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This study provides methods for calculating the mean and variance of the number of animals
with the desired genotype in each backcross generation for a marker-assisted introgression
experiment. The ultimate goal is to produce animals which are homozygous for the desired
loci. The methods have been developed specifically for experiments with inbred lines. The
model assumes a Poisson distribution for litter size, and is similar to that used in stochastic
versions of population dynamics models. Certain biological parameters must be specified as
well as parameters under the control of the breeder. These methods can be utilized in
designing an experiment to determine the number of founder animals required, given the
number of animals required at the completion of the backcross process and vice versa.
Consideration is given to minimizing the total amount of genotyping over the entire experi-
ment, by varying the number of times each backcrossed male is used. In addition, an outline
is given for an adaptive design that allows for changes in male usage to be made during the
experiment.
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Introduction
Trypanosomiasis transmitted by the tsetse fly occurs
in 37 countries in Africa, and there is evidence of
genetic resistance to trypanosomiasis in some cattle
breeds (Murray & Trail, 1984). A programme has
commenced at the International Livestock Research
Institute in Nairobi, Kenya, with the aim of identify-
ing genes for trypanotolerance in N’Dama cattle
(Teale, 1993). The intention is to use marker-
assisted introgression (MAI) to develop trypano-
tolerant cattle types. Trypanoresistance is well
known in some laboratory mouse strains (Morrison
et al., 1978), and three autosomal chromosomal
regions have been identified (Kemp et al., 1997).
Consequently, mice are being used as an animal
model in a pilot study to assess the effectiveness of
MAI of trypanotolerance genes for cattle.

In the design stage of the experiment, a literature
survey was undertaken to identify how many founder
donor animals would be needed for the experiment.
Although there is a considerable volume of material
dealing with MAI, relatively little deals with experi-
mental design. Gama et al. (1992) studied introgres-
sion strategies of transgenes in pigs and considered
the effect of various strategies (number of male and
female donor animals) on the number to be geno-
typed to detect some deleterious transgene effect.
Groen & Smith (1995) conducted a stochastic simu-
lation study of the efficiency of marker-assisted
introgression in livestock, and investigated the
number of animals with the desired genotype.
Several studies have reported methods for reducing
the number of backcross generations required for
the introgression process (e.g. Hospital et al., 1992;
Hillel et al., 1993; Yancovich et al., 1996). Hillel et
al. (1990), using genomic selection based on DNA
fingerprints for gene introgression in a breeding*Correspondence. E-mail: johan.vanarendonk@alg.vf.wau.nl

©1999 The Genetical Society of Great Britain.16



programme, investigated the theoretical distribution
of the proportion of the donor’s genome in succes-
sive backcross generations. Visscher et al. (1996)
focussed more on the proportion of the recipient
genotypes (background genotypes) existing after
specified numbers of backcrossing generations. They
studied the simultaneous effect of introgressing an
allele and selecting for a desired genomic back-
ground. They also looked at a selection index
combining markers and phenotypic information.
However, none of these studies provides strategies
for determining the number of animals required for
the experiment. The determination of this number is
quite important to plan properly the logistics neces-
sary for such an experiment and to estimate its cost.

Consequently, the present paper intends to
provide a mathematical model for estimating the
mean and variance of the number of animals at each
backcross generation resulting in the targeted
number of favourable animals, i.e. those with the
desired chromosomal region(s), at the end of the
backcross process. The ultimate goal is to intercross
those animals to produce sufficient animals that are
homozygous for the desired loci in one breeding
cycle if possible. Opportunities might exist for the
breeder to repeat the intercross process from
heterozygous individuals to obtain the required
number of animals.

