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Measuring departures from Hardy–Weinberg:
a Markov chain Monte Carlo method for

estimating the inbreeding coefficient
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Many well-established statistical methods in genetics were developed in a climate of severe
constraints on computational power. Recent advances in simulation methodology now bring
modern, flexible statistical methods within the reach of scientists having access to a desktop
workstation. We illustrate the potential advantages now available by considering the problem
of assessing departures from Hardy–Weinberg (HW) equilibrium. Several hypothesis tests of
HW have been established, as well as a variety of point estimation methods for the parameter
f , which measures departures from HW under the inbreeding model. We propose a computa-
tional, Bayesian method for assessing departures from HW, which has a number of important
advantages over existing approaches. The method incorporates the effects of uncertainty about
the nuisance parameters — the allele frequencies — as well as the boundary constraints on f
(which are functions of the nuisance parameters). Results are naturally presented visually,
exploiting the graphics capabilities of modern computer environments to allow straightforward
interpretation. Perhaps most importantly, the method is founded on a flexible, likelihood-based
modelling framework, which can incorporate the inbreeding model if appropriate, but also
allows the assumptions of the model to be investigated and, if necessary, relaxed. Under
appropriate conditions, information can be shared across loci and, possibly, across populations,
leading to more precise estimation. The advantages of the method are illustrated by applica-
tion both to simulated data and to data analysed by alternative methods in the recent
literature.

Keywords: Bayesian statistics, Hardy–Weinberg, inbreeding coefficient, inbreeding model,
Markov chain Monte Carlo, Metropolis–Hastings algorithm.

Introduction

Statistical hypothesis testing for Hardy–Weinberg
(HW) equilibrium has long had an important role
in genetic studies (Haldane, 1954; Rousset &
Raymond, 1995). It has received renewed attention
in recent years (e.g. Guo & Thompson, 1992; Zaykin
et al., 1995), resulting in part from the debate over
population genetics issues in the forensic use of
DNA profiling. Although hypothesis testing provides
some insight into the questions of scientific interest,
it forms only the most basic level of statistical infer-
ence. Tests do not directly measure the size of the
effect: for example, a deviation from HW may be
statistically significant, and yet insignificant in the
everyday sense for the application at hand.

This weakness has long been recognized, and a
number of methods have emerged for obtaining
point estimates of f, a parameter measuring depar-
ture from HW caused by inbreeding. However, such
point estimates are also unsatisfactory for a number
of reasons. First, an investigator will most often be
interested in the distribution of plausible values,
rather than just a (typically imprecise) point esti-
mate. Secondly, standard errors can be attached to
point estimates, but these are of limited value in
connection with estimators having sampling distribu-
tions that may be highly skew and are bounded
below by the requirement that all genotype frequen-
cies be non-negative. Indeed, some point estimation
methods can even produce estimates outside this
bound. Finally, a satisfactory approach to estimation
should allow the assumptions of the inbreeding
model to be assessed and, if necessary, weakened.*Correspondence. E-mail: d.j.balding@reading.ac.uk
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The first attempt to evaluate a probability distri-
bution for a parameter measuring departure from
HW seems to have been that of Lindley (1988). This
paper did not exploit modern computational
methodology and dealt only with diallelic loci, for
which a one-parameter model for deviations from
HW is fully general. For highly polymorphic molecu-
lar genetic markers, a fully general model involves a
distinct parameter for each heterozygous genotype,
such as the fixation indices of Weir (1970) or the
additive disequilibrium coefficients of Hernández &
Weir (1989). Although they can be readily imple-
mented, the data will provide little information for
such highly parameterized models, and the resulting
estimates may be very imprecise.

We do discuss a more general model below, but
focus first on the one-parameter inbreeding model.
We outline some of the current point estimation
methods available for the parameter f, the inbreed-
ing coefficient, and then describe a Markov chain
Monte Carlo (MCMC) method for approximating
the probability density of f based on a sample of
genotypes from the population. We illustrate the
method by applying it to simulated data and to data
analysed by alternative methods in the recent litera-
ture. Next, we describe a method for investigating
the validity of the inbreeding model. Finally, we
discuss combining information over several loci, il-
lustrating this with simulated data and with data
from Samoan individuals at three short tandem
repeat (STR) loci used in forensic work.

