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Linkage analysis with molecular genetic markers is a very powerful tool in the biological research of
quantitative traits. The lack of an easy way to know what areas of the genome can be designated as
statistically signi®cant for containing a gene a�ecting the quantitative trait of interest hampers the
important prediction of the rate of false positives. In this paper four tables, obtained by large-scale
simulations, are presented that can be used with a simple formula to get the false-positives rate for
analyses of the standard types of experimental populations with diploid species with any size of
genome. A new de®nition of the term `suggestive linkage' is proposed that allows a more objective
comparison of results across species.
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Introduction

Since the introduction of molecular genetic markers,
linkage analysis has become one of the most important
tools in biological research. A special type of linkage
analysis can be carried out for quantitative traits.
Quantitative traits, often called complex traits in con-
trast to simple Mendelian traits, are traits where the
relation between genotype and phenotype cannot be
observed directly. A gene a�ecting a quantitative trait is
called a quantitative trait locus (QTL). The genetic
dissection of a quantitative trait Ð so-called QTL
analysis Ð is usually carried out using interval mapping
(Lander & Botstein, 1989) or a related method (Haley &
Knott, 1992; Jansen, 1992, 1993; Martinez & Curnow,
1992; Zeng, 1993, 1994). For this purpose an experi-
mental population segregating for the quantitative trait
is created and its linkage map of molecular markers is
calculated. The basic procedure of the QTL analysis is
such that on many positions on the linkage map a test
statistic is calculated. In analogy with the genetic
mapping of simple Mendelian traits, this statistic is the
LOD score. This is essentially a likelihood ratio statistic.
Subsequently, regions on the genome are identi®ed that
show signi®cant values of the test statistic; such regions
are supposed to contain a QTL. This procedure,

however simple, has a major problem: what value of
the test statistic constitutes a signi®cant value? A single
LOD score is approximately related to a chi-squared
distribution; the distribution of the maximum of a series
of LOD scores, however, cannot be determined in a
straightforward manner. Because of linkage, tests on
neighbouring positions on the genome are not indepen-
dent Ð closely linked markers will have equivalent test
statistics. Also, the larger the genome, the more tests will
be performed, thus increasing the probability that a
®xed LOD threshold will be exceeded. Hence, if for the
QTL analyses in various species an equal experiment-
wise signi®cance level is desired Ð usually 5% Ð the
appropriate LOD thresholds will depend on the genome
size of the species (in terms of recombination). Genome
size varies greatly over species. Although most chromo-
some map lengths lie within the range of 50±250 cM, the
numbers of chromosome pairs of diploid species start at
two for Haplopappus gracilis (a plant), there are several
species with just three pairs (e.g. Crocus balansae (a
plant), Crepis capillaris (a plant), Tipula maxima (an
insect)) and they go to beyond 50 pairs (John & Lewis,
1975; Dyer, 1979). Most agronomically interesting
species have fewer than 25 pairs.
Several papers address the problem of statistical

signi®cance in QTL analysis and present solutions that
are based on complex mathematical formulae, on
cumulative distribution functions of the LOD score
for speci®c situations obtained by simulation, or on*Correspondence. E-mail: j.w.vanooijen@cpro.dlo.nl
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permutation tests (Lander & Botstein, 1989; Van
Ooijen, 1992; Feingold et al., 1993; Churchill & Doerge,
1994; RebaõÈ et al., 1994; Doerge & Churchill, 1996;
Doerge & RebaõÈ , 1996; Dupuis & Siegmund, 1999). All
solutions, however, have their own speci®c drawbacks.
The mathematical formulae are seldom employed in the
literature; apparently they are too complex, despite an
available computer program (RebaõÈ et al., 1994). The
cumulative distribution functions of the LOD score are
available only for a very limited number of genome sizes
and population types. The permutation test requires
very long computation times and is di�cult to use in
multiple-QTL models. The lack of an easy and relatively
quick way of obtaining the appropriate signi®cance
threshold for the biological species under investigation
results in QTL analyses that employ a certain LOD
signi®cance threshold, for which the signi®cance level is
not known, and which is possibly set at too low a value.
As a consequence, the literature describing QTL analy-
ses might contain false-positive QTLs at too high a rate.
Lander & Kruglyak (1995) present in their paper on
guidelines for QTL analysis in human, mouse and rat
genetics, a number of precalculated threshold values
that should be used in several types of analyses and
experimental situations. This relieves geneticists from
di�cult or inconvenient computations. Because the
LOD signi®cance threshold depends on genome size,
which varies greatly over species, it will be clear that the
genetical research in all other biological species de®nitely
is in need of an uncomplicated way to obtain the
appropriate, correct LOD signi®cance threshold. This
paper presents the tails of the cumulative distribution
functions of the LOD score in various situations as
obtained by extensive simulations. With a simple method
Ð a basic formula and four tables Ð the LOD threshold
at the desired signi®cance level for the standard exper-
imental populations for most diploid species with their
own genome sizes can be obtained easily. Besides F2 and
®rst-generation backcross (and equivalent types), the
population types include a recombinant inbred (RI)
family and a full-sib (FS) family of a cross between
noninbred genotypes of an outbreeding species; for the
last type no approximating formula has been published
so far.