The objective of the paper is to predict the
amount of genotyping required during a backcross
experiment in order to produce a specified number
of individuals with desired genotypes. In addition,
the consequences of reducing the risk of not obtain-
ing enough animals of the desired genotype to a set
level are studied. Aspects considered here are: the
number of founder animals; the number of times
each male is used with the objective of minimizing
the genotyping workload; the estimated number of
animals to be genotyped for the whole experiment
and at each generation, as well as the expected
number of animals with a favourable genotype. The
effect of the number of backcross generations, the
number and the size of the regions to introgress as
well as the influence of risk limitation will be
studied.

Theory

Model of population growth

Some assumptions have been made: the donor and
recipient lines used in the experiment are fully
inbred; the introgressed alleles or regions are unam-
biguously identifiable in founder donor as well as in
crossbred animals, and they lie on autosomal

chromosomes. Each of a fixed number of males and
females selected from the donor line is mated only
once with an animal from the recipient line to
produce F1 offspring. The first backcross generation
is produced by mating F1 animals to animals of the
recipient line. Selection of animals for the produc-
tion of subsequent backcross generations is based
solely on the presence of all the entire desired
chromosomal regions from the donor strain.
Animals which did not inherit all regions or animals
carrying one or more recombinations in any of the
regions are not selected. For the development of the
model, it is also assumed that all the favourable
animals will be used in subsequent production of the
next generation; in practice this does not need to be
the case though, depending on the number of
animals available. Because of differences in repro-
ductive capacities, favourable females are mated
with only one male in the recipient line, whereas
selected males can be mated to more than one
recipient line female. The number of times that
males are used will be treated as a design param-
eter. Attention will also be paid to the situation in
which only males are genotyped and selected during
the backcross generations. It will also be assumed
that there are always sufficient recipient animals
available for mating.

A further assumption is that litter size varies
stochastically, and independently, from female to
female. As a working approximation, a Poisson
distribution for litter size is assumed (see, e.g.
Foulley et al., 1987; Matos et al., 1997), the major
consequence being that the variance of litter size is
taken as being equal to the mean.

In developing the theory, the mean and variance
of the number of animals with the desired genotype
at each generation are provided. Derivation of the
full probability distribution of the number of animals
at each generation is a more intractable problem.
These issues are considered in mathematical
theories of population dynamics (e.g. Renshaw,
1991). However, it is believed that use of summary
statistics will characterize the population sufficiently
well, and also allows a relatively simple development
of the theory.

The following notation will be used here:

t = generation number (0 = F1; 1, 2, 3, . . . = back-
cross generation 1, 2, 3, . . . );

Mt = number of favourable males at backcross
generation t;

Ft = number of favourable females at backcross
generation t;
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Nt = Mt+Ft, the total number of favourable animals
at generation t;

n = number of males and number of females initially
selected from each strain to start the introgres-
sion process (i.e. 2n donor animals and 2n recipi-
ent animals);

p = probability of inheriting the desired chromo-
somal region(s), i.e. favourable;

r = number of times each favourable male is used
for breeding;

s = sex ratio in offspring at breeding age;
l = mean number of animals produced in a litter

and surviving to breeding age.

Although it would usually be assumed that the sex
ratio s would equal 1

2, other values might occur as a
result of differential mortality of males and females
up to the time of breeding. Note that the probability
of inheriting the desired chromosomal region(s) is a
function of the number and the size of the region(s)
to be introgressed. Let di be the length of a region
(Morgans) and z the number of independent
regions. With unequal chromosomal region lengths
and applying Haldane’s (1919) Poisson model for
crossing-over, p is calculated as p = (1

2)zP z
i=1 eµdi

which reduces to p = (1
2)z eµzd when all regions are of

equal length.
Assuming that the parameters r, p, s and l are

constant over generations, it may also be shown that
there are explicit solutions for the mean and vari-
ance of Nt, namely E(Nt) = 2nl [pl (rs+1µs)] t and
var(Nt) = E(Nt)[b+gE(Nt)] where

b = 1µ
pl(r2s+1µs)

(rs+1µs)[pl(rs+1µs)µ1]

and

g =
p (r2s+1µs)

2n(rs+1µs)[pl(rs+1µs)µ1]
.

