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Inconsistencies between equations for the e�ective population size under selection obtained by two
di�erent approaches are explained. In one approach, the e�ective population size is predicted from
the drift in the frequency of a neutral allele, accounting for the accumulation of selective advantage
over generations. The second approach is based on the rate of inbreeding, using the concept of long-
term genetic contributions. It is shown that the long-term genetic contribution approach leads to an
identical result to the drift approach, if the e�ect of mates on the long-term genetic contributions is
correctly accounted for.
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Introduction

The e�ective population size is one of the most important
parameters in the de®nition of selection programmes,
because the magnitude of this parameter determines the
e�ects of both random genetic drift and inbreeding
(Falconer, 1989; Caballero, 1994). In the absence of
selection, all the individuals of a population have the
same expected number of o�spring, and di�erences in
family size are caused only by random sampling of
individuals among families. However, in populations
under selection, families do not have equal probabilities
of contributing to the next generation because of
inherited or noninherited causes. This leads to a reduc-
tion in the e�ective population size. The e�ective size of
selected populations, however, cannot be predicted
solely from the variance of the family size at a given
generation, because selection a�ects the variance of the
family size not only in the parental generation but also in
the ancestral generations (Wray et al., 1990).
There are two approaches to predict the e�ective size

of populations under selection. First, the e�ective
population size (variance e�ective size) can be predicted
from the variance of gene frequency, using the idea of
accumulation of selective advantage over generations
(Robertson, 1961). Following this approach, Santiago &
Caballero (1995) obtained accurate predictions for
selected populations with discrete generations. The
method has been extended to monoecious populations
with partial sel®ng (Caballero & Santiago, 1996),

dioecious populations with overlapping generations
(Nomura, 1996), sex-linked loci (Nomura, 1997), linked
autosomal loci (Santiago & Caballero, 1998) and non-
random mating (Wang, 1998). Secondly, the e�ective
population size (inbreeding e�ective size) can be
predicted from the rate of inbreeding, using the concept
of long-term genetic contributions (Wray & Thompson,
1990). Wray & Thompson (1990) showed that the rate of
inbreeding is proportional to the sum of squared long-
term genetic contributions of ancestors, and derived a
method to predict rates of inbreeding in populations
under mass selection. Their method, however, requires
complex iterative computations. In order to overcome
this problem, Woolliams et al. (1993) proposed a
method for predicting without iterations. Wray et al.
(1994) extended the method to index selection with
family information. Later, Woolliams & Thompson
(1994) corrected this method for some omissions and the
equation they obtained has been used to optimize
breeding programmes (Villanueva et al., 1996; Villanueva
& Woolliams, 1997).
Although the variance and inbreeding e�ective sizes

should be the same under constant population size over
generations (Crow & Kimura, 1970; Caballero, 1994),
the two approaches to predict the e�ective size of
selected populations give di�erent expressions. It is
unclear as yet how these two approaches di�er in their
assumptions and approximations (Woolliams &
Thompson, 1994). In this paper, the author clari®es
the meaning of the di�erence based on the long-term
genetic contributions approach. It is shown that the
equation of Santiago & Caballero (1995) can also be
derived from this approach, if the e�ect of mates on the*Correspondence. E-mail: nomurat@cc.kyoto-su.ac.jp
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long-term genetic contributions is correctly accounted
for.

Model and assumptions

Although the theory can be extended to a population
with di�erent numbers of male and female parents, for
the purpose of this paper we assume a population in
which the same numbers of male and female parents are
randomly pair-mated to create N/2 families (couples)
each generation. Each family contributes n progeny of
each sex to candidates of selection. Among the progeny
of each sex, the best N/2 individuals are selected on the
basis of their phenotypic values. The proportion selected
is p� 1/n, and the selection intensity is i� z/p, where z is
the normal ordinate corresponding to the truncation
point of selection (x). The trait under selection is
assumed to be determined by an in®nite number of
additive loci, each with in®nitesimal e�ect (the in®nites-
imal model; Bulmer, 1980). The variance reduction
factor due to the Bulmer e�ect (Bulmer, 1980) is
k� i(i ) x) and the coe�cient of competitiveness de-
®ned by Woolliams et al. (1993) is c� (1 ) kh2)/2, where
h2 is the heritability. The population is assumed to be at
the steady-state under the in®nitesimal model. Then
asymptotic values are used for all genetic parameters.
Constant population size and discrete generations are
assumed.