Methods

The tables present the results of stochastic (i.e. Monte
Carlo) simulation of a diploid species with one chro-
mosome on which no QTL was segregating. Various
con®gurations were simulated. Of each con®guration
1 000 000 repetitions were simulated. The chromosome
map length was 50 up to 250 cM (Haldane mapping
function) with a fully informative marker every 1 cM;

this is considered a reasonable approximation of a dense
map. The population types were (a) a ®rst-generation
backcross (BC1, e.g. F1 ´ P1) (b) an F2 (F1 ´ F1) (c) an
RI family of the tenth generation (F10, which is the ninth
generation after the initial segregating meioses of the F1)
derived by single-seed descent from an F2, or (d) an FS
family of a cross between noninbred genotypes of an
outbreeding species (four alleles per marker). The
population size was always 100. The individuals were
assigned a random quantitative trait value according to
a normal distribution regardless of the genotype, that is,
there was no QTL. In each simulated population the
LOD score, as de®ned by Lander & Botstein (1989), was
calculated at all marker positions by ®tting the appro-
priate model with two (BC1), three (F2), two (RI family)
or four (FS family) QTL phenotypes. For the RI family
the occasional heterozygous QTL phenotypes were ®tted
as strictly intermediate between the two homozygous
QTL phenotypes. Subsequently, the maximum LOD on
the chromosome was determined and recorded. From
these data the cumulative distribution function of the
maximum LOD score under the null hypothesis that no
segregating QTL is present, was determined.

The LOD signi®cance threshold

In experimentation one always wants to know the
probability of arriving at the wrong conclusions. In
QTL analysis these are (a) the conclusion that there is a
segregating QTL whereas in reality there is not, or (b)
not detecting a QTL which actually is present. The ®rst
type of error results in a false positive (type I), the
second in a false negative (type II). The probability of
false positives Ð the signi®cance level Ð is controlled by
choosing the appropriate signi®cance threshold. The
rate of false negatives is determined by the experimental
set-up and the sizes of the genetic e�ects of the QTLs.

In a QTL study an experiment is set up to create a
population that segregates for the quantitative trait. The
values of the quantitative trait of the individuals in the
population are recorded. The genotypes of segregating
markers are determined and the linkagemap is estimated.
In the subsequent QTL analysis, tests for the presence of
a segregating QTL are performed at many map positions
on the genome Ð say every 1 cM. For these tests the
LOD score is used. The areas on the genome are
identi®ed that show high values of the LOD score which
are unlikely to occur if no QTL were segregating. It is
concluded that statistically signi®cant areas on the
genome contain a segregating QTL. To know the
signi®cance level one needs to know the distribution of
the test statistic under the null hypothesis (H0) that no
segregating QTL is present. Although under H0 a single
LOD score is approximately a chi-square random
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variable (multiplied by a constant), the maximum of a
series of LOD scores on a chromosome behaves
according to a more complex type of distribution.
Owing to the very nature of linkage these series of tests
on a chromosome are not mutually independent.
Because of the independent assortment of chromosomes

in meiosis, tests on di�erent chromosomes are mutually
independent.
In biology one usually desires an experiment-wise

signi®cance level of 5%. In the QTL analysis of a single
segregating population this is equivalent to the genome-
wide signi®cance: the probability of obtaining a LOD

Table 1 Cumulative distribution function  of the maximum LOD on a chromosome for QTL analysis based on two QTL
genotypesà

