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Robustness has received little attention in QTL studies. We compare Maximum Likelihood (ML) and
the Minimum Distance (MD) methods when there exists data contamination caused by outliers. A
backcross population of size (N) 200 and 500 and 0, 5 or 25 outliers was simulated. The mean and
standard deviation of the ®rst QTL genotype were set to 1. Four cases were considered: (i) l2� 1,
r2� 1; (ii) l2� 1, r2� 1.25; (iii) l2� 1.252, r2� 1; (iv) l2� 1.282, r2� 1.25, where l2 and r2 are the
mean and standard deviation of the second genotype. Either full or selective genotyping was
considered. A Monte Carlo MD method is proposed to deal with missing genotypes. MD estimates
were much more robust than ML estimates, especially with respect to scale parameter estimates, and
with selective genotyping.
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Introduction

Mapping genes or genomic regions responsible for the
variation in quantitative traits (QTLs) is now a feasible
task for most economically important species because of
the large number of DNA polymorphisms available
scattered along the genome. The development of statis-
tical methods to detect QTLs in experimental crosses
and in outbred populations has run parallel to advances
in molecular methodologies. Thus, a number of
approaches like maximum likelihood (ML, Lander &
Botstein, 1989), regression (Haley & Knott, 1992; Knott
et al., 1996), the method of moments (Darvasi & Weller,
1992; Luo & Woolliams, 1993) or, more recently,
nonparametric methods (Kruglyak & Lander, 1995;
Coppieters et al., 1998) have been applied to estimate
QTL e�ect and position. Estimation procedures have
been usually compared by means of simulation where
the trait was distributed as assumed under the analysis,
typically a mixture of normal distributions with equal
variances within QTL genotypes. ML and regression
have been shown to perform similarly under a variety of
situations (Haley & Knott, 1992; Knott et al., 1996),
whereas the method of moments was more unreliable
than ML in the heteroscedastic model, i.e. when the
variances for each QTL genotype di�er (Luo & Wool-
liams, 1993). Most of these methods have been evalu-
ated solely in terms of bias and accuracy, whereas

robustness has received little attention. In particular, the
e�ect of extreme phenotypic observations, i.e. outliers,
on QTL e�ect estimates has not been studied in detail,
to our knowledge. The scarcity of studies on robust
QTL estimation occurs despite the ample statistical
theory and methods available (e.g. Staudte & Sheather,
1990). Nonetheless, Jansen & Stam (1994) presented a
strategy to detect outliers within an ML estimation
framework. It should be stressed that outliers may be
caused by relatively common phenomena in animal or
plant management like preferential treatment of a
subgroup of individuals, or a disease causing a less than
average performance. This issue is particularly relevant
because if a large-e�ect gene is segregating the trait will
not be normally distributed. Thus, the researcher may be
misled whenever the data show departures from nor-
mality that may be caused simply by outliers. This is
especially the case with segregation analysis.
In this work we explore the performance of the

`Minimum Distance' (MD) estimation method in the
context of QTL e�ect estimation. It should be remarked
that other robust approaches like robust regression (e.g.
Haley & Knott, 1992) or robust maximum likelihood
(e.g. MacLachlan & Basford, 1987) are available, but
the Minimum Distance approach has been shown to be
very e�cient when there is data contamination because
of, for instance, outliers and is especially powerful when
applied to mixtures (Parr & Schucany, 1988; Cao
et al., 1995). It was ®rst proposed by Wolfowitz
(1957) although its use at that time was limited by*Correspondence. E-mail: miguel.perez@irta.es
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computational constraints. Nowadays it has become a
more popular tool in the context of robust statistics
theory and practice. We also present a generalization of
the MD methodology to deal with missing data that
occur with, for example, selective genotyping. In this
latter instance regression provides biased estimates even
without outliers.