As an illustration (Fig. 1), 20 simulations were
performed, each starting from 2n = 36 donor
animals with r = 4; l = 5; s = 1

2; p = 0.0686 (based on
z = 3 and d = 20 cM). This also shows the means¹2
standard deviations, E(Nt)¹2[var(Nt)]1/2. As
expected, relatively few simulated values lie outside
these limits.

Constant breeding strategy

Two parameters (n and r) are under control of the
breeder. When specifying that a certain mean
number (say Nmean) of favourable animals are to be
available after k backcross generations and for a
specified value of r, the initial number of animals

required is clearly n = Nmean/{2l[pl(rs+1µs)]k}. For
this strategy, however, there will be (approximately)
a 50% risk of obtaining fewer animals than this at
the end of the backcross process. An alternative
strategy would be to specify the minimum number of
favourable animals, Nmin, and the nominated risk of
obtaining fewer animals than this, a.

Provided that Nmin is not too small, the distribu-
tion of the number of favourable animals at genera-
tion k can be taken as approximately normal, with
mean m = E(Nk) and variance s 2 = var(Nk). So for a
chosen value of r, we select the value of n so that
P(NksNmin)Ra. This may be approximated as the
value n satisfying

NminµE(Nk)

Zvar (Nk)
RFµ1(a),

where Fµ1(a) is the 100a percentage point of
the standard normal distribution. However,
when Nmin is small, a better approximation to nor-
mality is achieved by using a square-root transforma-
tion. These means and variances may be approxi-
mated as E(ZNk)2ZE(Nk)+1

4 var(Nk)[E(Nk)]µ3/2 and
var(ZNk)21

4 var(Nk)/E(Nk), and n then chosen to
satisfy

Fig. 1 Simulation of the number of favourable animals at
each generation, Nt. Twenty simulations are shown all
starting with 2n = 36 founder animals; other parameters
are r = 4; l = 5; s = 1

2; p = 0.0686 (based on z = 3 and
d = 20 cM). Also shown are the theoretical mean
(squares)¹2 standard deviations (triangles). Generation
‘µ1’ refers to the founders, ‘0’ to the F1 generation, and
subsequent generations are backcrosses.
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ZNminµE(ZNk)

Zvar (ZNk)
RFµ1(a).

Note that different values of male usage, r, result
in different minimum values of n. One possible
option is to choose the value of r that would require
the smallest expected number of animals to be geno-
typed during the entire experiment (amount of
genotyping). Because for any backcross generation,
the amount of genotyping required has a mean of
pµ1E(Nt) if males and females are genotyped, the
total expected amount of genotyping over k back-
cross generations would be

EGk = p µ1 +
k

t=1

E(Nt)

= 2nl 2(rs+1µs)
[pl(rs+1µs)]kµ1

pl(rs+1µs)µ1
.

Instead of genotyping males and females, one
could only genotype and select males from genera-
tion 1 to kµ1, and subsequently males and females
in generation k, which results in a total expected
amount of genotyping of:

EGk = pµ1 GE(Nk)+ +
kµ1

t=1

E(Mt)H
= 2nl2sr C (l spr)kµ1+s

[(l spr)kµ1µ1]

l sprµ1 D.

Alternatively, a constant amount of genotyping
each generation may be the preferred option. In this
situation, we need the growth rate to be (close to)
one; this is achieved by choosing r to be the nearest
integer to (pl s)µ1µsµ1+1, that is 2/(pl)µ1 assum-
ing s = 1

2.