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

1.2 0.886342 0.810859 0.740251 0.677634 0.620000
1.3 0.908234 0.845325 0.785499 0.731602 0.680823
1.4 0.925729 0.873797 0.823399 0.777259 0.734005
1.5 0.940141 0.896915 0.855119 0.816276 0.779330
1.6 0.951725 0.915947 0.881135 0.848913 0.817736
1.7 0.961038 0.931704 0.902691 0.875919 0.849759
1.8 0.968463 0.944699 0.920616 0.898229 0.876651
1.9 0.974473 0.955127 0.935340 0.916764 0.898950
2.0 0.979307 0.963660 0.947465 0.931932 0.917565
2.1 0.983245 0.970420 0.957397 0.944578 0.932684
2.2 0.986510 0.976124 0.965499 0.954971 0.945223
2.3 0.989123 0.980653 0.972099 0.963468 0.955612
2.4 0.991252 0.984348 0.977345 0.970414 0.963999
2.5 0.992959 0.987388 0.981737 0.976064 0.970820
2.6 0.994363 0.989770 0.985230 0.980607 0.976327
2.7 0.995484 0.991737 0.988160 0.984404 0.980677
2.8 0.996334 0.993323 0.990414 0.987461 0.984357
2.9 0.997093 0.994571 0.992314 0.989849 0.987350
3.0 0.997717 0.995630 0.993764 0.991763 0.989701
3.1 0.998156 0.996512 0.994944 0.993389 0.991639
3.2 0.998513 0.997198 0.995956 0.994692 0.993218
3.3 0.998792 0.997733 0.996712 0.995749 0.994517
3.4 0.999032 0.998157 0.997387 0.996552 0.995607
3.5 0.999246 0.998525 0.997898 0.997189 0.996493
3.6 0.999393 0.998840 0.998311 0.997749 0.997209
3.7 0.999506 0.999050 0.998643 0.998202 0.997780
3.8 0.999604 0.999249 0.998882 0.998566 0.998248
3.9 0.999679 0.999390 0.999092 0.998852 0.998571
4.0 0.999746 0.999526 0.999258 0.999066 0.998844
4.1 0.999799 0.999618 0.999395 0.999246 0.999077
4.2 0.999852 0.999695 0.999509 0.999392 0.999260
4.3 0.999878 0.999759 0.999610 0.999520 0.999409
4.4 0.999899 0.999810 0.999691 0.999622 0.999514
4.5 0.999921 0.999860 0.999760 0.999703 0.999615
4.6 0.999937 0.999886 0.999804 0.999767 0.999693
4.7 0.999959 0.999905 0.999848 0.999812 0.999755
4.8 0.999965 0.999925 0.999879 0.999855 0.999802
4.9 0.999970 0.999934 0.999905 0.999887 0.999838
5.0 0.999980 0.999950 0.999927 0.999904 0.999866
5.1 0.999982 0.999963 0.999943 0.999924 0.999889
5.2 0.999984 0.999972 0.999955 0.999942 0.999911
5.3 0.999987 0.999977 0.999959 0.999950 0.999929
5.4 0.999989 0.999981 0.999964 0.999957 0.999941
5.5 0.999993 0.999986 0.999971 0.999964 0.999949
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above the threshold somewhere on the whole genome
just by chance is 5%. A genome-wide threshold will
depend on the number and length of the chromosomes,
but also on the numbers of markers on the chromo-
somes. When just a few markers are tested per chromo-
some Ð the so-called sparse map case Ð a lower
threshold is needed at the same genome-wide signi®-
cance level than when many markers are tested per
chromosome Ð the so-called dense map case (Lander &
Botstein, 1989). Lander & Kruglyak (1995; and Krugl-
yak & Lander, 1995) strongly recommend the use of the
dense map threshold, regardless of the actual density of
the map used. One of the reasons is that geneticists will
always deploy many additional markers in regions that
show signs of a segregating QTL after an initial sparse
map search. With modern marker techniques many
markers will be used anyway.

To obtain a genome-wide signi®cance the average
map length of the chromosomes of the investigated
species is used, because (a) usually the chromosome
length does not vary much within a genome, (b) the
genome-wide threshold is predominantly determined
by the total genome length and nearly independent of
the number of chromosome pairs in the genome
(Kruglyak & Lander, 1995), and (c) it is di�cult to
think of any other easy solution. If chromosomes are
assumed to be of equal length, then the property of
independent chromosome assortment at meiosis can be
used to obtain the relationship between the genome-
wide and the corresponding chromosome-wide signi®-
cance. By analogy the latter is the probability of
obtaining a LOD above the threshold somewhere on a
single chromosome just by chance. Suppose the
required genome-wide signi®cance level is ag, the
corresponding chromosome-wide signi®cance level is
ac, the number of chromosome pairs is n and the

average chromosome length is l (in cM). Then the
following relationship holds:

1 ac �
�����������������
�1 ag�n

q
:

The LOD threshold for the genome-wide signi®cance
level ag can now be obtained from the cumulative
distribution function (c.d.f.) of the maximum LOD
under H0 on a single chromosome of length l by
looking up the LOD that has a c.d.f. value of 1 ) ac.
Tables 1±4 present for several situations the tail of the
c.d.f. of the maximum LOD score under H0 on a
single chromosome. The data were obtained by
stochastic simulation. The situations comprise chro-
mosome map lengths of 50 up to 250 cM (at multiples
of 50 cM), which should su�ce for most biological
species. Further, the situations comprise experimental
populations segregating for two, three and four QTL
genotypes in the ®rst meiotic generation and an RI
family in the tenth generation; this should su�ce for
most experimental population types. The population
types are discussed below.

The way to use these tables is as follows. Calculate
1 ) ac with the above formula for the required ag. Look
up the LOD score at 1 ) ac in the table for the c.d.f. of
the maximum LOD for the appropriate population type.
Usually the average map length l will not be a multiple
of 50 cM. Therefore, look up the LOD under the two
map lengths below and above l, and subsequently
interpolate to obtain the required LOD threshold. For
example, if we have an F2 of a species with eight
chromosome pairs and 120 cM average chromosome
length, and we want a genome-wide false-positives rate
of 5% (ag� 0.05), we obtain 1 ) ac� 0.9936. When we
look up 0.9936 in Table 2, which applies to an F2, under

Table 1 (Continued )

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

5.6 0.999994 0.999988 0.999974 0.999975 0.999958
5.7 0.999994 0.999993 0.999977 0.999977 0.999966
5.8 0.999996 0.999993 0.999984 0.999980 0.999969
5.9 0.999996 0.999994 0.999987 0.999985 0.999973
6.0 0.999996 0.999994 0.999988 0.999987 0.999981
6.1 0.999996 0.999996 0.999991 0.999989 0.999983
6.2 0.999997 0.999997 0.999991 0.999992 0.999986
6.3 0.999997 0.999997 0.999992 0.999993 0.999991

 The tail of the distribution with function values approximately from 0.9 to 0.99999.
àApplicable to a ®rst-generation backcross, a population of haploids or doubled haploids, and an F2 for which in the analysis the
heterozygous QTL genotype is ®xed as strictly intermediate; all populations derived from a single heterozygous F1 genotype as a parent.
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Table 2 Cumulative distribution function  of the maximum LOD on a chromosome for QTL analysis based on three
QTL genotypesà

