of freedom. In QTL mapping, the
putative QTL position is not known, so the chromo-
some is scanned, performing multiple LR-tests. Thus,
the (1 ) a) quantile of v1

2 is not an appropriate
threshold for controlling the chromosome-wise Type I
error rate at a. Using results of Davies (1977, 1987),
RebaõÈ et al. (1994, 1995) provided formulae for com-
puting approximate critical thresholds C for controlling
a, i.e.

Pr�S�x� > Cja � 0� � a: �3�

The threshold C is found by solving numerically the
equation (see RebaõÈ et al., 1994):

a � U�
����
C
p
� � 2 exp 1

2C
�Xm

i�1
arctan

������������
pi

1 pi

r� �
; �4�
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where F(.) is the cumulative standard normal distribu-
tion function, pi is the recombination fraction between
markers ¯anking the ith interval, and m is the number of
intervals on the chromosome. The approximate thresh-
olds were shown to be very close to thresholds based on
simulation for marker spacing up to 5 cM (RebaõÈ et al.,
1994). The value of C depends on the length of the
chromosome and on the spacing of the markers. We will
use these thresholds in power computations.

To assess the power of QTL detection, we will consider
the probability that S(x) exceeds C at the true QTL
position x0 for a given value of the genetic e�ect a, i.e.

Power � Pr�S�x0� > Cja; x0�: �5�

This will provide a lower bound for the power of the
procedure (Davies, 1977; RebaõÈ et al., 1995). The power
in eqn (5) can be computed by noting that under the
alternative hypothesis H1: a ¹ 0, S(x0) follows a non-
central v2 distribution with one degree of freedom and
noncentrality parameter

k � na2f1 4x0� p x0�=pg; �6�

1where n is the sample size and p is the recombination
fraction between the ¯anking markers A and B. The
power depends on x0, the QTL position, through the
noncentrality parameter.

Finally, given a putative QTL is located at position
x0, the conditional large-sample variance of â(x) (i.e.
for large n) under H0: a � 0 is

var�â�x0�� � p=�n� p 4x0p � 4x20 ��: �7�

This conditional variance provides a lower bound for
the unconditional variance var(â), i.e. the variance for
unknown x0, for which no simple analytical result could
be obtained. Also, no simple expressions are available
for the conditional or the unconditional variance under
the alternative H1: a ¹ 0. Thus, simulations as per-
formed by Darvasi et al. (1993) are necessary to study
these variances.

Results

First consider the asymptotic variance of â(x0) under H0

in eqn (7). Because the putativeQTL is ¯ankedbymarkers
A and B, x0 will lie between 0 and p. Thus, we may write

x0 � ep; �8�

where 0 £ e £1. Using eqn (7), the asymptotic variance
can be expressed as

var�â�x0�� � 1=fn�1 4e�1 e�p�g: �9�

Equation (9) shows two interesting facts. First, for a
given marker spacing p, the variance is maximal when the
putative QTL is located halfway between the ¯anking
markers, i.e. when e � 0.5. The maximal value is
var[â(x0)] � n)1(1 ) p). The minimum variance is
achieved when the QTL is at one of the markers, i.e.
e � 0 or e � 1, whence var[â(x0)] � n)1. Secondly, for
any relative position of the QTL (x0), the variance is
monotonically decreasing in p, reaching its maximum for
an in®nitely dense marker spacing, i.e. when p ® 0. The
limiting variance is limp!0 var�â�x0�� � n 1. Thus, the
variance cannot be reduced below the limit n)1, regard-
less of the marker spacing.

An important question is the magnitude of shift in
SE[â(x0)] �

p
var[â(x0)] as we change the marker spac-

ing p. The standard error depends on the relative
position of the putative QTL, which we indicate by the
notation SE[â(x0),e]. For a simple analysis, we average
SE[â(x0),e] across the interval 0 £ e £ 1, giving equal
weight to each value of e. This is equivalent to assigning
a uniform prior to e on the interval [0, 1]. We ®nd by
straightforward calculations that

SE�â�x0�� �
Z1
0

SE�â�x0�; e�de

� 1��������
4pn
p

"
log

1�����
4p
p � 1

2

� �
log

1�����
4p
p 1

2

� �#
:

�10�

Figure 1 shows a plot of SE�â�x0�� vs. d, the distance
between ¯anking markers in cM based on Haldane's
mapping function, for n � 1. The change of SE�â�x0�� is
not dramatic for d between 0 and 10 cM. Thus, an
increase in marker density beyond 10 cM does not do
much to improve the accuracy of the QTL e�ect
estimate.