Adaptive breeding strategies

Another issue is that the breeding strategy may be
adaptive in the sense that it might be changed
between generation 0 and k, or perhaps extended
for additional generations. Although n cannot be
altered, r may be altered during the programme,
particularly when Nt at generation t becomes criti-
cally small. For this, we need to calculate the condi-
tional mean and variance of Nk given the actual
number of males and females at generation t. These
may be calculated as
E(Nk | Mt, Ft) = pl(rMt+Ft)[pl (rs+1µs)]kµtµ1

and
var (Nk | Mt, Ft) = E(Nk | Mt, Ft)[b+gE(Nk | Mt, Ft)],

where b and g are as defined above. So at each
intervening generation, t = 0, . . . , kµ1, we may
select the value of r so that

NminµE(Nk | Mt , Ft)

Zvar(Nk | Mt , Ft)
RFµ1(a).

Another adaptation to face situations in which the
number of favourable animals has dropped below
the desired level is to produce more offspring than
planned in subsequent generations.

Numerical application
In this section, consequences of the theory outlined
previously will be investigated numerically. For all
calculations, regions to be introgressed are assumed
to be of equal size. The sex ratio (s) was assumed to
be 1

2 and the mean litter size (l) assumed to be 5.
First the situation in which both males and females
are genotyped will be considered. Subsequently,
results for situations in which only males are geno-
typed during the backcrossing process are presented.

Genotyping males and females

In the first investigation, the mean number of
favourable animals was specified (Nmean = 50), and
the initial number of donor animals (n males and n
females) determined (Table 1). Also shown is the
expected number of animals to be genotyped for the
whole experiment (EGk). The probability p of inher-
iting the desired genotype decreases when z or d
increases. Note that in some situations, values of n
less than one result in the required number of
animals in the target generation. In these situations,
entries for higher values of r have been left empty,
as higher usage of males is clearly not necessary.
Both n and the number of animals to be genotyped
for the whole experiment (EGk) decrease with
increasing r and p, but increase when the number of
backcrosses k becomes higher. Figure 2 shows the
pattern of E(Nt) over the backcross generations
which converges to a fixed value of Nmean = 50. Note
that a plot of the expected amount of genotyping
over time would show the same pattern, converging
to 729 animals after k = 5 backcross generations.

For the second investigation, the minimum
number of animals after k backcross generations was
specified (Nmin = 50), with a risk of a = 0.05 of
obtaining fewer than this number (Table 2). This
results in an increase of all corresponding values of
EGk and n compared with the values in Table 1
where the mean was set at 50; similarly n decreases
with increasing p, increasing r and for greater
number of backcross generations. The expected
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amount of genotyping (EGk) behaves differently
however; for smaller values of p, EGk initially
decreases with increasing r, reaches a minimum
value and then starts increasing (Table 2). However,

the initial decrease is not observed when p exceeds
0.216 (for the given values of l, s).

Figure 3 shows the behaviour of E(Nt) over the
backcross generations. The mean population trajec-
tories do not converge to the same value for all
values of r; Table 3 shows the means and variances
of Nt at the fifth generation for a given Nmean or Nmin.
With high r-values, the initial number of founders
(2n) is relatively small, but the final mean (E(Nk))
tends to be higher, compared with the designs with a
lower r-value. When the number of founders is
small, there is relatively more variability in the
number of favourable animals in F1 and subsequent
backcross generations. Consequently, the mean in
the target backcross generation, E(Nk), needs to be
relatively high in order to ‘ensure’ that the minimum
number of favourable animals is achieved.

As expected in the third investigation (Table 4),
increasing the number of animals required results in
an increased amount of genotyping, as does reduc-
ing the risk level. Further, doubling the number of
animals required doubles the amount of genotyping
when Nmean is specified. However, when the risk is
considered (i.e. for as0.50), doubling Nmin leads to
a less than doubling of the amount of genotyping.