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

1.9 0.882329 0.797265 0.720667 0.650829 0.588102
2.0 0.901938 0.829155 0.762847 0.701098 0.644262
2.1 0.918482 0.856570 0.799526 0.745443 0.695338
2.2 0.932396 0.880204 0.831091 0.784116 0.740122
2.3 0.944162 0.900206 0.858222 0.817939 0.779605
2.4 0.953843 0.917013 0.881358 0.846986 0.813790
2.5 0.961776 0.930960 0.901063 0.872130 0.843510
2.6 0.968472 0.942992 0.917632 0.893086 0.869070
2.7 0.974115 0.952816 0.931646 0.911237 0.890815
2.8 0.978771 0.960964 0.943425 0.926185 0.909291
2.9 0.982569 0.967886 0.953326 0.938683 0.924753
3.0 0.985735 0.973588 0.961555 0.949201 0.937766
3.1 0.988289 0.978305 0.968167 0.958078 0.948615
3.2 0.990403 0.982314 0.973734 0.965476 0.957576
3.3 0.992171 0.985562 0.978308 0.971659 0.964960
3.4 0.993594 0.988167 0.982253 0.976677 0.971149
3.5 0.994737 0.990300 0.985484 0.980760 0.976326
3.6 0.995692 0.992096 0.988098 0.984230 0.980710
3.7 0.996470 0.993547 0.990254 0.987053 0.984155
3.8 0.997121 0.994749 0.992052 0.989435 0.987015
3.9 0.997672 0.995735 0.993472 0.991408 0.989388
4.0 0.998097 0.996539 0.994623 0.992992 0.991328
4.1 0.998451 0.997183 0.995602 0.994313 0.992946
4.2 0.998744 0.997678 0.996424 0.995364 0.994260
4.3 0.998979 0.998151 0.997147 0.996186 0.995328
4.4 0.999172 0.998504 0.997666 0.996930 0.996154
4.5 0.999338 0.998809 0.998068 0.997519 0.996891
4.6 0.999456 0.999025 0.998445 0.997951 0.997501
4.7 0.999558 0.999212 0.998739 0.998331 0.997974
4.8 0.999622 0.999375 0.998976 0.998644 0.998377
4.9 0.999700 0.999505 0.999148 0.998891 0.998689
5.0 0.999760 0.999599 0.999314 0.999108 0.998930
5.1 0.999806 0.999681 0.999434 0.999262 0.999153
5.2 0.999841 0.999742 0.999549 0.999415 0.999300
5.3 0.999869 0.999795 0.999619 0.999497 0.999410
5.4 0.999893 0.999836 0.999700 0.999600 0.999519
5.5 0.999913 0.999861 0.999749 0.999675 0.999622
5.6 0.999928 0.999885 0.999785 0.999731 0.999690
5.7 0.999942 0.999913 0.999828 0.999776 0.999739
5.8 0.999952 0.999924 0.999852 0.999819 0.999788
5.9 0.999959 0.999936 0.999884 0.999854 0.999831
6.0 0.999967 0.999953 0.999902 0.999877 0.999859
6.1 0.999972 0.999961 0.999920 0.999896 0.999889
6.2 0.999977 0.999965 0.999938 0.999914 0.999910
6.3 0.999984 0.999975 0.999949 0.999940 0.999930
6.4 0.999990 0.999977 0.999962 0.999953 0.999941
6.5 0.999992 0.999981 0.999970 0.999964 0.999950
6.6 0.999994 0.999984 0.999978 0.999971 0.999956
6.7 0.999996 0.999988 0.999981 0.999975 0.999963
6.8 0.999996 0.999992 0.999987 0.999981 0.999966
6.9 0.999996 0.999992 0.999989 0.999985 0.999970
7.0 0.999997 0.999994 0.999989 0.999986 0.999977
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100 cM and 150 cM, we ®nd that the corresponding
LODs are 3.7 and 3.9, respectively, so that by interpo-
lating a LOD of 3.8 (rounded upwards in the safe
direction) is obtained as the desired 5% genome-wide
signi®cance threshold. In (rare) cases where the average
chromosome length is larger than 250 cM, use must be
made of the already mentioned fact that the genome-
wide threshold is predominantly determined by the total
genome length and nearly independent of the number of
chromosomes in the genome. For instance, the 5% LOD
thresholds for a genome with a single 200 cM chromo-
some, for one with two 100 cM chromosomes, and for
one with four 50 cM chromosomes lie within a 0.1 LOD
range of each other.