Materials and methods

Theory

A minimum distance estimator of a parameter h is a
value that minimizes d [F(.), F(.|h)], where F(.|h) is the
distribution of interest, F(.) is an empirical distribution
function obtained from the data, and d [ ] is a distance
measure (Titterington et al., 1985). The MD method
thus comprises a variety of procedures, depending on
the actual distance used. We used the Cramer±von Mises
distance, as it has been shown to perform well in a
variety of settings (Woodward et al., 1984; GarcõÂ a-
Dorado, 1997; GarcõÂ a-Dorado & Marin, 1998):

d �
XN

i�1
�F�yijh� �i 0:5�=N �2, �1�

where N is the number of observations, and F(yi|h) is the
value of the distribution function for the ith observation
when the observations are ranked in ascending order.
Now consider two inbred lines ®xed for alternative allele
markers (MM vs. mm) and QTLs (QQ vs. qq). In a
backcross, assume that the trait of interest follows a
normal distribution N(l1, r1) in homozygous individu-
als for the QTL (QQ), and that the distribution is
N(l2, r2) in the heterozygous (Qq) individuals. The
distribution function of the trait in individuals classi®ed
according to a linked marker is, assuming that haplo-
type QM is the nonrecombinant,

F�yijM�MM�� �1 r�U��yi l1�=r1�� rU��yi l2�=r2�
�2a�

and

F�yijM�Mm�� rU��yi l1�=r1���1 r�U��yi l2�=r2� ,
�2b�

where r is the recombination fraction between the
marker and the QTL, and F[ ] is the standard normal
distribution function. In order to apply eqn (1), indi-
viduals are classi®ed and ranked within marker geno-
type, and the distance minimized is the sum of the
distances within a marker class. If the QTL e�ect is

estimated using ¯anking markers, then an expression
similar to eqn (2a,b) is derived, taking into account that
there are four marker classes in a backcross.

A common strategy for limiting molecular work is
selective genotyping (Lander & Botstein, 1989), which
consists of genotyping only the extreme individuals. The
e�ect of a small number of aberrant data may be
magni®ed with this strategy, and its consequences have
not been explored. Although the ML estimation theory
is well developed with missing data, i.e. the EM
algorithm, the MD method has not been applied. Here
we develop a computer intensive strategy, the Monte
Carlo MD (MC-MD), which is similar to the MC-EM
algorithm proposed by Wei & Tanner (1990). It consists
of a double iteration loop. The MC-MD steps are as
follows.

1 Initialize ĥ � l0
1,l

0
2, r

0
1, r

0
2

� 	
.

2 Do j� 1, J
2.1 For each untyped individual with record yi,

compute the probability of having QTL genotype
G�QQ or Qq:

P�G � QQjy, ĥ� � U��yi l1�=r1�P
k�1, 2 U��yi lk�=rk�

P�G � Qqjy, ĥ� � 1 P�G � QQjy, ĥ�:

2.2 Draw a random marker genotype given
P�G � QQjy, ĥ�, P�G � Qqjy, ĥ� and distances be-
tween marker and QTL if an untyped individual.

2.3 Rank individuals within the current marker class
and estimate hj using a regular MD algorithm.

3 Update ĥ �PJ
j�1 hj=J :

4 Repeat from 2 until the distribution of ĥ stabilizes.

J is the number of missing marker genotypes per
individual drawn that are used to compute ĥ, and U[ ] is
the standard normal density function. As in other
Monte Carlo methods, ĥ does not provide a point
estimate but rather samples are obtained from the
distribution of ĥ, taking into account uncertainty in
missing genotypes, once convergence has been attained.
For a general study on convergence properties of Monte
Carlo methods, the reader is referred to Tanner (1993).
A preliminary study here showed that convergence was
reached in a few iterations because observations were
independently distributed.