Computer programs (in C) for the MCMC
algorithms are freely available from http://www.
reading.ac.uk/1snsbalng/.

The inbreeding model

If inbreeding is expected to be the main cause of any
deviation from HW, the inbreeding model may be
appropriate (for example see Malécot, 1969). This
model is completely general for diallelic loci but, in
the multiallelic case, it cannot account for assorta-
tive mating or for some forms of selection. Under
the inbreeding model, p ij, the relative frequency of
the genotype A i A j, is

p ii = p i( f+(1µf )p i)

p ij = 2p ip j(1µf ), (1)

where p i denotes the frequency of allele Ai, and f is
the inbreeding coefficient. When f = 0, eqn (1) gives
the HW proportions. When f = 1, the maximum
value, heterozygotes never arise. The value of f can
be negative. It is bounded below by the requirement

that the population frequencies of each homozygote
be non-negative, which leads to:

fE
µp min

1µp min

, (2)

where p min is the smallest allele frequency.
The value of f can be interpreted as the correla-

tion between an individual’s two genes at a locus
(for example see Crow & Kimura, 1970). It
measures the deficit (or excess) of heterozygosity
that results from inbreeding (or outbreeding). In
some models for population subdivision, f can be
interpreted as the probability that an individual’s
two genes are identical by descent, in which case it is
constrained to be non-negative.

Point estimation methods for f

Nei & Chesser (1983) discuss an estimator for the
inbreeding coefficient:

f̂nc =
S i (X iiµx2

i )+(1µS i X ii)/2n

(1µS i x 2
i )µ(1µS i X ii)/2n

, (3)

where Xii and xi are the sample frequencies of Ai Ai

genotypes and A i alleles, and n is the number of
individuals in the sample. This estimator is
developed in terms of a subdivided population. In
this setting, the parameter f in a single subpopula-
tion is often denoted FIS.

Robertson & Hill (1984) give an alternative
estimator:

f̂rh =
1

kµ1
+

i A
2(2nµ1)niiµni (niµ1)

2n i (nµ1) B , (4)

where n ii and n i denote the sample counts of A i A i

genotypes and A i alleles, and k is the number of
alleles at the locus.

These estimators do not explicitly take account of
the inbreeding model and may, in the multiallelic
case, give estimates that conflict with the bound (2).
The maximum likelihood estimator under the
inbreeding model does respect this bound. Assuming
random sampling of genotypes, the likelihood is:

P({n ij}| f, p1, . . . ,pk)

= c *
k

i=1

(pi( f+(1µf )p i))nii *
k

j= i+1

(2p ip j(1µf ))nij, (5)

where c is a constant. For k = 2, eqn (5) is readily
maximized (for example, see Weir, 1996, p. 65) to
obtain
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f̂mle = 1µ
2n12 n

(2n11+n12)(n12+2n22)
. (6)

For ka2, the likelihood cannot be maximized
analytically, but numerical methods such as that
given in Robertson & Hill (1984) can be employed,
although problems may arise with iterates going out
of bounds. For the case when the maximum likeli-
hood estimate (MLE) is non-negative, the EM algo-
rithm given in Hill et al. (1995) may be used. More
general mode-finding algorithms are described in
chapter 9 of Gelman et al. (1995).

MCMC method

Although standard errors can be attached to the
point estimators described above, these are of
limited value for estimators with bounded, and
possibly highly skewed, sampling distributions. The
profile likelihood for f (the likelihood function
obtained by setting each nuisance parameter pi

equal to its MLE p̂ i) does provide a measure of the
support given by the data to different possible values
for f, but it ignores uncertainty in the pi.

The nuisance parameter problem can be over-
come by integration over the joint distribution of the
p i, leading to a marginal likelihood for f, which is
also its posterior distribution when the joint prior
distribution for f and the allele frequencies is (multi-
variate) uniform over the range of possible values.
Informative prior distributions, reflecting, for
example, knowledge that f is unlikely to be large or
to be negative, or information about the allele
frequencies from previous studies, can also be
incorporated.