The genetic contribution of an ancestor j in genera-
tion n1 to descendants in a later generation n2 is de®ned
as the total additive relationship between the ancestor
and the descendants (Wray & Thompson, 1990). The
long-term contribution is the contribution when n2 is
much bigger than n1. In the absence of selection, an
ancestor is expected to contribute two o�spring to the
next generation, each with the additive relationship 1/2.
The expected total contribution is therefore 1. This
expectation remains constant in the later generations,
and the expected long-term contribution of an ancestor
is 1. Under selection, genetically superior ancestors are
expected to contribute more descendants than geneti-
cally inferior ancestors. Thus, ancestors have di�erent
expected genetic contributions, depending on their
selective advantage. We relate the e�ective population
size to the long-term contribution of ancestors in a given
generation [following Wray & Thompson (1990), this
generation is referred to as generation 1]. The long-term
contribution of ancestor j of sex x (�m or f ) to
descendants in generation t is denoted by rj(x),t. Note
that an ancestor and its mate contribute to their
descendants in any generations with exactly the same
rate, because there are no half-sib families in our model.
Then, the long-term contributions of male and female
parents in couple j are rj,t º rj(m),t� rj(f ),t.

In the works of Wray & Thompson (1990) and
Woolliams et al. (1993), the genetic contribution of an
ancestor is formulated only with its own breeding value.
However, as suggested by Woolliams & Thompson
(1994), the expected long-term contribution of an
ancestor should be conditional not only on its breeding
value but also on the breeding value of mates. Let Aj(m)

and Aj(f) be the deviations of breeding values of male
and female parents in couple j in generation 1 from their
selected contemporaries, respectively, and rP be the
phenotypic standard deviation. De®ning A�j� (Aj(m) +
Aj(f ))/2rP, the expectation of long-term contributions
(lj,t) of parents in this couple, conditional on A�j , is:

lj,t � E rj,tjA�j
h i

� 1� iSt 2A�j

and the limiting value (lj,¥) is:

lj,1 � E rj,1jA�j
h i

� 1� iS1A�j ,

where St�
Pt

i� 0 c
i and S¥�

P¥
i� 0 c

i� (1 ± c)±1 (Wool-
liams et al., 1993). Further, a genealogical pathway
descended from this couple is expected to express
the relative selective advantage in the selection of
generation t:

lj,t 1,t � 1� ict 2A�j

(Woolliams et al., 1993).

Comparison of equations and discussion

Santiago & Caballero (1995) derived a prediction
equation for e�ective size (Ne) in terms of the variance
of change in the frequency of a neutral allele. Under
random mating, the equation reduces to:

Ne�SC� � N
1� S21i2qFS

, �1�

where qFS is the intraclass correlation of full-sibs.
An alternative viewpoint for predicting the e�ective

size is in terms of the rate of inbreeding. According to
Wray & Thompson (1990), the rate of inbreeding is
related to the long-term contribution as:

DF � 1

4N 2

XN=2
j�1

r2j�m�,1 � r2j�f�,1
� �

� 1

2N 2

XN=2
j�1

r2j,1

� 1

4N
E r2j;1
h i

,

�2�
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where E[r2j,¥]�
PN/2

j� 1r
2
j,¥/(N/2). Instead of the direct

computation of E[r2j,¥], Wray et al. (1994) derived the
expression for E[r2j,2], and then evaluated E[r2j,¥] with the
expression. The expression for E[r2j,2] is:

E�r2j,2� � 1� 1

2
� i2qFS � 1� r2

r�e�,2 � r2
r�g�,2, �3�

where the constant 1 is the mean squared under random
selection, r2

r(e),2� 1/2 is the sampling variance under
random selection (see also Wray & Thompson, 1990),
and r2r(g),2� i2qFS is the variance attributable to selec-
tive advantage of couples. To evaluate E[r2j,¥] with this
expression, Wray et al. (1994) took the following aspects
into account.