Computer simulation

The MD and ML methods were compared by means of
simulation. Backcross populations of size N� 200 and
500 individuals were simulated. The mean and standard
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deviation of the ®rst genotype were set to l1� r1� 1.
Four cases were considered: (i) l2� 1, r2� 1; (ii) l2� 1,
r2� 1.25; (iii) l2� 1.252, r2� 1; and (iv) l2� 1.282,
r2� 1.25. The values for l2 in cases (iii) and (iv) were
chosen so that the di�erence between QTL means was
1.25 phenotypic standard deviations. Two markers
25 cM apart were simulated, and the QTL was simu-
lated at position 15 cM within the marker bracket. Five
outliers were simulated for a population size of 200, and
®ve or 25 outliers with N� 500. An outlier was
generated by taking a random number from a distribu-
tion N(2l, 2 r) instead of the `correct' N(l, r). As
argued in the introduction, this way of simulating
outliers mimics directional bias that may be caused by
disease or preferential treatment. The likelihood (or the
distance) were maximized (or minimized) using the
E04JAF subroutine of NAGNAG software (Numerical Algo-
rithm Group, 1995) with full genotyping. This subrou-
tine uses a quasi-Newton algorithm that allows
constraints to be ®xed on the variables, i.e. ri > 0.
The EM algorithm as described in Lander & Botstein
(1989) and Luo & Kearsey (1992) was implemented for
ML and MC-MD as above with selective genotyping.
The proportion genotyped in this case was 40%, the
extreme 20% in each tail.
Two hundred and 100 replicates were run for each

case with full and selective genotyping, respectively. Bias
and empirical standard deviation (SD) of the parameter
estimates and power were calculated. Signi®cance

thresholds were obtained by permutation (Churchill &
Doerge, 1994), 1000 permutations of the data being
obtained for each replicate. Power was calculated as the
number of replicates where the statistics exceeded the
signi®cance value (P� 0.05). The tests were whether
l1� l2, and whether r1� r2.

Results and discussion

In order to compare both methods in the most favour-
able setting for ML, simulations were run without
outliers (Table 1). ML and MD methods provided
unbiased estimates for both location and scale param-
eters. Standard deviations of MD and ML estimates for
means were very similar, resulting in equal power of
both methods to detect di�erences between QTL means.
Standard deviations of ML estimates of scale param-
eters were slightly smaller than with MD and, conse-
quently, power was slightly larger with ML than MD
methodology in heteroscedastic models. In summary,
when the `true' model equals the model used in the
analysis, ML procedure shows, overall, equal or better
properties than its MD counterpart although the di�er-
ence is not large.
Nonetheless, if the data simulated do not correspond

exactly to the model assumed in the analysis, i.e. in all
real data analyses, then ML may not be the best choice.
Tables 2 and 3 show the results for `contaminated'
populations. The percentage of outliers was either 1%

Table 1 Mean estimates of location (l) and scale (r) parameters with Minimum Distance (MD) and Maximum Likelihood
(ML) methodologies. Values in parentheses are the empirical standard deviations over 200 replicates. The power in
detecting di�erences between QTL means (

Q
l) and standard deviations (

Q
r) is also shown. No outliers, l1 � r1 � 1;

(a) population size 200; (b) population size 500

l2 r2 l̂1 l̂2 r̂1 r̂2

Q
l

Q
r

(a)
1 1 MD 0.999 (0.111) 1.000 (0.105) 1.012 (0.087) 1.011 (0.094) 0.03 0.06

ML 1.000 (0.107) 1.003 (0.103) 0.997 (0.070) 1.006 (0.094) 0.05 0.05
1 1.25 MD 0.991 (0.100) 1.012 (0.142) 1.006 (0.094) 1.267 (0.107) 0.07 0.40

ML 0.993 (0.106) 1.011 (0.138) 0.989 (0.075) 1.234 (0.087) 0.06 0.51
1.252 1 MD 0.998 (0.110) 1.254 (0.111) 1.007 (0.085) 1.015 (0.084) 0.33 0.03

ML 0.997 (0.110) 1.257 (0.104) 0.985 (0.066) 0.998 (0.071) 0.37 0.03
1.282 1.25 MD 0.996 (0.113) 1.287 (0.131) 1.006 (0.087) 1.269 (0.116) 0.35 0.39

ML 0.999 (0.109) 1.279 (0.124) 0.990 (0.067) 1.237 (0.089) 0.33 0.53
(b)
1 1 MD 1.003 (0.076) 0.985 (0.063) 1.008 (0.058) 1.008 (0.058) 0.04 0.04

ML 1.003 (0.075) 0.987 (0.061) 0.998 (0.047) 0.998 (0.045) 0.07 0.07
1 1.25 MD 1.001 (0.068) 0.991 (0.091) 1.001 (0.055) 1.258 (0.075) 0.06 0.76