Population types

The population types to which the four tables apply,
di�er with respect to the number of QTL phenotype
classes freely ®tted in the analysed model, with respect to
there being either one or two initial heterozygous
parental genotypes, and with respect to the generation
number after the initial segregating meiosis/meioses. All
populations of Tables 1±3 are derived from a single (or
two identical) heterozygous F1 genotype(s) as the
parent(s) that generate(s) the segregation. The popula-
tions of Tables 1, 2 and 4 are the ®rst generation, and
that of Table 3 is the ninth generation after the initial
segregating meioses. Table 1 is for segregation into two
QTL genotypes, that is, just one of the parents causes
segregation or there is only one parent. Thus, Table 1
applies to a ®rst-generation backcross (BC1), a popula-
tion of haploids such as of some fungi, or a population
of doubled haploids. Table 2 is for segregation into
three QTL genotypes, which applies to an F2 (i.e.
F1 ´ F1) where no restrictions are imposed on the
heterozygous QTL phenotype in the analysis Ð any
level of dominance is allowed. Table 3 is for an RI
family in the tenth generation (F10), where the QTL
segregates predominantly into two homozygous QTL
genotypes. Table 4 is for segregation into four QTL

genotypes, which applies to an FS family of a cross
between noninbred genotypes of an outbreeding species.
For Table 4, and until recently also for Table 3 (Dupuis
& Siegmund, 1999), no approximating formulae have
been published, although the corresponding situations
are quite frequent in experimental set-ups1 ; for instance
RI families are often used in plant science (Burr & Burr,
1991), and using FS families is important in forest and
fruit tree genetics (Grattapaglia & Sedero�, 1994; Hem-
mat et al., 1994; Grattapaglia et al., 1996; Maliepaard
et al., 1997, 1998).

For an F2 a model is often ®tted in which the
heterozygous QTL phenotype is strictly intermediate
(also called an additive model). In such a case in e�ect
just two QTL phenotypes are ®tted. The di�erence from
the BC1, where also two QTL phenotypes are ®tted, is
that both parents, instead of one, have a segregating
meiosis. This results in a slightly lower correlation
between tests on linked markers in the F2, so that its
c.d.f. of the maximum LOD on a chromosome is slightly
di�erent. This was veri®ed by simulation. For a chro-
mosome length of 50 cM and at c.d.f. values of 0.95,
0.99 and 0.999 the c.d.f. values for the BC1 were
approximately 0.003, 0.0003 and 0.00003, respectively,
larger. For a chromosome length of 250 cM the di�er-
ences were approximately 0.003, 0.0006 and 0.0001,
respectively. In all these instances the di�erences were
much smaller than the di�erences with c.d.f. values at
0.1 LOD smaller or larger. This means that for normal
practice Table 1 can also be used for an F2 where the
heterozygous QTL phenotype is modelled as strictly
intermediate.

RI families are employed in varying generations, but
usually not before the F5. Because there is recombina-
tion from generation to generation, the correlation
between tests on linked markers declines in later
generations. Therefore, the 50 and 250 cM cases of the
F5 and the F20 were also simulated and compared to the
F10. For a chromosome length of 50 cM and at c.d.f.
values of 0.95, 0.99 and 0.999 the c.d.f. values for the
F5 were approximately 0.004, 0.0006 and 0.0001,

Table 2 (Continued )

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

7.1 0.999997 0.999995 0.999991 0.999989 0.999981
7.2 0.999998 0.999995 0.999993 0.999992 0.999984
7.3 0.999998 0.999995 0.999995 0.999994 0.999988
7.4 0.999998 0.999996 0.999997 0.999994 0.999990

 The tail of the distribution with function values approximately from 0.9 to 0.99999.
àApplicable to an F2, where in the analysis there are no restrictions on the heterozygous QTL genotype, i.e. any level of dominance is
allowed.
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respectively, larger. For a chromosome length of 250 cM
the di�erences were approximately 0.003, 0.0005 and
0.0001, respectively. For the F20 the c.d.f. values were
hardly di�erent. In all these instances the di�erences
were much smaller than the di�erences with c.d.f. values

at 0.1 LOD smaller or larger. Therefore, Table 3 can be
used reliably for RI families of the usual generation
numbers. The reason for these small di�erences is that
most recombination occurs before the F5, whereas after
the F5 recombination has little e�ect because of ®xation.

Table 3 Cumulative distribution function  of the maximum LOD on a chromosome for QTL analysis based on two QTL
genotypesà in an RI family