When exact integration is not feasible, approxi-
mate integration can be achieved via one of a range
of stochastic simulation methods known as MCMC
algorithms. These algorithms generate a sequence of
realizations from a specified probability distribution,
which can then be used to approximate properties of
the distribution to any required accuracy. We imple-
ment an algorithm of the Metropolis–Hastings type
(Metropolis et al., 1953; Hastings, 1970; Smith &
Roberts, 1993). Details are given in the Appendix.

Application to simulated data

The solid curves in Fig. 1 show the posterior density
for f from samples of size n = 200 and n = 1000, at
loci with k = 2, k = 6 and k = 15 alleles, simulated
from the inbreeding model with f = 5% and assum-
ing a uniform prior density. Corresponding point
estimates of f are given in Table 1. These are given

for comparison with Fig. 1 only and not to assess the
properties of the point estimators, for which see, for
example, Curie-Cohen (1982).

Note that for k = 2 and n = 200 (Fig. 1a), the
density curve is relatively flat and visibly non-zero
over a large interval, reflecting the fact that there is
little information about f in the data. Fortuitously in
this simulation, the point estimates are around 6%,
close to the true value of f (5%). The posterior
density curve, however, clarifies the level of uncer-
tainty: values for f as small as µ8% and as large as
20% remain plausible based on the data.

When either the number of alleles k or the sample
size n is increased, additional information is avail-
able from the data, which is reflected by sharper
peaks in the density curves (Fig. 1b–f, solid curves).
For these simulations, only in the case k = 15 and
n = 1000 is the hypothesis f = 0 unequivocally
excluded: in the other cases, the density curve is
visibly above zero at f = 0.

If additional data are unobtainable or expensive, a
careful choice of prior distribution for f can be
helpful in narrowing the range of plausible values.
For example, the dashed curve in Fig. 1(a) shows the
posterior probability density for f corresponding to
an informative prior density (shown in Fig. 2), which
reflects a belief that f is likely to be close to zero.
The effect of incorporating this prior information is
almost the same as the effect of increasing the
sample size from 200 to 1000 (Fig. 1b, solid curve).
In some cases, it may be reasonable to assume a
priori that f is non-negative, in which case a simpler
and more efficient algorithm can be implemented,
because the bound (2) does not need to be recalcu-
lated at each iteration.

Each panel in Fig. 1 corresponds to a single data
set. Although there will be some variation among
replicate data sets with the same parameters, the
patterns of increasing precision with greater k and n,
and the effect of an informative prior density, are
broadly unaltered (simulations not shown).

Comparison with analyses from recent literature

Table 2 gives point and interval estimates of f
obtained by Hill et al. (1995) from a sample of size
60 of the human malaria parasite Plasmodium falci-
parum. Corresponding posterior density curves
obtained via the MCMC method with a uniform
prior density are shown in Fig. 3(a). As both
approaches are likelihood based, the two sets of
results do not conflict. However, the MCMC
method is visual, and so immediately interpretable,
reveals the support given to negative values, incor-
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porates exactly the effect of uncertainty about the
nuisance parameters and allows the inclusion of
background information to narrow the range of
plausible values.

Figure 3(b) shows the result of applying the
MCMC method to a sample of n = 8297 Rhesus
genotypes given in fig. 3 of Guo & Thompson
(1992), who used hypothesis testing methods. The
Rhesus locus is a highly polymorphic blood group
genetic marker. Assortative mating with respect to
blood groups is unlikely to occur, and any selection
is thought to be negligible, so that the inbreeding
model may be reasonable. Point estimates for f are
extremely small:

f̂nc = 0.00102, f̂rh = 0.00063, f̂mle = 0.00141,

and the exact-test P-values reported by Guo &
Thompson (1992) are large, exceeding 0.69. Simi-
larly, the posterior density for f indicates that values
close to zero are highly plausible. However, the
MCMC analysis also reveals that values for f in
excess of 1% are consistent with the data, even
though the locus is multiallelic and the sample is
very large.