ML 1.002 (0.065) 0.993 (0.085) 0.992 (0.044) 1.248 (0.056) 0.04 0.95
1.252 1 MD 0.990 (0.063) 1.256 (0.065) 1.003 (0.057) 1.005 (0.059) 0.79 0.05

ML 0.992 (0.059) 1.255 (0.063) 0.997 (0.043) 0.996 (0.047) 0.83 0.03
1.282 1.25 MD 0.994 (0.064) 1.284 (0.085) 1.007 (0.062) 1.251 (0.074) 0.72 0.73

ML 0.996 (0.064) 1.278 (0.081) 0.996 (0.047) 1.242 (0.056) 0.73 0.91
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or 5% (N� 500) and 2.5% (N� 200). Contamination
a�ected estimation by causing a bias and by increasing
the empirical standard deviation of the estimates, thus
augmenting the estimation error. However, the extent
of these phenomena di�ered between methods. MD
methodology was much more robust than its ML
counterpart. Even with 1% of outliers and N� 500,
ML estimates were quite sensitive. For instance, for
l2� 1 and r2� 1.25, the empirical SD of r̂2 was almost
doubled with ML compared to the case without
outliers, whereas the SD remained constant with MD
methods. Increasing the number of outliers resulted in a
larger SD of ML, but only marginally in MD estima-
tion. Similarly, the SD of estimates increased more

rapidly for ML than MD methods as the percentage of
outliers increased. Outliers a�ected both location and
scale parameter estimates. However, scale parameter
estimates were more a�ected than location estimates by
the presence of outliers, especially with ML. Bias was
about 50 and 100% larger for scale than location
estimates.

Contamination a�ects power negatively by increasing
the SD of estimates, but bias tends to augment spuri-
ously the di�erences between genotypes, which favours
power, especially in ML estimation. All in all, power
was little a�ected by outliers with respect to location
parameters with both ML and MD methods. In terms of
comparing standard deviations, power decreased markedly

Table 2 Mean estimates of location (l) and scale (r) parameters with Minimum Distance (MD) and Maximum Like-
lihood (ML) methodologies. Values in parentheses are the empirical standard deviations over 200 replicates. The power
in detecting di�erences between QTL means (

Q
l) and standard deviations (

Q
r) is also shown. Population size 200, 5 outliers,

l1 � r1 � 1

l2 r2 l̂1 l̂2 r̂1 r̂2

Q
l

Q
r

1 1 MD 1.032 (0.119) 1.038 (0.103) 1.038 (0.101) 1.051 (0.101) 0.05 0.07
ML 1.068 (0.130) 1.082 (0.115) 1.107 (0.159) 1.124 (0.148) 0.05 0.03

1 1.25 MD 1.035 (0.113) 1.037 (0.134) 1.037 (0.093) 1.306 (0.116) 0.05 0.39
ML 1.051 (0.119) 1.098 (0.138) 1.062 (0.133) 1.401 (0.145) 0.05 0.46

1.252 1 MD 1.028 (0.119) 1.300 (0.107) 1.035 (0.091) 1.056 (0.098) 0.37 0.05
ML 1.062 (0.126) 1.355 (0.124) 1.094 (0.158) 1.182 (0.165) 0.36 0.04

1.282 1.25 MD 1.023 (0.114) 1.339 (0.138) 1.030 (0.088) 1.319 (0.118) 0.36 0.43
ML 1.032 (0.122) 1.412 (0.148) 1.033 (0.126) 1.458 (0.165) 0.42 0.47

Table 3 Mean estimates of location (l) and scale (r) parameters with Minimum Distance (MD) and Maximum Likelihood
(ML) methodologies. Values in parentheses are the empirical standard deviations over 200 replicates. The power in
detecting di�erences between QTL means (

Q
l) and standard deviations (

Q
r) is also shown. Population size 500,

l1 � r1 � 1; (a) 5 outliers; (b) 25 outliers

l2 r2 l̂1 l̂2 r̂1 r̂2

Q
l

Q
r

(a)
1 1 MD 1.027 (0.071) 1.025 (0.069) 1.035 (0.061) 1.036 (0.065) 0.03 0.04

ML 1.068 (0.082) 1.061 (0.079) 1.118 (0.112) 1.112 (0.102) 0.04 0.04
1 1.25 MD 1.029 (0.070) 1.025 (0.089) 1.032 (0.062) 1.296 (0.076) 0.06 0.74