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

1.4 0.887975 0.805201 0.729732 0.661914 0.600372
1.5 0.909196 0.839955 0.775564 0.716586 0.662671
1.6 0.926162 0.868769 0.814346 0.763826 0.716884
1.7 0.940172 0.892565 0.847080 0.804054 0.763679
1.8 0.951659 0.912086 0.874381 0.838358 0.803901
1.9 0.960733 0.928499 0.897260 0.867343 0.838175
2.0 0.968371 0.941812 0.915997 0.891175 0.867001
2.1 0.974343 0.952903 0.931496 0.911077 0.890896
2.2 0.979187 0.961742 0.944206 0.927402 0.910979
2.3 0.983147 0.968965 0.954613 0.940935 0.927522
2.4 0.986479 0.974907 0.963054 0.951956 0.940853
2.5 0.989100 0.979658 0.970007 0.960851 0.951730
2.6 0.991162 0.983550 0.975677 0.968283 0.960743
2.7 0.992835 0.986829 0.980378 0.974244 0.968176
2.8 0.994175 0.989424 0.984107 0.979210 0.974319
2.9 0.995311 0.991476 0.987109 0.983193 0.979277
3.0 0.996204 0.993171 0.989572 0.986479 0.983280
3.1 0.996935 0.994457 0.991644 0.989048 0.986526
3.2 0.997545 0.995512 0.993305 0.991026 0.989149
3.3 0.998062 0.996360 0.994589 0.992818 0.991276
3.4 0.998456 0.997100 0.995624 0.994179 0.992889
3.5 0.998735 0.997699 0.996439 0.995265 0.994232
3.6 0.998968 0.998165 0.997119 0.996187 0.995334
3.7 0.999157 0.998505 0.997673 0.996912 0.996267
3.8 0.999335 0.998771 0.998138 0.997480 0.996978
3.9 0.999466 0.999032 0.998493 0.997975 0.997579
4.0 0.999559 0.999241 0.998766 0.998377 0.998021
4.1 0.999659 0.999382 0.999000 0.998678 0.998390
4.2 0.999727 0.999514 0.999200 0.998932 0.998715
4.3 0.999783 0.999620 0.999369 0.999157 0.998972
4.4 0.999830 0.999700 0.999499 0.999317 0.999174
4.5 0.999866 0.999767 0.999611 0.999453 0.999335
4.6 0.999894 0.999797 0.999694 0.999558 0.999481
4.7 0.999912 0.999822 0.999752 0.999640 0.999564
4.8 0.999927 0.999858 0.999798 0.999706 0.999635
4.9 0.999937 0.999879 0.999834 0.999763 0.999708
5.0 0.999953 0.999903 0.999857 0.999802 0.999764
5.1 0.999963 0.999920 0.999879 0.999852 0.999801
5.2 0.999968 0.999932 0.999902 0.999879 0.999850
5.3 0.999977 0.999951 0.999920 0.999902 0.999885
5.4 0.999981 0.999966 0.999939 0.999915 0.999909
5.5 0.999985 0.999973 0.999948 0.999930 0.999925
5.6 0.999985 0.999977 0.999960 0.999940 0.999935
5.7 0.999988 0.999982 0.999966 0.999952 0.999952
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For short distances the accumulated amount of recom-
bination in late RI generations approaches twice the
recombination frequency in a BC1. Because also in an
RI family two QTL classes are ®tted, the c.d.f. of the
maximum LOD on a chromosome of a certain length in
an RI family is close to that of a chromosome of twice
that length in a BC1. Compare for instance the 50 cM
column of Table 3 with the 100 cM column of Table 1.

Approximate multiple-QTL models

Multiple-QTL models are more powerful than single-
QTL models when there are several segregating QTLs,
but they require extreme computation times. As an
alternative, Jansen (1992, 1993) and Zeng (1993, 1994),
independently introduced approximate multiple-QTL
models. Here, markers take over the role of the nearby
QTLs and are ®tted as cofactors while testing for a
single QTL elsewhere in the genome. This way, the
cofactors function as a genetic background control and
absorb most of the genetic e�ects of their nearby QTLs
from the residual variance. As a result, the power of the
QTL analysis is enhanced, while reasonable computa-
tion times are retained.

In the mapping procedure with approximate multiple-
QTL models (termed MQM mapping by Jansen, 1994),
just as in interval mapping, tests for the presence of a
single segregating QTL are performed at many positions
in the genome. The di�erence between the two methods
lies in the use of cofactor markers for background
control of other segregating QTLs. The background
control is part of both the null (no QTL) and the
alternative (yes, a QTL) hypothesis. The tests in MQM
mapping therefore have the same degrees of freedom as
those in interval mapping. Simulation research of Jansen
(1994) has shown that for MQM mapping the same
LOD thresholds can be used as for interval mapping,
under the condition `that the residual degrees of freedom

for estimating the variance are adequate'. For testing
under the presence of a linked QTL it is recommended
that this linked QTL is ¯anked by two marker cofactors.
Further, it is recommended that the number of para-
meters in the model is less than twice the square root of
the number of individuals. In practice this means that
this condition will be satis®ed if there are not too many
cofactors and the population is su�ciently large. The
assignment of a marker cofactor essentially means that a
QTL is concluded to be present. Experience so far has
shown that the number of QTLs detected in a QTL
analysis rarely exceeds 10, so that at least under current
experimental practice the presentedmethod of calculating
LOD thresholds can also be applied to mapping with
approximate multiple-QTL models.

Discussion

Using the presented method of calculating the LOD
signi®cance threshold will lead to a predictable rate of
false-positive QTLs with reasonable accuracy. The
values in the tables are accurate to about four decimal
places (for more precise information about the accuracy,
use can be made of the fact that each value in the tables is
an estimate of a binomial probability). For the calcula-
tion of very high levels of signi®cance use might be made
of ®tting some function through the tabulated data. As
an alternative to a LOD threshold, the genome-wide
signi®cance level for the maximum LOD obtained in an
analysis can be calculated with the method applied
inversely. It must be realized that the calculated thresh-
olds must be used as guidelines. Decisions with respect to
further study, or utilization in breeding, of the particular
genomic region should be based upon additional con-
siderations, such as: What was the actual density of the
markers used in the study? What generation was the RI
family in? Does the trait behave according to normality?
Does the estimated genetic e�ect of the QTL justify

Table 3 (Continued )

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

5.8 0.999991 0.999985 0.999974 0.999959 0.999958
5.9 0.999991 0.999990 0.999979 0.999965 0.999964
6.0 0.999992 0.999992 0.999982 0.999973 0.999975
6.1 0.999994 0.999994 0.999982 0.999976 0.999981
6.2 0.999995 0.999996 0.999987 0.999984 0.999984
6.3 0.999998 0.999997 0.999989 0.999986 0.999985
6.4 0.999998 0.999999 0.999990 0.999990 0.999987
6.5 0.999998 0.999999 0.999990 0.999991 0.999990