Genotyping males only

Males in general have a higher reproductive rate
than females and consequently it might be interest-

Table 1 Expected number of animals to be genotyped (EGk) for breeding scheme (r), the expected number (Nmean) of favourable
animals required at the end of backcrosses being 50. (p = probability of inheriting the desired chromosomal region(s))

Size of r
Back- No. of region
crosses regions (cM) p 1 2 3 4 5

5 1 0 0.5 165 (0.051) — — — —
10 0.4524 195 (0.085) — — — —
20 0.4094 232 (0.139) — — — —

2 0 0.25 672 (1.63) 410 (0.215) — — —
10 0.2047 1166 (4.45) 618 (0.586) — — —
20 0.1676 2191 (12.09) 994 (1.59) 684 (0.378) — —

3 0 0.125 6324 (52.42) 2285 (6.90) 1345 (1.63) 992 (0.536) —
10 0.0926 21415 (234.99) 6370 (30.94) 3167 (7.34) 2058 (2.40) 1555 (0.967
20 0.0686 79770 (1053.17) 20652 (138.68) 8889 (32.91) 5074 (10.78) 3445 (4.33)

10 1 0 0.5 166 (0.000) — — — —
10 0.4524 198 (0.001) — — — —
20 0.4094 239 (0.003) — — — —

2 0 0.25 893 (0.536) — — — —
10 0.2047 2205 (3.96) 691 (0.068) — — —
20 0.1676 7493 (29.27) 1311 (0.507) — — —

3 0 0.125 72634 (549.75) 5440 (9.53) 1785 (0.536) — —
10 0.0926 1027920 (11044.8) 45793 (191.53) 7819 (10.78) 3049 (1.15) 1856 (0.187)
20 0.0686 16881990 (221834) 593469 (3846.72) 67399 (216.63) 16018 (23.26) 6430 (3.75)

The numbers in parentheses are n, i.e. n donor males and n donor females are mated to n recipient females and n recipient
males to produce the F1 generation.

Fig. 2 Expected number of favourable animals (E(Nt)) at
each generation of backcrossing for different breeding
schemes (r). Fixed parameters were Nmean = 50 at k = 5
backcross generations; l = 5; s = 1

2; p = 0.0686 (based on
z = 3 and d = 20 cM). The broken line is drawn at
Nmean = 50.
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ing to look at the situation in which only males are
genotyped and selected. During the backcrossing
generations these selected males can be mated to
ungenotyped females from the recipient line. Males
and females in the final backcross generation need
to be genotyped and selected for the intercross.
Table 5 gives the number of founder animals n that
are needed in order to have a risk of a = 0.05 of
obtaining fewer than Nmin = 50 animals after five
generations of backcrossing for the alternative of
genotyping all animals (rF = 1) or males only
(rF = 0). For higher values of r (E4) the expected

amount of genotyping is smaller by genotyping
males only. However, if there is a limit to r then the
Table indicates there are situations where genotyp-
ing females would be optimal with respect to the
amount of genotyping. Genotyping males only
results in an increase in the number of animals
being produced in the different generations as illus-
trated by the number of founder animals n in
Table 5.

Table 2 Expected number of animals to be genotyped (EGk) for breeding scheme (r), the minimum number (Nmin) of favourable
animals required at the end of backcrosses being 50, a = 0.05. (p = probability of inheriting the desired chromosomal region(s))

Size of r
Back- No. of region
crosses regions (cM) p 1 2 3 4 5

5 1 0 0.5 1761 (0.546) — — — —
10 0.4524 1474 (0.639) — — — —
20 0.4094 1293 (0.775) — — — —

2 0 0.25 1440 (3.51) 1927 (1.01) 4247 (0.659) — —
10 0.2047 2081 (7.94) 1869 (1.77) 3028 (0.907) — —
20 0.1676 3482 (19.22) 2223 (3.56) 2628 (1.45) 4153 (0.924) —

3 0 0.125 9122 (75.62) 3935 (11.89) 3115 (3.79) 3436 (1.86) 4584 (1.20)
10 0.0926 29332 (321.87) 9578 (46.53) 5556 (12.88) 4483 (5.24) 4462 (2.77)
20 0.0686 106157 (1401.56) 28966 (194.51) 13535 (50.11) 8652 (18.38) 6798 (8.55)

The numbers in parentheses are n, i.e. n donor males and n donor females are mated to n recipient females and n recipient
males to produce the F1 generation.

