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Detecting linkage disequilibrium between a
polymorphic marker locus and a trait locus in

natural populations
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A novel statistical model was developed to test for linkage disequilibrium between a polymor-
phic genetic marker locus and a locus underlying a quantitative trait (QTL) in natural popula-
tions using principles of analysis of variance of unbalanced data and analysis of regression
involving data of non-normal distribution. Powers of these statistical tests are formulated as
functions of census population size, allelic frequencies at the marker locus and the trait locus,
additive and dominance effects at the QTL as well as the coefficient of linkage disequilibrium.
Theoretical predictions of the power are validated by extensive Monte Carlo simulations.
Among all these factors examined, the amount of the disequilibrium and the size of effect of
the QTL are of most importance in determining the power, and the dominance and the allele
frequencies at the two loci have substantial effects on the power. Numerical analyses based
upon the theoretical calculations and simulation studies favour use of regression of the number
of marker alleles on the trait phenotypes as a measure of detection of linkage disequilibrium.
Theoretical analysis is also performed to investigate robustness of the formula for predicting
the variance of the regression coefficient, which requires normality of the regression variables,
whereas normality may not be strictly warranted.

Keywords: linkage disequilibrium, marker, QTL, statistical power.

Introduction

Linkage disequilibrium has been of great value in
two areas of theoretical genetics studies: mapping
quantitative trait loci (QTL) (Lander & Schork,
1994) and marker-assisted selection (MAS) (Lande
& Thompson, 1990). In principle, the objectives of
QTL location and MAS could be essentially
achieved by detecting significant linkage disequi-
librium between genetic loci affecting quantitative
variation and polymorphic genetic marker loci as the
first step.

Many researchers have focused on statistical
methods for detecting the presence of or estimating
the coefficient of linkage disequilibrium between two
or more loci, at each of which there may be two or
more alleles segregating. Hill (1974) developed like-
lihood-based procedures for estimating the coeffi-
cient of linkage disequilibrium between two loci in a

finite random mating population. Brown (1975)
established a theoretical framework for the sample
sizes required to detect the disequilibrium by the use
of data on gametic and zygotic frequencies. When
there are multiple alleles segregating at the loci, a
statistical procedure was suggested in Weir &
Cockerham (1978) for calculating the power of
testing the linkage disequilibrium. Furthermore,
Weir (1979) presented a comprehensive discussion
of the efficiency of using different sorts of data and
statistical strategies from which linkage disequi-
librium could be detected or estimated. These
theories or techniques for inferences about linkage
disequilibrium are, however, restricted to the
circumstance where gametic or genotypic frequen-
cies are observed directly.

The difficulties encountered in modelling linkage
disequilibria involved with quantitative trait loci are
mainly caused by the unavailability of genotypic data
on the traits. Hill & Robertson (1966, 1968) demon-
strated the predictability of the expected dynamics*E-mail: zwluo@ms.fudan.sh.cn
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of linkage disequilibrium between a pair of linked
QTLs in finite populations with or without selection.
Since the abundance of genetic polymorphisms at
the DNA molecular level was discovered in nearly
all organisms, many statistical methods have been
suggested for detecting linkage disequilibrium
between a quantitative trait locus and a genetic
marker locus segregating in populations with various
structures (Soller & Genizi, 1978; Luo, 1993; Knott,
1994; Le Roy & Elsen, 1995). In these studies,
linkage disequilibria between a QTL and a marker
locus were assumed to be generated by hybridization
between inbred lines or strains, i.e. the putative
QTL was linked to the marker locus.

In addition to hybridization, linkage disequi-
librium between a pair of loci can be produced by
random drift, mutation, selection, merging of popu-
lations and by nonrandom mating, although the
magnitude of the disequilibrium is maintained by
the recombination frequency between the loci (e.g.
Hartl & Clark, 1989). The aim of this paper is to
develop two theoretical procedures with generality
for detecting linkage disequilibrium between a QTL
and a genetic marker locus and for formulating the
statistical powers of the relevant statistical tests.
Numerical analyses based upon intensive simulation
studies are used to illustrate the validation of theo-
retical analyses and to confirm the accuracy of theo-
retical predictions.