 The tail of the distribution with function values approximately from 0.9 to 0.99999.
àApplicable to a recombinant inbred family of the ®fth or higher generation.
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Table 4 Cumulative distribution function  of the maximum LOD on a chromosome for QTL analysis based on four
QTL genotypesà

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

2.4 0.893027 0.814419 0.743572 0.678096 0.619183
2.5 0.909560 0.841778 0.779605 0.721219 0.667719
2.6 0.923764 0.865540 0.810960 0.759701 0.712222
2.7 0.935659 0.885823 0.838892 0.794071 0.752156
2.8 0.946028 0.903357 0.862825 0.824132 0.787374
2.9 0.954848 0.918749 0.883863 0.850303 0.818580
3.0 0.962091 0.931499 0.901942 0.872949 0.845345
3.1 0.968357 0.942438 0.917332 0.892350 0.868863
3.2 0.973605 0.951750 0.930647 0.909149 0.889497
3.3 0.978022 0.959648 0.941813 0.923574 0.906987
3.4 0.981698 0.966257 0.951364 0.936037 0.921844
3.5 0.984802 0.971828 0.959340 0.946173 0.934490
3.6 0.987315 0.976535 0.966018 0.954972 0.945082
3.7 0.989433 0.980496 0.971783 0.962394 0.954153
3.8 0.991222 0.983759 0.976448 0.968699 0.961761
3.9 0.992726 0.986456 0.980513 0.974121 0.968106
4.0 0.993950 0.988738 0.983892 0.978466 0.973432
4.1 0.995015 0.990711 0.986652 0.982101 0.978033
4.2 0.995895 0.992391 0.988978 0.985089 0.981754
4.3 0.996690 0.993699 0.990894 0.987664 0.984927
4.4 0.997264 0.994794 0.992483 0.989880 0.987535
4.5 0.997774 0.995678 0.993753 0.991671 0.989704
4.6 0.998167 0.996432 0.994835 0.993113 0.991507
4.7 0.998468 0.997084 0.995784 0.994292 0.992961
4.8 0.998746 0.997579 0.996487 0.995314 0.994182
4.9 0.998959 0.998017 0.997101 0.996105 0.995195
5.0 0.999164 0.998380 0.997612 0.996821 0.996044
5.1 0.999306 0.998652 0.998020 0.997387 0.996782
5.2 0.999440 0.998920 0.998370 0.997867 0.997370
5.3 0.999538 0.999102 0.998659 0.998257 0.997811
5.4 0.999624 0.999279 0.998899 0.998577 0.998217
5.5 0.999699 0.999394 0.999093 0.998839 0.998540
5.6 0.999751 0.999502 0.999258 0.999046 0.998805
5.7 0.999798 0.999588 0.999396 0.999213 0.999002
5.8 0.999833 0.999665 0.999515 0.999365 0.999194
5.9 0.999870 0.999720 0.999606 0.999485 0.999328
6.0 0.999895 0.999768 0.999682 0.999571 0.999440
6.1 0.999912 0.999806 0.999741 0.999649 0.999545
6.2 0.999925 0.999843 0.999791 0.999718 0.999628
6.3 0.999935 0.999877 0.999820 0.999772 0.999695
6.4 0.999946 0.999899 0.999859 0.999826 0.999741
6.5 0.999956 0.999910 0.999879 0.999863 0.999790
6.6 0.999967 0.999936 0.999900 0.999891 0.999835
6.7 0.999972 0.999946 0.999918 0.999905 0.999857
6.8 0.999975 0.999958 0.999938 0.999926 0.999877
6.9 0.999983 0.999965 0.999948 0.999941 0.999896
7.0 0.999989 0.999967 0.999960 0.999951 0.999915
7.1 0.999990 0.999978 0.999968 0.999962 0.999933
7.2 0.999991 0.999984 0.999972 0.999968 0.999948
7.3 0.999992 0.999987 0.999979 0.999973 0.999953
7.4 0.999993 0.999991 0.999985 0.999980 0.999970
7.5 0.999993 0.999993 0.999988 0.999983 0.999973
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further study? If several QTLs were detected, which ones
explained most of the genetic variation?

The tables are based on simulations of a marker
density of 1 cM. This is su�ciently representative for the
dense map case in current experimental practice. Initial
mapping populations usually consist of 100 up to 500
individuals. The e�ective deployment of higher marker
densities requires much larger experimental populations.
Such large populations must be used in the subsequent
®ne mapping. Lander & Kruglyak (1995) present LOD
thresholds for QTL mapping in mouse and rat: for the
backcross 3.3 LOD, for the F2 intercross 4.3 LOD.
According to the method presented here, these values
are 3.1 and 4.0 LOD, respectively. The discrepancy is
thought to be caused by di�erences in marker density:
in®nitely dense vs. 1 cM between markers; Lander &
Kruglyak (1995) calculated a di�erence in LODs of
about 7%, which corresponds to these ®ndings.