Fig. 3 Expected number of favourable animals (E(Nt)) at
each generation of backcrossing for different breeding
schemes (r). Fixed parameters were Nmin = 50 at k = 5
backcross generations with risk a = 0.05; l = 5; s = 1

2;
p = 0.0686 (based on z = 3 and d = 20 cM). The broken
line is drawn at Nmin = 50.

Table 3 Means and variances of N5 for a = 0.50 and a = 0.05;
z = 3 and d = 20 cM

a = 0.50 a = 0.05

r E(N5) var(N5) E(N5) var(N5)

1 50 76 67 101
2 50 107 70 150
3 50 166 76 252
4 50 269 85 460
5 50 444 99 876
6 50 725 118 1713
7 50 1163 146 3389

Table 4 Expected number of animals to be genotyped (EGk)
for r = 4, k = 5, z = 3 and d = 20 cM

Nmin

a 25 50 100

0.50† 2537 5074 10148
0.10 4561 7705 13650
0.05 5351 8652 14833

†Nmin corresponds to Nmean when a = 0.50.
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Discussion
The model developed in this study can be used to
assist the experimentalist in designing an MAI
experiment. It provides important insights into para-
meters that need to be considered and the scale at
which the introgression needs to be carried out in
order to be successful. When the aim is to minimize
the amount of genotyping there might be options to
reduce this amount by using an adaptive breeding
scheme when r is lower than the maximum repro-
ductive rate of males. Using low levels of r during
the initial generations and high values in later gener-
ations will lead to smaller values of EGk than those
given in Tables 1 and 2. The results obtained for a
constant breeding scheme will serve as a good start-
ing point for the calculations in that case. An addi-
tional reason for a departure from a constant
breeding strategy might be if the breeder wishes to
introgress two regions and exclude a third region.
Once the breeder has eliminated that third region, p
would be changed to the ‘original’ level for two
regions. This situation can be accommodated by
allowing p to vary over the generations using this
adaptive approach. Setting the mean (Nmean) at 50,
one would expect a number of progeny of 125 after
one generation of intercrossing. Introgressing z = 3
regions each of length 20 cM, then (1

2 eµ0.2)6 = 0.47%
(corresponding to 0.6 animal) of the offspring is
expected to be homozygous for the three-locus
genotype. This demonstrates that nominating an
expected number of 50 animals at the end of the
backcross generations is too low. Now consider the
case where the minimum (Nmin) is set at 50, and
assume that the breeder used each male r = 7 times
during the backcrossing process (Table 3). This
would result in approximately 1.7 animals, still a low
number. Nevertheless, opportunities might exist for
the breeder to repeat the intercross process, or addi-

tionally to intercross any heterozygous animals
resulting from the intercross.

During the experiment, the experimenter will try
to modify the scheme when the results would permit
this. Genotyping of animals will be stopped as soon
as sufficient animals with a desirable genotype have
been found. It is clearly demonstrated that the
amount of genotyping can be reduced by using such
an adaptive breeding scheme (Table 5). There might
be practical limitations in implementing a scheme
which results in minimum genotyping. To make effi-
cient use of genotyping facilities, animals are geno-
typed in batches rather than individually. Because of
culling of surplus animals at an early age, it may be
difficult to go back to genotyping more males or
females if insufficient males with favourable geno-
types are found. These practical constraints need to
be taken into account in executing a MAI
programme in order to make efficient use of experi-
mental and genotyping facilities.