Note that our analysis assumes that alleles not
present in the sample do not exist in the population
under investigation. If there did exist a very rare
allele not represented in the sample, the bound (2)

Fig. 1 Posterior density curves for the
inbreeding coefficient f , for samples
of size n = 200 and n = 1000, at loci
with k = 2, k = 6 and k = 15 alleles,
simulated from the inbreeding model
with f = 5%. Solid and dashed curves
correspond, respectively, to a uniform
prior and an informative prior for f
(shown in Fig. 2). A uniform prior
was used for the allele frequencies in
each case. Point estimates based on
the same data are given in Table 1.
The density curves are obtained by
applying the density command of the
statistical package S-PLUS to 10 000
values generated by an MCMC algo-
rithm (burn-in length 5000; then
every 50th value retained). See
Appendix for further details.
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would, in effect, restrict f to be non-negative because
pmin would be very small.

Investigating the validity of the inbreeding model

The method thus far developed has concentrated on
estimating the inbreeding coefficient f, the param-
eter of the inbreeding model (eqn 1). For more than
two alleles, a thorough investigation into departures
from HW should also examine the validity of this
model. This can be performed by specifying a more
general model, of which the inbreeding model is a
special case, and examining whether or not the data
support aspects of the general model not consistent
with this special case. A natural extension of the
one-parameter inbreeding model is the fixation
indices model (Weir, 1970) for which genotype
frequencies are

p ii = p 2
i +p i +

j8i

p j f ij

p ij = 2p i p j(1µfij), (7)

where f ij is the fixation coefficient for the hetero-
zygous genotype A i Aj.

For k = 2 alleles, eqn (7) reduces immediately to
the inbreeding model (eqn 1). For ka2, the
inbreeding model is recovered when all the f ij are
equal. Inspecting the posterior densities of the
coefficients f ij will therefore provide an insight into
the validity of the inbreeding model — if the poster-
iors do not overlap to any noticeable degree, the
model may be invalid. For small sample sizes, the
posteriors of the f ij may each support a wide range
of plausible values, so that the fact that they all
overlap may reflect insufficient data to distinguish
competing models rather than strong support for the
inbreeding model. If the model does appear unsuit-
able, the posteriors of each f ij that have been
obtained may be used to infer the nature of depar-
tures from HW. Note that the lower bound of each
f ij is a function of the corresponding allele frequen-
cies, which can complicate within-sample compari-
sons in the event that negative values are highly
supported. An MCMC method for obtaining
posterior densities for the fixation indices is detailed
in the Appendix.

Combining information over loci

We noted from Fig. 1(a) that estimation of f when
n = 200 and k = 2 is very imprecise. If deviations
from HW are caused predominantly by inbreeding,
then f should be approximately constant over loci. In
this case, sharper estimation can be obtained by

Table 1 Nei & Chesser (1983), Robertson & Hill (1984)
and maximum likelihood estimates of the inbreeding
coefficient f, for data sets of size n = 200 and n = 1000,
with k = 2, k = 6 and k = 15 alleles, simulated from the
inbreeding model with f = 5%

k n f̂ nc f̂ rh f̂ mle

2 200 0.0613 0.0615 0.0588
2 1000 0.0371 0.0372 0.0366
6 200 0.0804 0.0566 0.0488
6 1000 0.0508 0.0263 0.0312

15 200 0.0558 0.0372 0.0489
15 1000 0.0515 0.0492 0.0539

The (population) allele frequency vectors (in %) were
(25,75), (2,6,7.5,8.5,21,55) and
(1,1,2,3,3,4,4,4,5,6,9,10,12,17,19).

Fig. 2 Prior density curves corre-
sponding to the dashed curves of
Fig. 1.
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pooling together information from different loci.
There may also be situations in which it is reason-
able to assume that f has the same value in different
populations, in which case information could also be
shared across populations.

The five dashed curves in Fig. 4 show posterior
densities for f evaluated from samples of size
n = 200 simulated with f = 5% at each of five loci.
The solid curve shows the posterior density evalu-
ated for all five loci assuming a common value of f.
The prior density is uniform for each curve, and the
likelihood for the combined data is given by the
product of the likelihoods for each locus. This
assumes independence of genotypes at different loci,
given the value of f, which would be inappropriate in
the presence of gametic disequilibrium or genotypic
association.