Although the LOD score test appears to be reason-
ably robust against the data (after ®tting the QTLs)
having a skewed instead of a normal distribution
(Doerge & RebaõÈ , 1996), other deviations from normal-
ity have not been investigated. Of course, the use of a
permutation test avoids the problem of deviations from
normality. An important drawback of the permutation
test is that it will take several hours of computation time
(on a 200-MHz PC) to obtain and analyse 1000 samples.
This must be repeated for each trait. The question
remains whether such sets of only 1000 samples would
provide more accuracy than the use of the tables in this
paper. In cases where the permutation test is going to be
employed, the presented simulation results will be very
useful for comparison.

Whether the calculated rate of false positives is
acceptable depends on the general agreement on signif-
icance levels. In biology the usual rate is 5% for each
experiment. In this respect, however, performing a QTL
analysis is a peculiar kind of experiment. For a

segregating population, trait and marker data are
determined. Each marker is tested for association with
the trait. At a certain LOD threshold there exists a much
larger opportunity for ®nding spurious linkage when
many markers are tested because the investigated species
has a large genome, than when few markers are tested.
Now, what is considered an experiment in this QTL
analysis? (a) The trait data plus one marker, (b) the trait
data plus all markers on a single chromosome, or (c) the
trait data plus all markers? This is important with
respect to the experiment-wise 5% false-positives rate.
There seems to be agreement that a whole genome scan
(option (c)) should have a false-positives rate of 5%.
However, this leads to the Ð at ®rst sight strange Ð
phenomenon that an Arabidopsis (n� 5) geneticist may
®nd a certain QTL e�ect that will be designated
signi®cant, whereas a wheat (n� 21) geneticist detecting
a similarly sized QTL e�ect cannot call it signi®cant.
Moreover, the wheat geneticist would have had to carry
out a lot more work to obtain the results; that is, her/his
experiment is much larger. On re¯ection it is clear that
using a genome-wide 5% error rate should have such an
e�ect: ®guratively speaking, by allowing the collection
of more wheat marker data the wheat geneticist simply
gets many more shots at the bull's-eye.

Although Lander & Kruglyak (1995) use the same
de®nition of genome-wide signi®cance, their proposed
classi®cation of mapping results, suggestive and (highly)
signi®cant linkage, is based on the expected number of
times that a LOD score above a certain threshold is
obtained just by chance, in which multiple false positives
per chromosome are allowed. From a statistical point of
view it is an unusual approach; in statistics the de®nition
of signi®cance is based on a certain probability of
obtaining false positives, rather than on a certain
expected number of false positives. Although the result
is not much di�erent for a 5% probability of a false
positive against an expected number of 0.05 false

Table 4 (Continued )

Chromosome map length

LOD 50 cM 100 cM 150 cM 200 cM 250 cM

7.6 0.999994 0.999997 0.999990 0.999986 0.999975
7.7 0.999995 0.999998 0.999992 0.999987 0.999979
7.8 0.999995 0.999999 0.999993 0.999987 0.999983
7.9 0.999997 0.999999 0.999994 0.999991 0.999986
8.0 0.999997 0.999999 0.999995 0.999994 0.999988
8.1 0.999998 0.999999 0.999996 0.999994 0.999989
8.2 0.999998 0.999999 0.999996 0.999994 0.999992

 The tail of the distribution with function values approximately from 0.9 to 0.99999.
àApplicable to a full-sib family of a cross between noninbred genotypes of an outbreeding species.
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positives, it is preferable to stick to the normal statistical
approach of a signi®cance level in the classi®cation of
mapping results, e.g. signi®cant linkage should relate to
a genome-wide 5% false-positives rate.
Lander & Kruglyak (1995) propose the term `sugges-

tive linkage' to allow for the publication of results that
are not signi®cant but point to a certain level of
association between markers and trait. The use of a
certain `suggestive' level of signi®cance is very appeal-
ing. The de®nition should be related to the fact that the
analysis of the markers on a single chromosome can in a
way be considered as a separate experiment. Because for
each experiment a 5% error rate is an accepted rate, the
term `suggestive linkage' might be used for a chromo-
some-wide signi®cance level of 5%. In recent years
genetical research has discovered the potential power of
comparative mapping (McKusick, 1997). For that
purpose the results of mapping experiments must be
comparable across species boundaries in an objective
fashion. Because chromosome map length varies con-
siderably across species, using a standard chromosome
length of 100 cM in the de®nition of `suggestive linkage'
will allow an objective comparison of mapping results
across species boundaries. Therefore, the proposal is to
de®ne the term `suggestive linkage' for a chromosome-
wide signi®cance level of 5% for a standard chromo-
some length of 100 cM. For the various experimental
population types that correspond to the four tables in
this paper, the LOD thresholds for suggestive linkage
are the ®xed LOD values 1.9 (BC), 2.7 (F2), 2.1 (RI) and
3.2 (FS), respectively.
The presented method provides reasonably accurate

approximations to LOD signi®cance thresholds. Math-
ematical formulae would have presented a more elegant
solution, though these would probably be rather com-
plex and are presently not available for some of the
usual experimental situations. Genetical research in
many species is expanding and is certainly in need of
convenient ways to calculate signi®cance thresholds
applicable to the species under study with its own
speci®c genome size. Therefore, the current results
provide an equivalent, easy and pragmatic solution.
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