ML 1.042 (0.081) 1.085 (0.090) 1.057 (0.096) 1.399 (0.104) 0.06 0.76
1.252 1 MD 1.011 (0.065) 1.257 (0.068) 1.019 (0.061) 1.019 (0.061) 0.68 0.07

ML 1.029 (0.065) 1.281 (0.067) 1.055 (0.080) 1.077 (0.084) 0.67 0.08
1.282 1.25 MD 1.003 (0.070) 1.297 (0.085) 1.017 (0.064) 1.275 (0.077) 0.73 0.71

ML 1.003 (0.069) 1.331 (0.080) 1.010 (0.063) 1.350 (0.082) 0.79 0.82
(b)
1 1 MD 1.058 (0.067) 1.068 (0.066) 1.073 (0.064) 1.069 (0.078) 0.06 0.02

ML 1.130 (0.087) 1.155 (0.091) 1.213 (0.155) 1.258 (0.144) 0.02 0.03
1 1.25 MD 1.060 (0.067) 1.072 (0.091) 1.068 (0.064) 1.332 (0.079) 0.06 0.68

ML 1.084 (0.090) 1.199 (0.105) 1.122 (0.135) 1.554 (0.135) 0.08 0.60
1.252 1 MD 1.053 (0.070) 1.333 (0.069) 1.072 (0.065) 1.077 (0.061) 0.75 0.04

ML 1.109 (0.109) 1.461 (0.109) 1.176 (0.171) 1.363 (0.176) 0.55 0.04
1.282 1.25 MD 1.059 (0.069) 1.368 (0.084) 1.066 (0.063) 1.344 (0.083) 0.75 0.69

ML 1.061 (0.081) 1.532 (0.101) 1.073 (0.110) 1.633 (0.125) 0.80 0.72
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in contaminated populations with ML but only moder-
ately with MD estimation. Power depended basically on
population size, and it was barely a�ected by increasing
the number of outliers.
Setting signi®cance thresholds is not a straightfor-

ward issue in genome searches. Non-normal, or un-
known, distributions make this issue even more
complex. For instance, it is not clear how to set
signi®cance thresholds by analytical or simulation
methods if the nature and the percentage of outliers is
not known, as is the case in analysing real data. We have
used data permutation because of its ¯exibility (Chur-
chill & Doerge, 1994). Given the limited number of
replicates run, power when l1� l2, or r1� r2 was very
close to the a priori set signi®cance level (5%), showing
the adequacy of the permutation strategy. It can be seen
that permutation behaved equally well whether a
heteroscedastic model was simulated or not, and
irrespective of the presence of outliers.
A further interesting aspect is convergence of maxi-

mization algorithms in heteroscedastic models. Luo &
Woolliams (1993) reported that, under the heteroscedas-
tic model, the log-likelihood might be unbounded and
thus the ML estimates may not exist. We have not,
apparently, encountered this problem: ML provided
`reasonable' estimates irrespective of whether r1 was
equal or not to r2 whenever no outliers were simulated.
Di�erent algorithms, e.g. simplex or quasi-Newton,
provided identical results.

Performance of EM-ML and MC-MD was compared
with selective genotyping in the large population
(N� 500). The 40% extreme individuals were genotyped
and zero or 25 outliers were considered. After some
exploratory analysis the total number of iterations was
30, and the number of times that missing marker
genotypes were simulated per iteration in MC-MD (J)
was also set to 30. The parameters reported are the mean
of the last 10 iterations (Table 4). In general, it was
found that the algorithm was rather stable, and quite
independent of J. Selective genotyping did provide
unbiased estimates of location parameters with only a
marginal increase in error estimation compared to full
genotyping (comparewith Table 2b) in noncontaminated
populations. Scale parameter estimates were, interest-
ingly, slightly biased downwards in the heteroscedastic
situations. Here di�erences in the SD of estimates were
larger with MD than with ML, suggesting again that
ML behaves better than MD when the model of analysis
corresponds to that of simulation. And again the
conclusion is reversed when there is data contamination.
Selective genotyping led to biased estimates in a

contaminated population (Table 4b). It is quite clear
that the stochastic MD method proposed is much more
robust than ML using a standard EM algorithm. Even
when l1� l2 and r1� r2, ML produced a larger bias
than MD for both l and r estimates, and the bias
increased if l1 ¹ l2 and r1 ¹ r2. Empirical SDs with ML
were twice those of MD for scale parameters, and were

