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Simple multiple-marker sib-pair analysis for
mapping quantitative trait loci
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Haseman & Elston (1972) developed a simple and robust method for detecting quantitative
trait loci (QTL) by their linkage to a single marker using information from sib-pairs. The
method involves the regression of the squared difference between the phenotypic scores onto
the proportion of alleles at the marker which are identical by descent. The availability of
genetic maps of marker loci makes it possible to extend this method to incorporate informa-
tion from several marker loci. Here we show that by considering identity by descent from the
two parents separately, a simple method can be obtained to use information from multiple
markers to estimate the proportion of alleles identical by descent for a QTL in any given
location. Considered this way, the method can also be very simply extended to allow for
differences in recombination frequencies between the sexes and more complicated relation-
ships between individuals. We show by simulation that this method is as powerful as alternative
least squares approaches using multiple markers (Fulker et al., 1995) and provides more
accurate estimates. It is also much easier to implement.

Keywords: least squares, QTL mapping, sib-pairs.

Introduction

Haseman & Elston (1972) developed a simple
sib-pair method for detecting QTLs in outbred
populations where families of full-sibs were avail-
able. In this approach the squared difference
between the phenotypic scores of two full-sibs (Y ) is
regressed onto the proportion of alleles for which
the two sibs are identical by descent (ibd) at a
particular marker (p). Haseman & Elston (1972)
showed that with a QTL which was a recombination
fraction y from the marker, the expectation of the
regression coefficient, b, was:

b=µ2(1µ2y)2 s 2
g,

where s 2
g is the additive genetic variance contributed

by the QTL. Fulker & Cardon (1994) extended the
sib-pair method to use information from pairs of
flanking markers and, subsequently, Fulker et al.
(1995) further extended it to use multiple markers.
Their approach is to estimate the proportion of
alleles ibd in two sibs at each marker and to use this
information to obtain an estimate of the proportion
of alleles ibd at any given location (pq):

pq
^= â+b1p1+̂b2p2+̂ . . .+bnpn

^,

where n is the number of markers in the linkage
group; the bs are obtained from a series of simultan-
eous equations: C=Vb, where V is the expected
variance matrix of the proportion ibd at the markers
and C contains the expected covariances between
the proportion ibd at the markers and the location
being considered; the p̂s (p1

^, . . . , pn)̂ are the esti-
mates of the proportion ibd at the markers; and â is
estimated from the b coefficients and the mean ibd
states at the markers.
Fulker et al. (1995) illustrated that the multiple

marker approach removed biasses in location
observed with the flanking markers, as expected, and
in some situations increased power. The main draw-
back to this approach, however, is the difficulty of
extension to include differences in male and female
recombination fractions and more complicated pedi-
gree structures.
The approach also has a potential bias in that

markers at which the ibd state cannot be determined
are assumed to have the expected value based on a
single marker, i.e. if the ibd state of alleles from
both parents cannot be determined a value of 0.5 is
used, and if the ibd state for alleles from only one
parent cannot be ascertained this parent contributes*Correspondence. E-mail: s.knott@ed.ac.uk
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a value of 0.25 to the ibd state for this marker. If
flanking markers are available, however, the prob-
ability of being ibd may differ from the single
marker value. One example, where this use of
expected values would lead to the largest deviation
from the correct probability, would be in a situation
where one marker was heterozygous for both
parents and offspring and its flanking markers were
either both completely ibd or completely not ibd.
With a marker heterozygous for the same alleles in
parents and both sibs, either the alleles inherited by
both sibs are ibd from both parents or from neither
parent. If no additional information were available
then this marker would have an estimated ibd state
of 0.5. If both flanking markers are ibd from both
parents, however, it is much more likely that the
marker in between is also completely ibd rather than
completely not ibd. In which case the estimated ibd
state for this marker is greater than 0.5.