1 Under random selection (i.e. r2
r(g),2� 0), the mean of

the long-term contributions of the ancestors is the same
for t� 2 as for t�¥, and so the ®rst term in eqn (3)
remains unchanged. This holds also under selection
(Woolliams et al., 1993).
2 Under random selection, the sampling variance r2r(e),2
is increased by a factor of 2 from t� 2 to t�¥ (Wray &
Thompson, 1990). Thus, r2r(e),¥� 2r2r(e),2� 1. This leads
to DF� 1/2N or Ne�N, as expected.
3 The doubling of the variance terms (r2r(e),2 + r2

r(g),2)
is insu�cient for the expression of E[r2j,¥] under selection,
because of the cumulative e�ect of selective advantage.
The accumulation of selective advantage can be incor-
porated by multiplying r2

r(g),2 by S2
¥.

Accounting for these points results in:

E r2j,1
h i

� 1� 2 r2
r�e�,2 � S2

1r2
r�g�,2

� �
� 2 1� S2

1r2
r�g�,2

� �
:

Then:

DF � 1� S2
1i2qFS

2N

or:

Ne�WT� � N
1� S21i2qFS

, �4�

which agrees with eqn (1).
In the original work of Wray et al. (1994), r2

r(e),2�
� + i2qy and r2

r(g),2� i2qx were used, where qx and qy

are the correlations of full-sibs arising from the breeding
values of the ancestors and their mates, respectively, i.e.
qx� qy� qFS/2. Applying the rule to evaluate E[r2j,¥],
they obtained an expression:

1

Ne
� 1

N
� i2qFS

2N
� S2

1i2qFS

2N
: �5�

But this expression has an omission, because the
accumulation of the selective advantage from mates is
not accounted for (Woolliams & Thompson, 1994). To
correct this omission, the e�ect of mates [the second
term of eqn (5)] should be accumulated in the same
process as the last term of eqn (5). This correction leads
to eqn (4).
Recently, Woolliams (1998) showed that eqn (2) can

be approximated by:

DF � 1

2N
E l2

j,1
h i

:

Noting that E[A�j ]� 0 and E[A�2j ]� qFS,

E�l2
j,1� � 1� S2

1i2qFS:

Then, we obtain again eqn (1).
Using the iterative regression method of Wray &

Thompson (1990), Woolliams et al. (1993) derived an
alternative expression for E[r2j,¥],

E r2j,1
h i

� E P 2
j,3l

2
j,2

h i
� E

X1
t�2

P 2
j,t�1Vt

" #
, �6�

where Pj,t�Õ¥
l� tlj,l±1,l and Vt is the sampling variance

of long-term genetic contribution arising in generation t.
If we neglect the contributions of O(A�2j ) or higher
following the suggestion of Woolliams & Thompson
(1994), then:

Pj,3 � 1� ciA�j
� �

1� c2iA�j
� �

1� c3iA�j
� �

� � �

� 1�
X1
t�1

ctiA�j � 1� �S1 1�iA�j

and:

Pj,3lj,2 � 1� iA�j
� �

1� S1 1� �iA�j
h i

� 1� S1iA�j :

Thus the ®rst term of eqn (6) equals
E[l2

j,¥]� 1 + S2
¥i

2qFS. The second term of eqn (6)
accounts for the accumulation of sampling variance
(we denote this term by E[r2

j,¥]). An approximated
expression of E[r2

j,¥] may be obtained by using the
terms listed in appendix 3 of Woolliams et al. (1993).
Using the terms A3.6, A3.10 and A3.16 in Woolliams
et al. (1993),