Table 4 Mean estimates of location (l) and scale (r) parameters with Minimum Distance (MD) and Maximum Like-
lihood (ML) methodologies. Values in parentheses are the empirical standard deviations over 100 replicates. Population size
500, l1 � r1 � 1; (a) no outliers; (b) 25 outliers. Only the extreme 40% distribution is genotyped

l2 r2 l̂1 l̂2 r̂1 r̂2

(a)
1 1 MD 0.996 (0.075) 1.010 (0.070) 0.999 (0.053) 1.005 (0.049)

ML 0.997 (0.077) 1.009 (0.066) 0.995 (0.036) 0.995 (0.036)
1 1.25 MD 1.009 (0.083) 0.997 (0.086) 1.034 (0.054) 1.203 (0.065)

ML 1.007 (0.086) 1.001 (0.078) 1.065 (0.044) 1.172 (0.040)
1.252 1 MD 1.002 (0.071) 1.257 (0.078) 0.999 (0.056) 1.002 (0.050)

ML 1.002 (0.067) 1.257 (0.076) 0.996 (0.038) 0.994 (0.040)
1.282 1.25 MD 0.994 (0.074) 1.274 (0.075) 1.042 (0.058) 1.198 (0.063)

ML 0.984 (0.077) 1.267 (0.074) 1.071 (0.041) 1.167 (0.045)
(b)
1 1 MD 1.067 (0.078) 1.078 (0.075) 1.062 (0.057) 1.067 (0.057)

ML 1.137 (0.113) 1.153 (0.103) 1.224 (0.130) 1.230 (0.127)
1 1.25 MD 1.076 (0.077) 1.075 (0.086) 1.101 (0.056) 1.269 (0.074)

ML 1.134 (0.101) 1.161 (0.088) 1.275 (0.124) 1.416 (0.106)
1.252 1 MD 1.075 (0.086) 1.331 (0.067) 1.058 (0.064) 1.078 (0.060)

ML 1.105 (0.130) 1.456 (0.093) 1.151 (0.133) 1.369 (0.141)
1.282 1.25 MD 1.061 (0.071) 1.367 (0.101) 1.107 (0.062) 1.277 (0.069)

ML 1.072 (0.107) 1.482 (0.101) 1.204 (0.099) 1.535 (0.108)

ROBUST QTL EFFECT ESTIMATION 351

Ó The Genetical Society of Great Britain, Heredity, 83, 347±353.



about 20% larger for location parameter estimates.
Overall, selective genotyping caused almost no increase
in SDs of the estimates for MD, but it did have a more
noticeable e�ect on ML estimates. Power with selective
genotyping could not be calculated using permutation
because of the prohibitive amount of CPU required in
MC-MD although it can be conjectured that MD and
ML patterns should be similar to that with full
genotyping (Table 3b).

In conclusion, the MC-MD method proposed allevi-
ates to a large extent the bias caused by contamination
in selectively genotyped populations. Higher computing
costs of MC-MD than EM-ML are fully justi®ed in this
instance. However, these are only preliminary results on
MC-MD and further studies are needed in order to
evaluate its convergence and statistical properties in a
more general framework. These results con®rm the
expectation that selective genotyping may be a risk-
prone strategy with outliers, because almost certainly
these will be included in the genotyped pool and its
weight in the resulting estimates will be larger than if the
whole population is genotyped. A further disadvantage
of selective genotyping is an increased error in deter-
mining the QTL position (PeÂ rez-Enciso, 1998).