Method

We follow the basic approach adopted by Fulker et
al. (1995). For a sib-pair we estimate the proportion
of alleles ibd for a QTL at a known position condi-
tional on the ibd state observed at the markers (pq)̂.
This is carried out for fixed positions through the
linkage group. The squared difference between the
phenotypic scores of two full-sibs (Y) is then
regressed onto pq

^at each position. As we approach a
QTL, the recombination fraction, y, between the
location of the QTL and the position being
considered, is reducing and the estimate of b
increasing, and at a QTL b=µ2s 2

g. Therefore we
are interested in large negative values of b. At each
location a t-statistic (b̂/SE(b̂)) is calculated and the
position at which this is minimized is selected as the
best estimate for the location of any QTL. We
implement the calculation of pq differently from
Fulker et al. (1995), however, in a way that is more
readily extendible to a mix of full- and half-sibs,
which allows differences in recombination between
sexes to be accommodated, and is faster to run.
We start by noting that the number of alleles at a

locus ibd in a pair of sibs (i.e. 0, 1 or 2) can also be
thought of as whether the alleles inherited from the
sire are ibd and whether the alleles from the dam
are ibd. Then the pair of sibs will have two alleles
ibd if both the sire and the dam alleles are ibd, one
allele if either the sire or the dam allele is ibd and
no alleles ibd if neither the sire nor the dam alleles
are ibd. Considered in this way, with data on co-
dominant markers from both parents and offspring,

for one parent (either sire or dam) markers are
either completely informative or they are completely
uninformative. There are no partially informative
markers when considering one parent at a time.
However, because markers may be informative from
one parent but uninformative from the other, if the
parents are considered together a marker may be
considered partially informative. In this method we
use this observation and, for a QTL at a known
position, estimate the probability that the two sibs
are ibd from each parent separately (pq ŝ and pq d̂

for the sire and dam, respectively). These estimates
are then combined to estimate the overall prob-
ability that the sibs are ibd for the QTL
(pq
^=(pq ŝ +pq d̂ )/2).
Considering the gametes from the two parents

separately, and taking the dam as an example, for
each gamete pq d̂ is calculated for a known position
between two markers. pq d̂ is calculated conditional
on p1d and p2d, these being the proportions of alleles
which are ibd from the dam at the nearest informa-
tive markers flanking the QTL position (i.e. p1d and
p2d will either be 0 or 1), and the recombination
fractions between the position of the QTL and the
markers, as shown in Table 1. The calculations
shown in Table 1 assume no interference and under
this assumption it is only the two flanking informa-
tive markers that provide information on pqd. Thus
for a QTL in a fixed position for any one gamete
(from the sire or dam), in any one pair of sibs, only
two markers are required to calculate pq d̂ or pq ŝ .
However, the markers used may differ between the
dam and the sire gametes (i.e. information from up
to four markers may be used for a pair of sibs) and
also between different pairs of sibs. Some positions
towards the end of a linkage group may not be
flanked by two informative markers, the outer
marker being uninformative for one or both parents
in some sib-pairs. In this case the probability that
the sib-pair are ibd from the particular parent is
calculated conditional on the nearest informative
marker internal to the position, using formulae given
in Table 1.
Note that for the situation with two fully informa-

tive (from both parents) markers and no sex differ-
ence in recombination frequencies this approach is
algebraically equivalent to the method given by
Fulker & Cardon (1994). Compared with Fulker et
al. (1995) this method will be the same within
regions containing only fully informative markers,
with the variance of the ibd state within these
markers being 0.125. The complete analysis
proceeds as follows.
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1 For each pair of sibs identify markers in the
linkage group that are informative for identity by
descent for the two parents considered separately.

2 For a QTL at a fixed position in the linkage group
calculate pq d̂ and pq ŝ conditional on the nearest
two flanking markers that are informative for the
appropriate parent (or the nearest single marker
if the position is not flanked by two informative
markers) and the appropriate recombination
frequencies using the formulae in Table 1.
Calculate pq

^=(pq ŝ +pq d̂ )/2.
3 Regress the squared phenotypic difference
between the sib-pairs (Y) onto pq

^ for the chosen
position and calculate the t-statistic for the regres-
sion coefficient b̂.