E r2
j,1

h i
� 1� 1� B1�S1 1�� �i2qFS, �7�
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where B¥�
P¥

j� 0(c
2/2)j� 2/(2 ± c2). From this

approximation, the prediction equation of Woolliams &
Thompson (1994),

Ne�WT� � N
1� 1

2 1� S21 � B1�S1 1�� �
i2qFS

�8�

is obtained. If we further include term A3.7 in Wool-
liams et al. (1993), eqn (7) becomes:

E r2
j,1

h i
� 1� 1� B1�S1 1� � �B1 1�S2

1
� �

i2qFS,

�9�

leading to:

Ne�WT� � N
1� 1

2 1� S21 � B1�S1 1� � �B1 1�S21
� �

i2qFS

,

�10�

which is the simpli®ed expression of the equation used
by Villanueva &Woolliams (1997). [In these derivations,
qx (the correlation of full-sibs arising from the breeding
value of the parent of sex x) in A3.7 and A3.10 should
be replaced by qFS, because the cumulative e�ect of the
selective advantage of the mates is omitted in the work
of Woolliams et al. (1993). See also appendix of
Woolliams & Thompson (1994).]

In the case of the iterative regression method
[eqn (6)], eqn (4) is derived by assuming:

E l2
j,1

h i
� E r2

j,1
h i

� 1� S2
1i2qFS:

The equality of E[l2j,¥]� 1 + S2
¥i

2qFS was given in
this paper, and the equality of E[l2

j,¥]�E[r2j,¥] is
obtained by assuming that the litter size of each family,
i.e. the number of scored individuals in each family,
follows a Poisson distribution (Woolliams, 1998; J. A.
Woolliams & P. Bijma, pers. comm.). As seen from
eqns (8) and (9) of Santiago & Caballero (1995), the
assumption of a Poisson distribution of litter size has a
very small e�ect on the prediction of Ne (the e�ect on
the prediction is of the order of 1/T, where T is the total
number of scored individuals). In fact, eqn (1) is the
approximation obtained from a Poisson distribution of
litter size (Santiago & Caballero, 1995). On the other
hand, in the derivation of eqns (7) and (9), the terms
resulting from an approximated expansion of E[r2

j,¥]
were listed (Woolliams et al., 1993), and only terms with
a larger e�ect on Ne were included. All the terms of the
order of 1/T were also neglected in the derivation. Thus,
eqns (8) and (10) may be regarded as approximations to
eqn (1). Although simulation studies have shown that
the approximated eqns (8) and (10) give satisfactory

predictions (Woolliams & Thompson, 1994; Villanueva
& Woolliams, 1997), eqn (1) is preferable to these
equations because of the neater expression involving
less approximation.

In conclusion, an identical equation is obtained from
the drift approach (Santiago & Caballero, 1995) and the
long-term contribution approach (Wray & Thompson,
1990), as seen from eqns (1) and (4). The two approaches
have, however, their respective appealing points. The
long-term genetic contribution approach provides a
prediction of genetic gain (Woolliams & Thompson,
1994; Woolliams, 1998), and gives an insight into the
design of breeding schemes to maximize gain with
constraints of inbreeding (Woolliams & Thompson,
1994; Villanueva & Woolliams, 1997). On the other
hand, the prediction of e�ective size from the drift
approach can be extended to complex genetic systems,
such as sex-linked loci (Nomura, 1997), linked autoso-
mal loci (Santiago & Caballero, 1998) and nonrandom
mating populations (Santiago & Caballero, 1995; Wang,
1998). All the extensions seem to be di�cult for the
long-term genetic contribution approach.

Acknowledgements

I thank two anonymous referees for their comments on
the manuscript. I also thank Dr J. A. Woolliams for
sending me his submitted manuscript.

References

BULMERBULMER, M. G.M. G. 1980. The Mathematical Theory of Quantitative
Genetics. Clarendon Press, Oxford.

CABALLEROCABALLERO, A.A. 1994. Developments in the prediction of
e�ective population size. Heredity, 73, 657±679.