Model

The method involves analysing a population of
census size n. Two autosomal loci are assumed: one
affects a quantitative trait (QTL) whereas the other
is a codominant marker which has no direct effect
on the trait. The two alleles are denoted by M and
m at the marker locus and by A and a at the QTL.
The phenotype of the trait (Z) is assumed to have
an enviromental variance s2

e and to be normally
distributed, although this is only necessary where
stated. Three genotypes at the QTL, say AA, Aa and
aa, are assumed to affect the quantitative trait by d,
h and µd, respectively. The frequencies of M and A
in the population are denoted by p and q, respec-
tively. Genotypic value at the marker locus is
denoted by T which is the number of alleles M.

The distribution of the QTL genotypes within
each of three possible marker genotypes is illus-
trated in Table 1, where Q (or R) is the frequency of
allele A at the QTL among chromosomes carrying M
(or m), which is a function of allelic frequencies at
the marker and QTL and the linkage disquilibrium
between the two loci, say for example D. The rela-

Ta
bl

e
1

D
is

tr
ib

ut
io

n 
of

 g
en

ot
yp

es
 a

t 
th

e 
m

ar
ke

r 
lo

cu
s 

an
d 

Q
T

L
. p

is
 t

he
 f

re
qu

en
cy

 o
f 

m
ar

ke
r 

al
le

le
 M

, a
nd

 Q
(o

r 
R

) 
re

pr
es

en
ts

 t
he

 f
re

qu
en

cy
 o

f 
al

le
le

 A
at

th
e 

Q
T

L
 a

m
on

g 
ch

ro
m

os
om

es
 c

ar
ry

in
g 

th
e 

m
ar

ke
r 

al
le

le
 M

(o
r 

m
);

 d
an

d 
h

ar
e 

ad
di

tiv
e 

an
d 

do
m

in
an

ce
 e

ff
ec

ts
 a

t 
th

e 
Q

T
L

M
ar

ke
r 

ge
no

ty
pe

s
M

M
M

m
m

m

G
en

ot
yp

es
 a

t 
Q

T
L

A
A

A
a

aa
A

A
A

a
aa

A
A

A
a

aa
F

re
qu

en
ci

es
 (

f ij
)

p2 Q
2

2
p2 Q

(1
µ

Q
)

p2 (1
µ

Q
)2

2
p(

1µ
p)

Q
R

2
p(

1µ
p)

(Q
+

R
µ

2Q
R

)
2

p(
1µ

p)
(1

µ
Q

)(
1µ

R
)

(1
µ

p)
2 R

2
2(

1µ
p)

2 R
(1

µ
R

)
(1

µ
p)

2 (1
µ

R
)2

G
en

ot
yp

ic
 v

al
ue

s
d

h
µ

d
d

h
µ

d
d

h
µ

d

LINKAGE DISEQUILIBRIUM IN A TWO-LOCUS MODEL 199

© The Genetical Society of Great Britain, Heredity, 80, 198–208.



tionships among Q, R and D can be derived by
simple algebra: Q = q+D/p, R = qµD/(1µp) and
D = p(1µp)(QµR).

It must be noticed that the theoretical model
described in Table 1 implies random union of
gametes with respect to the genotypes at both the
marker locus and the QTL.

Theoretical analyses

The statistical model for the kth individual with the
jth QTL genotype and the ith marker genotype in
the population can be written as follows

yijk = m+b i+w ij+e ijk, (1)

where m is the population mean, b i is the effect of
marker genotype i, w ij is the effect of the j th QTL
genotype within the ith marker genotype, and e ijk is
the residual effect whose distribution is normal with
mean zero and variance s 2

e. The residual variance
accounts for variation of polygenes which are in
linkage equilibrium with the marker and for the
environmental variation. Under model (1), the
population can be analysed by either of following
procedures.

Analysis of variance

In model (1), the between- and within-marker geno-
type effects might be regarded as random effects
(e.g. Jayakar, 1970; Hill, 1975), and then it can be
worked out that the expected variance component
between the marker genotypes is

s2
b =

D 2

p(1µp) Gd 2+C1µ4q+
2(D2+2pq(qµpq))

p(1µq) Dh2

+2(1µ2q)dhH (2.1)

and the expected within-marker genotype variance
component is

s 2
w = C qµ

D 2+pq(qµpq)

p(1µq) DÅ

Gd2+C1µ2q+
2(D2+pq(1µpq))

p(1µq) Dh2+2(1µ2p)dhH.

(2.2)

It has been shown that expected mean squares in
the analysis of variance model with random effects
could be biased downwards because of a highly
unbalanced hierarchical structure of the data (Soller

& Genizi, 1978; Luo, 1993; Knott, 1994). An
assumption of fixed QTL effect has already been
widely made in these studies and in Knapp &
Bridges (1990).