4 Repeat from 2 for chosen positions through the
linkage group (e.g. 1 cM intervals). Select the
position for which t is minimized and compare
with the appropriate significance threshold. Esti-
mate s 2

g as µb̂/2.

Using this approach, splitting information from the
sire and from the dam, there is one combination of
alleles at a marker for which the ibd state is known
but the origin from the sire or from the dam is not
known. That is when both parents are heterozygous

with the same genotype and one of the offspring is
homozygous and the other heterozygous. The alleles
inherited from one parent are ibd and those from
the other parent are not. We cannot tell, however,
from which parent the ibd alleles have been inher-
ited. The approach outlined above assumes this to
be an uninformative situation and omits this marker
for this pair of full-sibs. An alternative approach,
however, would be to consider two possible
scenarios: (i) that the alleles inherited from the sire
were ibd and those from the dam were not; and (ii)
vice versa. This will obviously complicate the calcu-
lation of the probabilities of ibd as the sire and dam
can no longer be treated independently. One way to
calculate the required probabilities would be to
calculate the probabilities of the different marker
situations (i.e. considering the two different
scenarios given above for any such locus) for both
parents together and all markers flanked by fully
informative markers (informative in the sire and
dam) or ends of chromosomes. Then the probabili-
ties of the sibs being ibd at a given location for each
marker situation can be calculated and the two
probabilities multiplied together and summed over
the different situations. With this method it is still
possible to take account of male and female recom-

Table 1 Probabilities of identity by descent from the sire (or dam) at a QTL
conditional on flanking markers or adjacent single marker and recombination
frequencies

ibd state at flanking markers
Probability of ibd at QTL

p1 p2 (pq ŝ )

1 1 ((1µy1)2+y 2
1)((1µy2)2+y2

2)/((1µy)2+y2)

1 0 ((1µy1)2+y 2
1)(1µy2)y2/((1µy)y)

0 1 (1µy1)y1((1µy2)2+y 2
2)/(1µy)y)

0 0 4(1µy1)y1(1µy2)y2/((1µy)2+y2)

1 — a ((1µy1)2+y 2
1)

0 — 2(1µy1)y1

p1, p2, numbers of alleles ibd from the sire (or dam) at the first and second
marker, respectively.
pq ŝ , estimated probability of the QTL being ibd from the sire (or dam),
calculated assuming no interference in recombination (Haldane
mapping function).
y1, y2, y, recombination fractions between the first marker and the QTL,
the second marker and the QTL and between the two markers,
respectively, in the sire (or dam).
aUninformative (i.e. for a position towards the end of a linkage group
which is not flanked by two informative markers for that parent in that
sib-pair).
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bination differences. This complete method will
bring the average of the sire and dam ibd state down
to a value of 0.5 at this type of marker where both
parents and one offspring have the same hetero-
zygous genotype and the other sib is homozygous. In
the simpler method described above, however, the
probability of ibd will depend on the flanking
markers. The worst situation will be when this type
of marker falls between two at which the ibd state is
completely known and the alleles inherited by the
two full-sibs are either ibd from both parents or
neither parent. This situation will not be common as
it requires a recombination event in one parent on
both sides of the marker.

Simulation

We use simulation to explore the properties of this
simple multiple-marker method in comparison with
the method proposed by Fulker et al. (1995). We
also compare the complete form of the method
proposed above. The comparisons between the
methods are expected to be affected by marker
density and heterozygosity, with the largest differ-
ences being when few alleles are segregating at the
markers.
All simulations considered a linkage group 120