The number of founder animals from the donor as
well as the recipient strain (n female and n male)
are represented as a decimal number (Tables 1 and
3). In practice this cannot be realized. Imposing a
minimum value of 1 for n would under a constant
breeding strategy lead to too large numbers at the
end of the experiment. Values smaller than 1 indi-
cate that during the initial generations of the back-
crossing process the number of selected animals
should be kept constant instead of increased,
perhaps by not using all the available favourable
animals.

In MAI the major aim of backcrosses is the recov-
ery of the recipient genome (Hospital et al., 1992;
Hillel et al., 1993; Yancovich et al., 1996). The
number of generations of backcrossing is determined
by the desired proportion of genes coming from the
donor line for other parts of the genome. With five
backcrosses, the expected proportion of the donor
genome in the recipient animal is still 1.562%, and it
is 0.049% after 10 backcross generations (Soller &
Plotkin-Hazan, 1977; Hillel et al., 1990). In this
paper, selection is entirely based on the genotypic
information for the identified regions. To reduce the
number of backcross generations, genomic selection
against the donor genes from other parts of the
genome may be applied (Hospital et al., 1992; Hillel
et al., 1993; Yancovich et al., 1996). Introgressing
alleles simultaneously with genomic selection on the
recipient genotype (Visscher et al., 1996) would be
another way of reducing backcross generations.
These techniques accelerate the recovery of the
recipient genome but will lead to an increase in the
number of animals to be produced within a genera-

Table 5 Expected number of animals to start the experiment
(n) and expected number of animals to be genotyped (EGk)
for a situation with (rF = 1) and without (rF = 0) genotyping
and selection of females for a = 0.05, Nmin = 50, k = 5, z = 3
and d = 20 cM

rF = 1 rF = 0

r n EGk n EGk

1 1401.41 106147 42071.30 635115
2 194.50 28 963 1403.97 53656
3 50.11 13 534 200.54 15458
4 18.39 8652 52.79 7714
5 8.55 6798 19.73 5309
6 4.73 6172 9.33 4492
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tion and the amount of genotyping per animal;
indeed the genomic selection is applied to those
individuals known to carry the relevant segments.

One of the goals of this study is to minimize the
number of animals to be genotyped throughout the
experiment. If we ignore the risk of obtaining too
few animals in the target backcross generation, then
Table 1 indicates that we need to select a strategy
with a small n and large r. In fact the expected
amount of genotyping would be minimized further
by a low constant population size up to the second
last generation (kµ1), then the highest possible
increase in the last generation (i.e. high r). However,
when risk is considered, this may no longer be the
optimal strategy. As is seen in Table 2, the expected
amount of genotyping is minimized by selecting a
low or intermediate value of r; higher values of r can
lead to an increase in the amount of genotyping
involved. An option to minimize the amount of
genotyping would be to only type, select and use
favourable males during the backcross process.
From Table 5 it follows that when the reproductive
rate of males is sufficiently large, the expected total
amount of genotyping can be reduced by genotyping
males only, at the expense of producing a larger
number of individuals. In designing an experiment,
the amount of genotyping needs to be balanced
against the number of experimental animals needed.
One will first determine the number of backcross
generations that is needed to obtain the acceptable
proportion of donor genome in the newly formed
line. To determine the optimum choice for the other
parameters one will need to incorporate the costs of
producing and keeping an animal, the genotyping
costs, the costs of other resources and the time
required to achieve the target.

Alternatively, the choice of ‘optimum’ may also be
driven by the genotyping capacity of the laboratory.
Low values of r are usually associated with high
rates of population decrease, resulting in a large
volume of genotyping being conducted in the early
generations (Figs 2 and 3). Conversely, when risk is
considered, a high value of r may lead to an
increased amount of genotyping in the later genera-
tions (Fig. 3). Clearly, for the parameters nominated
for Fig. 3, a choice of r = 5 would be optimal in
terms of approximate constant genotyping over all
backcross generations.

