
            

Heredity 80 (1998) 56–61 Received 20 December 1996

Bootstrap variance of diversity and
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We have recently proposed new estimators of the parameters of genetic diversity and differ-
entiation and of their variances for a haploid locus in a population subdivided into a large
number of subpopulations, with a two-stage sampling of populations and individuals. Here they
are compared with bootstrap estimators. Several resampling methods are evaluated: sampling
of populations only, individuals within populations only, or both. Theoretical results and a
numerical example show that the most appropriate bootstrap variance estimators are obtained
by resampling the populations alone and not both populations and individuals. However, some
bias is apparent in the bootstrap methods, and the direct estimators proposed previously
should therefore be preferred.
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Introduction

Resampling techniques are becoming widely used to
assess confidence in phylogenetic reconstructions as
well as in population genetics (Crowley, 1992).
Indeed, direct analytical derivations of the appro-
priate variances can be extremely complex, and
resampling techniques then provide rapid assess-
ments of the precision of the studied statistics.

In particular, a variety of resampling methods
have been used to detect genetic differentiation
among populations (Crowley, 1992). To test whether
there is a significant genetic structure, permutation
procedures can be used where individuals are
shuffled at random among populations, while
keeping the sample sizes the same as in the original
analysis (Palumbi & Wilson, 1990; Excoffier et al.,
1992; Hudson et al., 1992). These methods do not
replace the need to evaluate the precision of the
measures of differentiation, such as FST (Wright,
1951; Weir & Cockerham, 1984) or GST (Nei, 1973;
Pons & Petit, 1995). For multilocus isozyme data, a
confidence interval can be obtained by jackknifing or
bootstrapping over loci, as suggested by Weir (1990).
But Van Dongen (1995) recently concluded that in
general, resampling over individuals should be

preferred to resampling over loci, because the allele
frequencies for the different loci are usually esti-
mated from the same individuals and are therefore
not independent. Resampling over individuals also
has the advantage that the precision of the differen-
tiation at each locus can be estimated, which allows
for the possibility of detecting aberrant loci when
several are available (McDonald, 1994) or of study-
ing single-locus data, such as data based on mito-
chondrial or chloroplast DNA.

However, for estimators of diversity whose
precision is affected by both sources of variation
(sampling of individuals and of populations), it is
unclear what sampling to use for the bootstrap.
Several types of resampling have been used so far in
the literature: for instance, Petit et al. (1993) used
the two-stage bootstrap which mimics the original
sampling, whereas Prout & Barker (1993) used a
bootstrap with only the populations as units of
resampling.

To decide between these alternative types of
sampling, a satisfactory solution would be to
compare the simulated bootstrap estimates with the
analytically derived direct estimates. This seems
important because, as outlined by Crowley (1992,
p. 431), ‘bootstrapping may have been swept into the
mainstream of ecological and particularly evolutionary
research somewhat ahead of a full, balanced evalu-*Correspondence. E-mail: remy@pierroton.inra.fr
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ation of its capabilities, and shortcomings’. This
analytical treatment, which considers both the
sampling of individuals and the sampling of popula-
tions, is now available for a haploid and a diploid
locus as well as for ordered alleles (Pons &
Chaouche, 1995; Pons & Petit, 1995, 1996). The
usual but sometimes implicit assumption is made
that the observed populations are independent,
which is both a genetic and a sampling assumption
(for further discussion on this topic, see Nei, 1986;
Pons & Petit, 1996). The same assumption is
required in the uniform resampling methods, such as
the bootstrap discussed here. We also assume that
the number of sampled populations is large but
nevertheless much smaller than the total number of
existing populations.

We will use these results to illustrate that, in
complex situations, it is necessary to ascertain
whether bootstrap simulations yield the required
estimates or not. Although two-stage bootstrap
methods have been studied in the case of a finite
number of finite populations drawn with replace-
ment (Rao & Wu, 1988; Sitter, 1992), no results are
known for a large number of populations and data
sampled without replacement (in the original data
sampling scheme). Here, three situations will be
considered: sampling of individuals only, of popula-
tions only, and of both. We will present the exact or
approximate bootstrap estimators and will compare
them to the direct estimators obtained analytically in
Pons & Petit (1995) and which will be referred to
simply as the ‘direct estimators’.