Under the fixed model of the QTL effect, it can
be readily shown that the between-marker genotype
effects are

b1 =
2D [pdµ(Dµp+2pq)h]

p 2
(3.1)

b2 =
D [(1µ2p)d+(2D+(1µ2p)(1µ2q))h]

p(1µp)
(3.2)

b3 =
µ2D [(1µp)d+(D+(1µp)(1µ2q))h]

(1µp)2
. (3.3)

The eqns (2) and (3) illustrate that under either
the random or fixed model of the QTL effect, signi-
ficant variation between the marker genotypes in the
QTL effect is an indicator of the presence of linkage
disequilibrium between the marker and QTL. The
expected mean squares between and within marker
genotypes under the fixed model are given in
Appendix I.

Regression analysis

Lande & Thompson (1990) suggested the use of
regression of phenotypic records of the quantitative
trait on the number of alleles of marker loci as a
marker score in a selection index of marker-assisted
selection of a quantitative trait. In the present
model, the regression coefficient is

b =
D [d+(1µ2q)h]

p(1µp)
. (4)

It is clear that significance of the regression coeffi-
cient can be used to infer the presence of linkage
disequilibrium. A statistical test of significance of the
regression coefficient requires its variance. When
the two variables (i.e. Z and T in the present
context) involved in the regression analysis are
normally distributed, the variance of the regression
coefficient is simply calculated as

s 2
b =

(1µr2)s 2
Z

ns 2
T

, (5.1)

where r is the correlation coefficient between Z and
T, s2

Z is the phenotypic variance of the trait and s 2
T

is the genetic variance at the marker locus.
However, because the number of marker alleles (M)
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carried by each individual is a discrete random vari-
able, and its median and arithmetic mean may not
be consistent if the frequencies of the marker alleles
are not equal, the normality approximation of its
distribution may not be appropriate. In addition, the
distribution of Z is not normal but a mixture of
three normal subpopulations as described in model
(1). A general formula for calculation of the sample
variance of the regression coefficient can be derived
following Kendall et al. (1983, p. 325):

s2
b = b2G

Var [Cov(T, Z)]

Cov(T, Z)
+

Var [s 2
T]

s 2
T

µ
2(Cov[Cov(T, Z),s 2

T])

Cov(T, Z)s 2
T H , (5.2)

where Cov(T, Z) and s 2
T are the sample covariance

between T and Z and the sample variance of T,
respectively, and Cov [X, Y] and Var [X] represent
operators of sample covariance and variance.
Appropriate use of eqn (5.2) requires that the
sample variance and covariance of Cov(T, Z) and s2

T

are of order nµ1, and this will be investigated in the
following numerical analysis. Calculations of the
variances and covariances involved in eqn (5.2) are
demonstrated in Appendix II.

Prediction of power

In the analysis of variance, it has been shown that
the linkage disequilibrium between the marker and
QTL can be detected through testing the signifi-
cance of the expected mean square between marker
genotypes (EMSb) against that within marker geno-
types (EMSw). The power of the F statistical test can
be predicted from the probability

bF = Pr{Fv1,v2
(dF)aFa;v1,v2

}, (6.1)

where Fv1,v2
(dF) represents a noncentral F-variable

with degrees of freedom v1 and v2 and noncentral
parameter dF, and Fa;v1,v2

stands for the upper a-point
of a central F-variable with the same degrees of
freedom. These distribution parameters can be
determined following Johnson & Kotz (1970, p.
189ff.) as v1 = 2, v2 = nµ1 and

dF = A
EMSb

EMSwB
v1(v2µ1)

v2

µv1. (6.2)

The power function (6.1) can be evaluated using
the cumulative distribution of the noncentral
F-distribution which is expressed in terms of an

infinite series of multiples of incomplete beta func-
tions as given in Johnson & Kotz (1970, p. 192).