General discussion and conclusion

In this work we have focused on phenotypic outliers that
can be caused by extreme environmental factors like
disease, and we have not studied the e�ect of incorrect
genotyping or wrong pedigree information. If marker
information is wrong but compatible with parent
genotypes, a bias will occur, and the QTL e�ect will
be underestimated. The e�ect of wrong marker infor-
mation on QTL estimation is limited, however, and will
cause a bias smaller than 2% in backcrosses unless the
percentage of errors is large, e.g. greater than 10%
(PeÂ rez-Enciso, 1998).

The MD-estimate is the value of the parameter that
makes the model closest to the sampling information,
which seems a very reasonable strategy when the model
assumed in the analysis does not represent the `true'
model, and it provides an intuitively appealing interpre-
tation of the MD-estimates. Some minimum distance
estimation methods have especially good properties in
mixture distribution problems (Titterington et al., 1985).
An additional advantage of MD methodology is its
robustness. The literature shows that MD is normally
more robust than ML when the real distribution does
not pertain to the assumed parametric distribution, or
when the actual distribution is `contaminated' as, for
example, when there exist outliers (Woodward et al.,
1984; Parr & Schucany, 1988). This is because MD
methods do not give so much weight to extreme data as

ML does. GarcõÂ a-Dorado (1997) illustrates how the MD
method can lead to more sensible estimates of mutation
e�ects than ML. In this work, we have shown that this
methodology has clear advantages in some instances
that may be encountered in QTL analysis.

Nonetheless, location and scale parameter estimates
are not equally sensitive to contamination. Dispersion
parameter estimates are much more sensitive to outliers
than location parameters, where MD methods show
comparatively a more robust behaviour. This is because
scale parameters depend to a larger extent on the square
di�erences, which are magni®ed by outliers. As a result,
contamination may result in erroneously concluding
that variances are heterogeneous if, for some reason, the
proportion of outliers di�ers between QTL genotypes.

Choice of the distance in MD methodology is
somewhat arbitrary, and it may severely a�ect the
estimates. Nonetheless, some distances have a more
clear interpretation. For instance, the Kullback±Leibler
distance (Kullback & Leibler, 1951) is equivalent to the
ML criterion. All distance measures tend to produce
asymptotically normally distributed estimators. The
distance measure has a most critical impact in small
samples. Here we used the Cramer±von Mises distance
as it is one of the most widely used (Parr & Schucany,
1988; Garcia-Dorado, 1997). We also tried other mea-
sures, like the Kolmogorov±Smirnov measure, but
Cramer±von Mises gave identical or better results.

Typically, MD consists of comparing distribution
functions, but other alternative MD methods based on
density rather than distribution functions have been
developed by Cao et al. (1995). In this strategy, the
distance between a density function and a nonparamet-
ric density estimator is minimized. This strategy con-
sumes more CPU time than standard approaches. It
requires specifying an appropriate smoothing and eval-
uating the chosen kernel estimator. According to Cao
et al. (1995), MD density-based methods are specially
suited for testing whether the assumed density belongs
to a given parametric family. In the context of QTL
studies, this may be relevant to detecting how many
QTL genotypes are segregating in a given population, or
to detecting departures from normality within QTL
genotypes. This issue merits further attention. The
possible presence of in¯uential points but which are
not outliers is a further aspect of robustness which has
not been dealt with here. Jansen & Stam (1994)
considered the changes in the weighted sum of squared
residuals as a means to check for the presence of
outliers. A comparison of changes in parameter esti-
mates vs. changes in the sum of squared residuals
obtained when a given observation is deleted may
provide a means of identifying in¯uential observations
that are not outliers.
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Minimum distance methods do not come without
disadvantages. It is not clear how to take into account a
correlated structure in the data (e.g. genetic relation-
ships, common environment), because MD strategies
are based upon the assumption of independence and
identical distributions for each observation. We have
also found that, in some instances, MD statistics may be
unstable along a genome search when changing the
marker interval. This problem can be alleviated by using
alternatives to the genome scan. We (M. PeÂ rez-Enciso &
L. Varona, unpubl. obs.) have studied a strategy where
the whole genome is partitioned into segments and the
e�ect of each segment is analysed simultaneously by
using a multiple regression/ANOVAANOVA approach. Among the
issues that should be explored in more detail are the
behaviour of the MD approach with more than one
QTL and with non-normal distributions, as well as the
properties of the MC-MD approach.
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