We also computed the average of the power
Pr[S(x0) > C|a, x0)] across the interval [0, p]. A chromo-
some length of 100 cM was assumed. The critical value
C in eqn (4) was computed for a � 5% and equidistant
marker spacing. Because explicit integration was not
feasible, we computed the average across a uniform grid
of 100 steps for x0, i.e. for x0 � pe with e increasing
from 0 to 1 in steps of 0.01. This is the same approach
as that used by RebaõÈ et al. (1995). Figure 2 shows the
average power of S(x0) for di�erent values of the genetic
e�ect a and a sample size of n � 200. For small genetic
e�ects (a � 0.1 and a � 0.2), the power increases with
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increasing marker spacing, whereas for larger e�ects
(a � 0.25 and a � 0.3) the power is rather stable between
spacings of 0 and 20 cM. This result is surprising at ®rst
sight, because the noncentrality parameter k increases
linearly with decreasing p, so one would expect an
increase of power as spacing gets denser. The linearity of
k in p can be demonstrated by expressing x0 as x0 � pe
which leads to

k � na2�1 4e�1 e�p�: �11�

Thus, as we decrease p, the probability distribution
function (p.d.f.) of S(x0) is shifted towards larger values
of S(x0) under the alternative. This does not necessarily
result in a gain of power, however, because at the same
time the critical threshold C needs to be increased in
order to control the chromosome-wise Type I error rate.
An increase in power results only if the e�ect of shifting
the p.d.f. of S(x0) under the alternative more than o�sets
the e�ect of increasing C. The amount of shift in the
p.d.f. of S(x0) will be larger for large e�ect sizes a, as k is
quadratic in a. This explains why increasing the marker
density, i.e. decreasing p, tends not to pay o� for smaller
values of a. Also note that the noncentrality parameter
cannot be increased beyond na2, the limit as p ® 0.

The power curves will have the same shape for any
value of n, except that for a given e�ect size a the curves
will be moved upwards. The reason for this is that for
constant values of p and x0, the noncentrality parameter
k is proportional to na2. For example, the power curve
for n � 800 and a � 0.2 will be the same as that for
n � 200 and a � 0.4, because 800 ´ 0.22 � 200 ´ 0.42 �
32. The general conclusion to be drawn from Fig. 2
is that for detecting large QTL e�ects, a more dense
marker spacing is preferable, whereas for detecting small
QTLs, a less dense spacing is better. A similar conclu-
sion was obtained by Darvasi et al. (1993) based on the
empirical width of con®dence intervals for QTL loca-
tion. It is impossible to achieve optimal power for all
e�ect sizes with a single spacing. Because the power for
detecting large QTLs will generally be larger than for
small QTLs, one might consider choosing the spacing so
that the power for smaller QTLs is nearly optimal, i.e. to
choose a less dense spacing. In any case the dependence
of power on marker spacing is not large, so there seems
little advantage in choosing a very ®ne marker spacing.
I also used the formula by Dupuis & Siegmund (1999)
for approximate power and obtained very similar results
(not shown).

Fig. 1 Standard error of maximum likelihood estimate of a for

given true QTL position x0 under H0: a � 0 as a function of
marker distance d (markers assumed to be equally spaced
across the chromosome) and relative QTL position between

¯anking markers (e3 ). Standard error averaged across ¯anking
marker interval.

Fig. 2 Average power of QTL detection at true QTL position

x0 for di�erent e�ect sizes a and di�erent marker distances d
(markers assumed to be equally spaced across the chromo-
some). Sample size: n � 200. Chromosome length: 100 cM.

Power is averaged across a grid for x0 � pe4 where p is the
recombination fraction and e5 ranges from 0 to 1 with a step
size of 0.01.
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Final remarks

All conclusions in the preceding section agree well with
the simulation results by Darvasi et al. (1993), though it
must be kept in mind that I have used the conditional
variance (under H0) and power, which only provide
bounds on the unconditional variance (under H0) and
power. I investigated only the conditional variance
under H0, because no simple analytical expressions are
available for the unconditional variance and for the
alternative H1; simulations as presented in Darvasi et al.
(1993) are the most useful means to study these latter
variances. The advantage of using simple analytical
expressions, if available, is that computationally demand-
ing simulations can be avoided, that a deeper insight into
the causes of power di�erences, etc. can be gained and
that more general conclusions can be drawn. This study
con®rms earlier simulation-based ®ndings that marker
spacing has only limited in¯uence on the power to detect
a QTL. Thus, the design can be optimized for other
purposes such as marker-assisted selection and transfer
of target genes (Frisch et al., 1999).

This paper has considered the e�ect of marker spacing
in IM for a backcross population, because analytical
results are available for this case. It is conjectured that
the general conclusions would not be grossly di�erent
for other populations such as F2 and for composite
interval mapping (CIM) (Jansen, 1993; Zeng, 1993).
I have not studied the e�ect on the width of con®dence
intervals for QTL position, because simple analytical
results are not available for the case of an intermediate
map density (>1 cM) (Mangin et al., 1994; Visscher
et al., 1996; Mangin & Go�net, 1997; Dupuis &
Siegmund, 1999). Simulations (Darvasi et al., 19932 ;
Visscher et al., 1996) indicate that the expected width
changes only marginally with marker spacing, whereas it
decreases notably as the genetic e�ect size a increases.
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