This model was developed to assist in the design
stage of a marker-assisted introgression experiment
of trypanoresistance genes in mice. The findings are
now to be exploited in this programme. More gener-
ally, this model when implemented in a computer
spreadsheet programme, allows the breeder to assess

the effect of changes in biological and design param-
eters on the population growth, as well as effects of
random causes. Such a system could be incorporated
into a computer-aided decision-support system for
use by breeders. A spreadsheet program (Microsoft
Excel) for this model is available from the corre-
sponding author.
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Appendix: Derivation of means, variances,
and covariances

F1 generation (t = 0)

Because there are 2n donor animals mated with 2n
recipient animals, each mating giving rise to a litter
with mean size l, all of which are favourable, the
mean number of male and female favourable
animals, respectively, will be E(M0) = 2nsl and
E(F0) = 2n(1µs)l. Also, var(M0) = E(M0) and
var(F0) = E(F0) from the Poisson litter size assump-
tion, and cov(M0, F0) = 0 because of the independ-
ence (for a given n). Clearly, E(N0) = var(N0) = 2nl.

Backcross generations (t = 1, 2, . . . )

Because there are 2n donor animals mated with 2n
recipient animals, each mating giving rise to a litter
with mean size l, all of which are favourable, the
mean number of male and female favourable
animals, respectively, will be E(M0) = 2nsl and
E(F0) = 2n(1µs)l. Also, var(M0) = E(M0) and
var(F0) = E(F0) from the Poisson litter size assump-

tion, and cov(M0, F0) = 0 because of the independ-
ence (for a given n). Clearly, E(N0) = var(N0) = 2nl.

Backcross generations (t = 1, 2, . . . )

Because the Mtµ1 males are used r times and the
Ftµ1 females only once, there will be rMtµ1+Ftµ1

litters resulting from matings with the recipient line,
each litter with a mean and variance of l. However,
there is now a probability p of an offspring
being favourable, so the conditional moments are

E(Mt | Mtµ1, Ftµ1) = psl (rMtµ1+Ftµ1)

and

E(Ft | Mtµ1, Ftµ1) = p(1µs)l (rMtµ1+Ftµ1),

with

var(Mt | Mtµ1, Ftµ1) = E(Mt | Mtµ1, Ftµ1),

var(Ft | Mtµ1, Ftµ1) = E(Ft | Mtµ1, Ftµ1),

and

cov(Mt, Ft | Mtµ1, Ftµ1) = 0.

The marginal (unconditional) moments are obtained
using standard results (see, e.g., Mood et al., 1974,
p. 157), namely, means of

E(Mt) = pslÅ[rE(Mtµ1)+E(Ftµ1)],

E(Ft) = p(1µs)lÅ[rE(Mtµ1)+E(Ftµ1)],

and variances

var(Mt) = (psl)2Å[r 2 var(Mtµ1)+var(Ftµ1)
+2r cov(Mtµ1, Ftµ1)]+pslÅ[rE(Mtµ1)+E(Ftµ1)],

var(Ft) = (p(1µs)l)2Å[r 2 var (Mtµ1)+var(Ftµ1)+2r
cov(Mtµ1, Ftµ1)]+p(1µs)lÅ[rE(Mtµ1)+E(Ftµ1)],

and covariance

cov(Mt, Ft) = (pl)2s(1µs) [r 2var(Mtµ1)+var(Ftµ1)
+2r cov(Mtµ1, Ftµ1)].

Also,

E(Nt) = plÅ[rE(Mtµ1)+E(Ftµ1)],

and

var(Nt)=(pl)2Å[r 2 var (Mtµ1)+ var (Ftµ1)
+2 r cov(Mtµ1, Ftµ1)]+plÅ[r E(Mtµ1)+E(Ftµ1)].

These means, variances, and covariance for Mt, Ft,
and hence Nt, can be obtained by calculating the
moments recursively. Alternatively, solutions for
these may be obtained explicitly, as reported in the
main text. These results may be proven by induction.

24 O. D. KOUDANDÉ ET AL.
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