When the linkage disequilibrium is detected by
testing the significance of the regression coefficient
given by eqn (4) the corresponding power can be
predicted from the probability

b t = Pr{tv(d t)ata/2;v}, (7.1)

where tv (d t) represents a random variable with
noncentral Student’s t-distribution of v degrees of
freedom and noncentrality parameter d t, and ta/2;v is
the upper a/2 point of a central t-variable with the
same degrees of freedom. The value of v equals
nµ2 and the noncentral parameter is given by

d t =
G[v/2]b

Zv/2G[(v/2)]sb

(7.2)

(Johnson & Kotz, 1970, p. 201ff.). In the expression
above, G(.) is a gamma function, b and sb are,
respectively, the regression coefficient and its
standard deviation, which could be estimated using
either eqns (5.1) or (5.2). The influence of using
these different variance predictors will be discussed
in the following numerical studies. The power func-
tion (7.1) can be evaluated by calculating the cumu-
lative distribution of the noncentral t-distribution in
terms of confluent hypergeometric functions
discussed in Amos (1964) or Owen (1968).

Numerical analyses

Simultion study

In order to confirm the previous theoretical predic-
tions of statistical powers for detection of the
linkage disequilibrium, populations were simulated
for 12 different sets of parameters as summarized in
Table 2. For each set of parameters, the joint geno-
types at both the marker locus and the QTL for an
individual were sampled from a multinomial distri-
bution with the probability parameters as shown in
Table 1 and the given sample size n. Once the
marker–QTL joint genotype was determined, the
phenotypic record for an individual was generated
by its genotypic value of the QTL plus a random
number sampled from a normal distribution of mean
zero and variance s2

e.
The simulation program used in the present study

can be easily run with different values of the allelic
frequencies at both the marker locus and QTL, the
additive effect and the dominance level at the QTL
and the census population size. For simplicity, the
QTL genotypic effects were expressed in terms of
the QTL heritability (i.e. the proportion of genetic

LINKAGE DISEQUILIBRIUM IN A TWO-LOCUS MODEL 201

© The Genetical Society of Great Britain, Heredity, 80, 198–208.



variance at the QTL to a given magnitude of pheno-
typic variance of the trait, which was assigned a
constant value of 100).

Each parameter set was repeated 1000 times. The
statistics involved in the power calculation were esti-
mated as the mean of the repeated simulations, and
the corresponding standard error of these means.
Each set of the simulation data was used to perform
analysis of variance and regression analysis.
Calculating the frequency of the significant statistical
tests of these two different analyses in the repeated

simulation trials gives simulated observations of the
power, as has been carried out in Carbonell et al.
(1992).

Results

Tabulated in Table 3 are the average of the mean
squares and their corresponding standard errors
over 1000 replicates of simulations and the mean
squares predicted from calculations based on the
theoretical analyses developed in the present study.
The theoretical predictions are in good agreement
with the simulated observations, validating the theo-
retical model presented here. In Table 3, simulated
observations of the powers of statistically testing for
linkage disequilibrium between the marker and the
QTL are also shown tegether with the theoretical
predictions for all 12 populations. The theoretical
calculations of the power provided adequate predic-
tions to the corresponding simulated values.

Table 4 illustrates the estimates of sample vari-
ances of the regression coefficients calculated as the
average of repeated simulations and by the use of
the theoretical predictions. Among the three esti-
mates of the variance observed from the simulation
studies, s̄2

b was the variance of the 1000 regression
coefficients calculated from repeated simulations,
whereas ŝ2

b and s2
b were the averages of the observed

variances of the regression coefficient, which were
calculated by use of eqns (5.1) and (5.2), respec-
tively. Theoretical predictions of these variances
were derived in correspondingly similar ways.

Table 2 Parameters defining the 12 populations
considered in numerical analyses, where n is the census
population size, p and q are the frequencies of alleles M
and A, D is the coefficient of linkage disequilibrium
between the marker locus and QTL, h2 is the heritability
of the QTL and f is the dominance ratio at the QTL

Population n p q D h2 f

1 100 0.5 0.5 0.1 0.1 0.0
2 200 0.5 0.5 0.1 0.1 0.0
3 200 0.5 0.5 0.2 0.1 0.0
4 200 0.5 0.5 0.1 0.2 0.0
5 200 0.5 0.5 0.1 0.1 0.5
6 200 0.5 0.5 0.1 0.1 1.0
7 200 0.3 0.3 0.1 0.1 0.0
8 200 0.7 0.7 0.1 0.1 0.0
9 200 0.3 0.5 0.1 0.1 0.0

10 200 0.5 0.3 0.1 0.1 0.0
11 200 0.4 0.6 0.1 0.2 1.0
12 200 0.6 0.4 0.1 0.2 1.0

Table 3 Numerical results of analysis of variance: expected mean squares
between marker genotypes (EMSb) and within marker genotype (EMSw)
estimated from simulations, together with their corresponding standard errors,
and predicted from theoretical calculation, as well as the observed powers and
their corresponding theoretical predictions