These results will be illustrated using data on
isozyme polymorphism in sessile oak (Zanetto &
Kremer, 1995). The comparison of the bootstrap
estimators with the corresponding bootstrap simu-
lated values will provide an evaluation of the
approximations we used in the analytical derivations
of the variances.

Bootstrap estimation

We consider a total population subdivided into a
large number of independent populations and in
which I alleles are segregating at a haploid locus.
For this situation, diversity and differentiation para-
meters were defined in Pons & Petit (1995). In
particular, the diversity hk of the kth population is
given in their eqn 1, the average within-population
diversity hS in eqn 2, the total diversity hT in eqn 3
and the differentiation parameter GST in eqn 4. A
two-stage random sampling is used to estimate these
parameters: n independent populations are drawn
with the same probability from the general popula-

tion, then nk individuals are drawn independently
and uniformly from the kth population. Within the
kth population, the proportion xki of individuals
having the ith allele is observed, corresponding to an
unknown frequency pki. Estimators of the parameters
are defined in Pons & Petit (1995) as ĥk, ĥS, ĥT and
ĜST by their eqns 5, 6, 9 and 10.

Here, we study three different bootstrap sampling
procedures for estimating the variance of ĥS, ĥT and
ĜST. We also study the within- and between-popula-
tion components of these variances, which will be
useful for understanding what is estimated under
each resampling scheme. The first bootstrap method
is a resampling of the individuals in the observed
populations: in the kth population, nk individuals are
drawn uniformly and with replacement from the
initial sample of the kth population. In the second
resampling procedure, only the populations are
drawn: a bootstrap sample is obtained by drawing
uniformly n populations with replacement from the
observed set of populations, then by taking the
initial observed values for each sampled population.
The third bootstrap procedure corresponds to a two-
stage bootstrap resampling: n populations are
sampled uniformly and with replacement from the
observed set of populations and, whenever the kth
population is selected, nk individuals are drawn
uniformly and with replacement from its initial
sample.

For the vth bootstrap resampling procedure
(v = 1, 2 or 3) and for a parameter y, which will here
be hS, h T or GST, the bootstrap estimator ŷ*(v) of y is
the mean, under the bootstrap resampling distribu-
tion and conditionally on the observed variables, of
the variable y*(v) defined in the same way as the
direct estimator ŷ but for the vth bootstrap variable
(Efron & Tibshirani, 1993). The bootstrap estimator
Var̂*(v)(ŷ) of the variance of ŷ is the variance of
y*(v), under the vth bootstrap resampling distribution
and conditionally on the observed variables. Because
the resampling distributions are multinomials with
parameters depending on the observed variables, the
bootstrap estimators ŷ*(v) and Var̂*(v)(ŷ) are functions
of the proportions of individuals having each allele
in the different populations, when bootstrapping
within the populations, and of the sample sizes nk

and n. Here, we give the expressions of these boot-
strap estimators without proofs, which may be
obtained from the second author (Pons, 1997). We
will need the following biased estimators of hS and
hT, where x• i = nµ1 Sk xki :

h̃S = nµ1 +
k A1µ+

i

x 2
kiB, h̃T = 1µ+

i

x 2
• i . (1)
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According to each multinomial bootstrap distribu-
tion, we get for hS the three bootstrap estimators:

ĥ *S,(1) = ĥ *S,(3) = h̃S, ĥ *S,(2) = ĥ S . (2)

For hT, we have

ĥ *T,(1) = ĥ T , ĥ *T,(2) = ĥ *T,(3) = h̃T. (3)

The three bootstrap estimators of GST are therefore
biased. If the number n of sampled populations is
large, as is recommended to reduce the total vari-
ance of the estimates (Pons & Petit, 1995), ĥS2h̃S

and ĥT2h̃T, and the three procedures give similar
results.