cM in length. Seven markers were equally spaced
(20 cM apart), with two alleles at equal frequency.
In all cases recombination with no interference was
simulated. Where a QTL was simulated it had two
alleles at equal frequency with a heritability of 0.5
(i.e. its segregation explained 50% of the total vari-
ance). To investigate the effect of QTL location, sets
of replicate simulations were run. A single QTL was
simulated in each set of replicates, with the position
of the QTL varying between sets. In different sets,
the position of the QTL was varied from 0 to 20 cM
and 40 to 60 cM in 5 cM steps (i.e. 0, 5, 10, etc.) and
20 to 40 cM in 2 cM steps (i.e. 20, 22, 24, etc.).
Thus, 19 sets of replicates covering the region 0 to
60 cM were used. QTLs with smaller effect (explain-
ing 5% and 10% of the total variance) were also
investigated. An additional situation was considered
with marker spacing as before but with eight alleles
with equal frequency segregating at all markers. The
QTL was simulated at location 50 cM.
All populations considered 1000 pairs of sibs and

their parents (except for the situations with smaller
QTL effects where 10000 sib-pairs were considered).
For each situation 500 simulations were performed.
The analyses proceeded as described above for

the multiple-marker method. For simplicity and
comparison across methods all sib-pairs were

included even when all markers in the linkage group
were uninformative. The estimated position of any
QTL was taken as that at which the t-statistic was
minimized.

Significance thresholds

For a test at a single position or marker, the distri-
bution of b̂/SE(b̂) is expected to conform to a
t-distribution. Many correlated tests at positions
through the linkage group will be performed,
however, and so thresholds need to be obtained
empirically. With real data we would propose the
use of a permutation test (Churchill & Doerge,
1994). In this test the ibd states are permuted with
the phenotypic differences and the resulting data set
reanalysed. Over multiple permutations this gives an
empirical distribution of the test statistic under the
null hypothesis of no QTL being present. For this
study simulations were performed with the marker
set-up as described above but with no QTL. For
each combination of parameters 1000 simulations
were performed and the 0.05 whole linkage group
threshold for b̂/SE(b̂) determined for each of the
three methods.

Results

Significance thresholds

We report µt values throughout to make the results
and curves shown more directly comparable with
those usually associated with interval mapping.
The significance thresholds for the entire linkage

group are shown in Table 2 for the three methods.
These were derived by selecting the highest µt
value from each analysis. We also looked at the
distribution of test statistics for single locations and
the thresholds obtained for the location 0 cM are
given in Table 2. The results from other locations
were similar. The equivalent value obtained from a
standard t-distribution would be 1.65. We also
looked at the mean and variance of the µt values at
positions along the chromosomes (data not shown).
There was no evidence of any trends moving from
the end to the centre of the linkage group or moving
from a marker to positions between markers.

Comparative power

Figure 1 gives the power observed for the three
methods for the situations considered with markers
with only two alleles. All methods gave similar
power, although the complete version using all infor-
mation was always at least as good as the others
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(except at 24 cM, where the simpler method
proposed here was 1% higher). Although, as
expected, power was higher when the QTL was
simulated at a marker and outside the terminal
intervals (i.e. in the more central intervals), the
difference between the methods was not affected by
QTL location. The set of simulations where eight
alleles were simulated at the markers gave 96%
power for all methods.

Estimates of position and s 2
g

Results for the QTL location are given in Fig. 2.
The mean of the best location for the QTL is
expected to be biassed towards the centre of the

chromosome unless there is 100% power. This is
because of the boundary effect at the end of the
linkage group and because type I errors produce an
average position estimate at the centre of the
linkage group. Within an interval there seems to be
some bias towards the markers and hence the termi-
nal part of an interval shows less bias than the
central part. The methods are similar, with a
tendency for that proposed by Fulker et al. (1995) to
be most biassed (and with the largest variance of the
best location estimate) and the approach described
here using all information to be least biassed (with
the smallest variance of estimates over the simula-
tions). In the situation with the more informative
markers (each with eight alleles) for all three

Table 2 Significance thresholds obtained empirically for the three methods. 5% values for a single location and for the
whole chromosome are given

Two alleles at the marker Eight alleles at the marker

Methoda Chromosomal 5% Single location 5%b Chromosomal 5% Single location 5%b

Simple 2.37 1.62 2.52 1.63
Complete 2.39 1.60 2.55 1.63
FCC 2.37 1.57 2.56 1.64

aSimple and complete are the methods proposed in the text, FCC is the approach of Fulker et al. (1995).
bValues obtained for location 0 cM are given.