Notice that the five dashed curves in Fig. 4 all
overlap substantially: if this did not occur, it would
suggest that the assumption of constant f is invalid.
As expected, the solid curve has a higher peak than
any of the dashed curves, indicating that more
precise estimation is obtained by pooling informa-
tion from the five data sets.

Hill et al. (1995) combine the information from
the MSP-1 and MSP-2 loci to obtain an overall point
estimate of 24%. Their corresponding interval is
9–39%, narrower than either of the single-locus
intervals given in Table 2. Similarly, the posterior
density curve for the combined data based on a
uniform prior density (not shown) is more sharply
peaked than either of the single-locus curves shown
in Fig. 3(a).

Application to Samoan data

The dashed curves of Fig. 5 show the result of apply-
ing the MCMC methods outlined above to data
from three STR loci (THO1, TPOX and CSF1PO)
for a sample, collected in forensic work, of 143
Samoans resident in New Zealand. Six alleles were

Table 2 MLE of f, and intervals in which the
log-likelihood is within two of the maximum value, based
on a sample of size 60 of the human malaria parasite
Plasmodium falciparum (taken from table 3 of Hill et al.,
1995)

Locus k MLE Interval

MSP-1 3 15% 0–35%
MSP-2 2 39% 14–61%

Fig. 3 Posterior density curves for f for (a) the Plas-
modium falciparum data of Hill et al. (1995) and (b) the
Rhesus data given in Guo & Thompson (1992). Details of
the MCMC algorithm used to obtain these curves are the
same as for the solid curves of Fig. 1.

Fig. 4 Posterior density curves for f
from each of five simulated single-
locus data sets with k = 2, n = 200
and f = 5% (dashed curves) and from
the combined data assuming f
constant over loci (solid curve). Each
prior density is uniform.
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observed at each locus in the data set, although
additional alleles are known to exist at these loci in
other populations. As for the Rhesus locus
considered earlier, our analysis assumes that alleles
not represented in the sample do not exist in the
Samoan population.

The fixation coefficient model yielded posteriors
for each f ij that were diffuse and overlapped
substantially. (Uniform prior densities were used for
the f ij.) The inbreeding model may, therefore, be
reasonable for these data. Moreover, the dashed
curves of Fig. 5 overlap substantially, supporting a
common value for f at the three loci. The solid curve
represents the posterior density for f obtained by
combining the data over the three loci, again assum-
ing a uniform prior density for f.

The data support a large range of plausible values
over the three loci, from about µ3% to more than
20%. Combining information over the three loci
results in some improvement in estimation, with the
plausible range being narrowed to, say, 0–14%, and
with values between 3% and 8% now being highly
supported. Further improvement could be obtained
by implementing an informative prior for f.

Discussion

The most obvious advantage of the MCMC
method outlined here, compared with traditional
approaches, is that results are represented visually in
terms of posterior density curves and are thus
readily interpretable. The method also has the
advantage of allowing the scientist to incorporate
background information if desired, thus reducing the
amount of direct data required. The method is flex-
ible and readily implemented. As well as being

useful in practice, the method is also well supported
in statistical theory: there are compelling reasons to
support the view that uncertainty about an unknown
parameter should, if possible, be described by its
probability distribution (Smith & Bernardo, 1994).

Figure 1 shows that large ranges of plausible
values often arise, particularly when few alleles can
be distinguished and/or the sample size is small. The
MCMC method highlights the resulting uncertainty
in a direct and visual manner, making it preferable
to point estimation methods. Figure 1 also shows
that sharper estimation can be achieved by incor-
porating prior knowledge about the parameter, if
desired. Alternatively, or in addition, estimation may
be improved by combining information across loci
(Fig. 4).