Before considering the bootstrap estimation of the
variances, we define Ek and Vark as the expectation
and the variance under the multinomial distribution
of parameters nk and pki in the k th population. For
hS, the three bootstrap variances are

Var̂*(1) (ĥS) = nµ2 +
k

Var̂k (ĥk), (4)

Var̂*(2) (ĥS) = nµ2 +
k

(ĥkµĥS)2, (5)

Var̂*(3) (ĥS) = nµ2 +
k

(Êk (ĥ2
k)µĥ2

S). (6)

In eqn (4), Var̂k (ĥk) is the estimated variance of ĥk,
within the k th population. It has the same form as
Vark (ĥk) given by Pons & Petit (1995) but with x ki

instead of pki. This is then a biased estimator of the
within-population variance of ĥS. Comparing eqn (5)
to eqn 12 in Pons & Petit (1995), it appears that the
second bootstrap variance is an estimator of the
total variance of ĥS instead of an estimator of the
between-population variance as could have been
expected when populations alone are drawn.
In eqn (6), Êk (ĥ 2

k) is an estimator of Ek

(ĥ 2
k) = Vark (ĥk)+h2

k obtained by replacing pki with
x ki, i.e. Êk (ĥ 2

k) = Var̂k (ĥk)+h̃ 2
k. This bootstrap vari-

ance is therefore a biased estimator of the sum of
the within-population and total variances of ĥS.

Closed forms of the bootstrap variance of ĥT are
more complicated and we use the same approxima-
tions as in Pons & Petit (1995) for large n. The
three bootstrap variances of ĥT are then approxi-
mated, up to the order nµ2, as

Var̂*(1)(ĥT)24nµ2G+i

x2
• i +

k

n µ1
k xkiµ+

ij

x • i x• j +
k

n µ1
k xki xkjH,

(7)

Var̂ *(2) (ĥT)24nµ2 +
ij

x • ij x • j +
k

(x kiµx • i)(x kjµx • j), (8)

and

Var̂ *(3) (ĥT)24nµ2 +
ij

x • i x• jÅ

G +
k

(x kiµx • i)(x kjµx • j)µ+
k

n µ1
k x ki x kjH

+4nµ2 +
i

x 2
• i +

k

nµ1
k x ki. (9)

For the first bootstrap variance of ĥT, the right-hand
side of eqn (7) is an estimator of Varintra (ĥT), the
within-population variance of ĥT given by eqn 14 in
Pons & Petit (1995), but nkµ1 in Varintra (ĥT) is now
replaced by nk. Thus, it is biased and it may differ
substantially from the direct estimator for small
population sample sizes. If the sample sizes of the
bootstrap populations are modified and set to nkµ1
for the k th population, the bootstrap estimator of hT

is still ĥT and its bootstrap variance estimates the
within-population variance of ĥT. By a comparison
of our direct estimators of Var (ĥT), we can see that
the right-hand side of eqn (8) is an estimator of the
total variance of ĥT. This is therefore also the case
for the second bootstrap variance estimator. Finally,
by the third procedure the estimated bootstrap vari-
ance is approximately the sum of the total and
within-population bootstrap variances of ĥT.

We get similar results for the bootstrap estima-
tors of the covariance between ĥS and ĥT, Cov̂*(v) (ĥS,
ĥT). Thus, the bootstrap procedures provide estima-
tors of the variance matrix of (ĥS, ĥT) when sampling
the populations alone, and of its within-population
variance when sampling only the individuals. Such
results also hold for ĜST, and in particular the boot-
strap estimator of its variance is approximately

(̃hT)µ2 Var̂*(2) (ĥS)µ2ĥS(̃hT)µ3 Cov̂*(2) (ĥS, ĥT)

+ĥ 2
S(̃hT)µ4 Var̂*(2) (ĥT).

If n is large, this expression is close to the direct
estimator of Var (ĜST) defined by Pons & Petit
(1995). However, for small n, the bias of this boot-
strap estimator will become apparent and the direct
estimation is preferable.

Numerical example

The data set originates from a large study of gene
diversity of sessile oak (Quercus petraea (Matt.)
Liebl.) in Europe using several isozyme markers
(Zanetto & Kremer, 1995). A total of 81 popula-
tions were sampled over most of the European
range of this species. We selected a single locus
(acid phosphatase, EC 3.1.3.2). Sessile oak is a
diploid species and a total of five alleles and 12
genotypes were detected at this locus in the survey.
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For the purposes of illustrating the approach
described in this paper, all the analyses are made at
the genotypic level, where each genotype is equiva-
lent to an allele in a haploid locus. Alternatively,
Hardy–Weinberg equilibrium could have been
assumed, to consider the data as haploid. This has
no consequence in regard to the question studied
here.