Fig. 1 Power observed for the three
methods for QTLs simulated at
different locations in the linkage
group. The results from the simple
approach are shown by a solid line,
the complete approach by a dotted
line and the approach of Fulker et al.
(1995) by a dashed line.
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methods the estimate of the QTL location was, on
average, at the simulated position of the QTL (with
standard deviation of 10 cM). With the smaller QTL
effects, the estimates of location were more biassed
because of the reduced power. The differences
between methods, however, were similar to that
observed for the larger QTL effect. An alternative
approach is to take the mean test statistic over all
runs at each location. When considered in this way,
the highest test statistic for all methods was the loca-
tion of the simulated QTL, or at most 1 cM away.
Figure 3 gives the mean estimates for the QTL

variance. The expected value is 0.5. The QTL vari-
ance estimates are consistently highest for the
complete approach described here and intermediate
for that of Fulker et al. (1995). In the situation
where markers had eight alleles all methods gave an
mean estimate over the replicate simulations of 0.51
(with standard deviation 0.13). With QTLs of
smaller effect the overestimate of the QTL variance
was greater, with the methods ranking as for the
larger QTL effect.

Discussion

The three approaches give very similar results in the
simulation study and, as expected, are most similar
with the more informative markers. The location of

the QTL affects the power and parameter estimates
for the three methods in a similar way. The estimate
for the variance of the QTL is generally overesti-
mated for all methods. The selection of the highest
variance estimate obtained in the linkage group
(which by definition must be positive) explains part
of this overestimate and disappears in the situation
with more informative markers. It is not clear that
one method is preferable on these grounds alone.
In all situations all families were included so

comparison was made on exactly the same data. In
practice it might be predicted to be better to omit
families with no informative markers in a linkage
group, as these are not informative about the
presence of a QTL and if the QTL is segregating
within them, they will increase the residual variance.
In a simulation study, however, using the simple
approach, we found that any selection of families,
for example requiring at least one informative
marker, or at least one informative marker in each
parent, did not improve power or the estimates
(results not shown). In fact a loss of power was
observed and an associated overestimate of the QTL
variance, especially when the selection meant a large
decrease in the number of families included in the
analysis.
The methods presented here all use information

from multiple markers and will have the same

Fig. 2 The bias in estimated location
of the QTL for the three methods for
QTLs simulated at different locations
in the linkage group. The results from
the simple approach are shown by a
solid line, the complete approach by
a dotted line and the approach of
Fulker et al. (1995) by a dashed line.
The standard deviations of the loca-
tion estimates vary between 9 cM at
central markers and 20 cM at loca-
tion 10 cM.
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favourable attributes illustrated by Fulker et al.
(1995). That is, they will give unbiassed estimates of
location even when markers differ in their informa-
tion content, and when the QTL is placed in an area
of low information they may increase power.
In conclusion, we present a rapid and simple

means of implementing sib-pair analysis for mapping
of QTLs in outbred populations. Viewing the data in
terms of identity by descent from the male and
female parents separately allows extensions to the
method to account for differences in recombination
between sexes and also to accommodate both full-
and half-sib data. This latter extension will be
particularly important in domestic species, where a
dataset may have large half-sibships and hence
contain very large numbers of half-sib pairs. Exten-
sion to include half-sibs requires that both mean and
variance differences in the distribution of sib-pair
differences be accounted for, but the increase in
power from inclusion of half-sibs can be appreciable
(Hamann & Haley, 1998). The simplicity of this
approach and its easy extension make it an obvious
choice as a means of analysis with this type of data.
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