CABALLEROCABALLERO, A.A. ANDAND SANTIAGOSANTIAGO, E.E. 1996. Response to selection

from new mutation and e�ective size of partially inbred
populations. 1. Theoretical results. Genet. Res., 66, 213±225.

CROWCROW, J. F.J. F. ANDAND KIMURAKIMURA, M.M. 1970. An Introduction to Population

Genetics Theory. Harper & Row, New York.
FALCONERFALCONER, D. S.D. S. 1989. Introduction to Quantitative Genetics, 3rd
edn. Longman, Harlow, Essex.

NOMURANOMURA, T.T. 1996. E�ective size of selected populations with
overlapping generations. J. Anim. Breed. Genet., 113, 1±16.

NOMURANOMURA, T.T. 1997. E�ective population size for a sex-linked locus
in populations under selection. Math. Biosci., 142, 79±89.

ROBERTSONROBERTSON, A.A. 1961. Inbreeding in arti®cial selection
programmes. Genet. Res., 2, 189±194.

SANTIAGOSANTIAGO, E.E. ANDAND CABALLEROCABALLERO, A.A. 1995. E�ective size of

populations under selection. Genetics, 139, 1013±1030.
SANTIAGOSANTIAGO, E.E. ANDAND CABALLEROCABALLERO, A.A. 1998. E�ective size and
polymorphism of linked neutral loci in populations under

directional selection. Genetics, 149, 2105±2117.
VILLANUEVAVILLANUEVA, B.B. ANDAND WOOLLIAMSWOOLLIAMS, J. A.J. A. 1997. Optimization of
breeding programmes under index selection and constrained

inbreeding. Genet. Res., 69, 145±158.

488 T. NOMURA

Ó The Genetical Society of Great Britain, Heredity, 83, 485±489.



VILLANUEVAVILLANUEVA, B.B., WOOLLIAMSWOOLLIAMS, J. A.J. A. ANDAND GJERDEGJERDE, B.B. 1996.

Optimum designs for breeding programmes under mass
selection with an application in ®sh breeding. Anim. Sci., 63,
563±576.

WANGWANG, J.J. 1998. E�ective size of populations under selection:
some extensions. Proc. 6th World Congr. Genet. Applied to
Livestock Prod., 26, 13±16.

WOOLLIAMSWOOLLIAMS, J. A.J. A. 1998. A recipe for the design of breeding
schemes. Proc. 6th World Congr. Genet. Applied to
Livestock Prod., 25, 427±431.

WOOLLIAMSWOOLLIAMS, J. A.J. A. ANDAND THOMPSONTHOMPSON, R.R. 1994. A theory of genetic

contributions. Proc. 5th World Congr. Genet. Applied to
Livestock Prod., 19, 127±134.

WOOLLIAMSWOOLLIAMS, J. A.J. A., WRAYWRAY, N. R.N. R. ANDAND THOMPSONTHOMPSON, R.R. 1993.

Prediction of long-term contributions and inbreeding
in populations undergoing mass selection. Genet. Res., 62,
231±242.

WRAYWRAY, N. R.N. R. ANDAND THOMPSONTHOMPSON, R.R. 1990. Predictions of rates of
breeding in selected populations. Genet. Res., 55, 41±54.

WRAYWRAY, N. R.N. R., WOOLLIAMSWOOLLIAMS, J. A.J. A. ANDAND THOMPSONTHOMPSON, R.R. 1990. Methods

for predicting rates of breeding in selected populations.
Theor. Appl. Genet., 80, 503±512.

WRAYWRAY, N. R.N. R., WOOLLIAMSWOOLLIAMS, J. A.J. A. ANDAND THOMPSONTHOMPSON, R.R. 1994.
Prediction of rates of breeding in populations undergoing

index selection. Theor. Appl. Genet., 87, 878±892.

EFFECTIVE POPULATION SIZE UNDER SELECTION 489

Ó The Genetical Society of Great Britain, Heredity, 83, 485±489.


	On the methods for predicting the effective size of populations under selection
	Introduction
	Model and assumptions
	Comparison of equations and discussion
	Acknowledgements
	References