The mean number of individuals per population is
114.6, for a total of 9281 individuals analysed.
Alleles 2 and 4 are largely predominant, and geno-
types 22, 24 and 44 make up 98 per cent of all
genotypes found. In Table 1, simulated bootstrap
estimates of the three parameters are compared with
the direct estimates (Pons & Petit, 1995). In accord-
ance with the theoretical results presented
previously, bootstrapping over individuals only
provides an unbiased estimate of hS but a biased one
for hT, and bootstrapping over populations only
provides a biased estimate of hS and an unbiased
one for hT, whereas the two-step bootstrap provides

biased estimates for both hS and hT. All bootstrap
estimates for GST are therefore biased.

In Table 2, we computed total, inter- and intra-
population variances for the estimates of hS, hT and
GST, following the method of Pons & Petit (1995).
The estimators of hS and hT have similar variances
but the estimate of GST (which directly derives from
the other two parameters) is less precise. These esti-
mates are then compared to those obtained by a
bootstrap procedure, either empirically (1000 boot-
strap simulations) or using eqns (4–9). The three
types of bootstrap were considered, as discussed
above. Overall, the bootstrap estimates are in excel-
lent agreement with the results obtained in the
simulations (Table 2). Hence, the approximations
(7–9) are acceptable in this example. The same
approximations led to the expression of Varintra (ĥT),
Varinter (ĥT), Covintra (ĥS, ĥT) and Covinter (ĥS, ĥT) in
Pons & Petit (1995). By analogy, these expressions
must also be sufficiently precise. The comparison of
the variances obtained using either bootstrap
(through simulations or estimations) or direct esti-
mates clearly shows that a two-step bootstrap yields
the sum of the total and intrapopulation variances
instead of the total variance, in agreement with the
theory developed in the previous section. Moreover,
the bootstrap over populations gives estimates of the
total variances (and not of the interpopulation vari-
ances). Finally, the bootstrap over individuals does
estimate the intrapopulation variance, though it
appears to give an inflated estimate in the case of
GST.

Because the population sample sizes are large, the
bootstrap over individuals is not greatly modified by
the sampling of nkµ1 individuals instead of nk, as
proposed above (results unchanged for Var(ĥT) for

Table 1 Direct estimates and bootstrap simulated
estimates of the parameters (using 1000 bootstrap
samples). The direct estimates are ĥS, ĥT and ĜST (Pons &
Petit, 1995) and the biased estimates are h̃S, h̃T given by
eqn (1) and G̃ST = 1µh̃S/̃hT

hS hT GST

Direct estimates Unbiased 0.6305 0.6491 0.0286
Biased 0.6249 0.6488 0.0368

Bootstrap simulations Individuals 0.6250 0.6492 0.0373
Populations 0.6306 0.6488 0.0280
Pop.+Ind. 0.6252 0.6490 0.0367

Table 2 Direct and bootstrap variance estimatesÅ104 of gene diversity estimates
for the complete data set (using 1000 bootstrap samples)

ĥS ĥT ĜST

Direct estimates Variance intrapop. 0.074 0.053 0.051
Variance interpop. 0.119 0.121 0.338
Total variance 0.193 0.174 0.388

Bootstrap procedure Method

Individuals Simulation 0.083 0.058 0.077
Estimation 0.079 0.056 0.073

Populations Simulation 0.184 0.166 0.361
Estimation 0.191 0.172 0.373

Pop.+Ind. Simulation 0.257 0.236 0.452
Estimation 0.270 0.228 0.456
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the bootstrap over individuals: 0.058Å10µ4 by both
methods). Another example was studied using a
subset of the complete data set where 20 individuals
were selected at random and without replacement in
each of the 81 populations. Direct and bootstrap
variance estimates were then computed as before.
The results indicate that, with this sample size, the
procedure of bootstrapping over individuals no
longer provides a good estimate of the intrapopula-
tion variance of GST (Table 3). Hence, we recom-
mend the use of the direct analytical estimates in
these situations.

Conclusion

Resampling procedures, as emphasized by Crowley
(1992), are often used without being validated,
especially in the field of population genetics.
Although seemingly appealing, intuitive resampling
procedures that mimic the sampling of individuals
and populations may turn out to be misleading.
Here we have shown that the bootstrap variance
estimators of ĥS, ĥT and ĜST are obtained by resam-
pling over populations only, instead of over both
populations and individuals. Nevertheless, we
recommend rather the use of the direct estimators
(Pons & Petit, 1995) that we have indirectly vali-
dated here. These estimators do not require the
computing time necessary for resampling procedures
and they are unbiased.
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