The likelihood basis of the method makes it very
flexible, allowing investigation of the validity of the
inbreeding model. If the model does not appear
reasonable, the posteriors of the fixation indices f ij

may be used to quantify the departure from HW
indicated by the sample.
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Appendix: Details of MCMC algorithms

The general Metropolis–Hastings algorithm generates a sample from a probability distribution g (x), by
constructing a Markov chain X 1, . . . , X t, . . . whose stationary distribution is g (x). At step t, a proposed value x p
for X t is chosen from a distribution with probability density denoted by q (x p| x), where x = X tµ1, the current
state. The proposed value is accepted with probability

min A
g (x p)q (x | x p)
g (x )q (x p| x)

, 1B . (8)

The key feature of the algorithm is that g (x) need not be fully specified — the normalizing constant is not
required. For Bayesian analyses, g (x) can be expressed as the product of the prior and the likelihood, without
evaluating the denominator of Bayes’s rule, and even the prior distribution need only be specified up to a
constant of proportionality. See Smith & Roberts (1993) for further details.

For the application to the inbreeding model, each X is a vector consisting of values for f and the p i, and g (x)
is the joint posterior distribution of this vector given the sample genotype counts (n11, . . . , nkk). The specifica-
tion of the proposal distribution q is complicated by the fact that the allele frequencies must sum to one. We
update the allele frequencies in pairs, say p u and p v, with u and v chosen randomly at each iteration. A
proposal value p pu is chosen uniformly and randomly between max(0,p uµe p) and min(p u+ep, pu+p v), and then
p pv is set equal to p u+p vµp pu. The (positive) value of e p is chosen to obtain reasonable acceptance rates:
if e p is too large, the value of eqn (8) will usually be very small, leading to a chain that ‘sticks’ too much in
one place and, hence, converges slowly; if too small, the chain will make frequent but very small moves and
again converge slowly (for example, see Hastings, 1970).

Next, a proposal value f p is chosen uniformly and randomly in the interval

A max A
µp pmin

(1µp pmin)
, fµe fB , min( f+e f , 1)B ,
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where f denotes the current value. Because the lower bound in selecting f p is a function of p pmin rather than
p min, it may occur that the left limit of this interval exceeds the right limit. Setting e fak 2e p/[(kµ1)(kµ1µke p)]
avoids such problems and ensures irreducibility of the Markov chain, which is required for guaranteed
convergence of the algorithm, for example see Smith & Roberts (1993).

The starting position of the chain can be chosen arbitrarily. For the simulations discussed here, we found it
acceptable to generate starting values from the prior distributions. We found that a ‘burn-in’ of 5000 iterations
adequately reduced the dependence of the output on the starting point. Output was recorded at every 50
iterations, which reduced serial correlation to a satisfactory level.

For the application to the fixation indices model, complications arise because of the dependence between
allele frequencies and the f ij. For example,

1µ
1

2 p i p j

Rf ijR1 (9)

must be satisfied for all i and j. Problems may be encountered when a proposed allele frequency invalidates
some current f ij values. If the sample size is not too small, the error arising by setting the allele frequencies
equal to the sample values is negligible. Because small sample sizes may in any case fail to provide sufficient
information for model discrimination, we make this assumption here, thus simplifying the algorithm by
sidestepping the difficulties described above. The probability distribution g (x) is therefore the joint posterior
distribution of the f ij given (n 11, . . . , nkk) and the sample allele frequencies.

The updating of the f ij is further complicated by the following constraints

µp iR +
j8i

p j f ijr
1

pi

µp i , (10)

for all i. We, therefore, update a single (randomly selected) parameter, f uv say, with the proposed value
f puv being chosen uniformly and randomly between the bounds

max A
µp u+p v f uvµ+

j8u

p j f uj

p v

, 

µp v+p u f uvµ+
i8v

p i f iv

p u

, f uvµe, 1µ
1

2p u p vB
and

min A
p µ1

u µp u+p v f uvµ+
j8u

p j f uj

p v

, 

p µ1
v µp v+p u f uvµ+

i8v

p i f iv

p u

, f uv+e, 1B ,

where f ij denotes the current value and e can be chosen to ensure reasonable acceptance rates.
The starting position of the chain can again be chosen arbitrarily, provided that the constraints (9) and (10)

are satisfied. Randomly generating starting values for each f ij uniformly and independently between 0 and 1/k
is acceptable. A ‘burn-in’ of 20 000 iterations was used, and output was recorded every 100 iterations.
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