Simulated Predicted

Population EMSb EMSw Power EMSb EMSw Power

1 180.77¹5.20 98.48¹0.44 0.19 177.60 98.40 0.18
2 249.02¹6.04 98.23¹0.33 0.31 257.60 98.40 0.34
3 731.34¹11.58 93.87¹0.30 0.92 730.40 93.60 0.91
4 413.68¹8.48 96.80¹0.31 0.61 415.20 96.80 0.62
5 247.02¹6.22 99.07¹0.31 0.31 242.89 98.55 0.31
6 208.17¹5.73 99.23¹0.32 0.24 213.47 98.85 0.25
7 314.84¹7.33 97.56¹0.32 0.44 324.78 97.92 0.46
8 322.83¹7.55 97.74¹0.32 0.46 324.78 97.92 0.46
9 284.93¹6.56 97.79¹0.31 0.41 286.53 98.11 0.39

10 292.76¹7.32 97.69¹0.32 0.40 287.62 98.10 0.39
11 446.86¹9.09 96.52¹0.31 0.67 440.54 96.54 0.65
12 393.09¹8.42 96.78¹0.31 0.58 403.12 96.92 0.60
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Numerical calculation indicates that the sample vari-
ance and covariance of the covariance between the
phenotypic record (Z) and the number of the
marker allele M (T) were in the range of 0.0021 to
0.0659, which were about of the order of nµ1, for the
circumstances considered here, suggesting the
appropriateness of using the variance prediction
based upon formula (5.2). It can be seen from Table
4 that theoretical prediction of the variance of the
regression coefficient using either eqns (5.1) or (5.2)
provides an adequate approximation for the simu-
lated value in all 12 simulated populations. This
demonstrates that possible violation of normality of
these regression variables did not cause significant
bias of the variance estimation and thus confirms the
reliability of using eqn (5.1) as a simple predictor of
the variance of the regression coefficient.

The averages of the regression coefficients over
the 1000 replicates of simulations and their corre-
sponding standard errors are shown together with
the theoretical predictions of these coefficients in
Table 5. Comparisons of the coefficient estimates
between the theoretical values and simulation aver-
ages show a good agreement. Theoretical calculation
of the power provides an accurate prediction of the
corresponding simulated values, and the theoretical
power predictions using the different estimates of
the regression coefficient variance based on eqns
(5.1) and (5.2) yielded an almost identical value.

Comparison between the regression analysis and
the analysis of variance shows that the regression

test had consistently higher power than the
F-statistical test in the analysis of variance.

Discussion

Statistical inference about linkage disequilibrium
between polymorphic genetic marker loci and the
loci controlling quantitative genetic variation is
essential in the identification of genes affecting traits
of great economic value in plant/animal breeding
schemes or of disease-susceptibility in humans. It
has been shown by Lande & Thompson (1990) and
Gimelfarb & Lande (1994) that substantial linkage
disequilibrium between marker loci and QTL is a
prerequisite for marker-assisted selection (MAS) to
achieve extra genetic progress. Moreover, the effi-
ciency of MAS is highly dependent on correctly
determining the markers which are incorporated in a
MAS index. A false positive or negative inference
about the disequilibrium, and in turn an erroneous
use of the marker information, will result in reduc-
ing instead of improving the efficiency (Luo et al.,
1997). It has also been hoped that linkage disequi-
librium between a marker and a trait locus will lead
to the identification of a disease gene in the vicinity
of the marker (Weeks & Lathrop, 1995) even
though very much care must be paid in interpreting
the data of linkage disequilibrium as an alternative
measure for obtaining a fine map for a disease
predisposing gene in human populations (Hill &
Weir, 1994). Moreover, it is widely agreed that the

Table 4 Variances of the regression coefficient calculated: (i) from the sample
variance of 1000 observed regression coefficients (s̄ 2

b); (ii) from the average of
each simulated value, where ŝ 2

b and s 2
b were derived using eqns (5.1) and (5.2)

in the text, respectively, together with their corresponding standard errors.
These variances were also predicted using the corresponding theoretical formula

Simulated Predicted

Population s̄ 2
b ŝ 2

b s 2
b ŝ 2

b s 2
b

1 1.875 1.932¹0.009 1.901¹0.012 1.968 1.953
2 0.984 0.962¹0.003 0.974¹0.004 0.984 0.980
3 0.940 0.939¹0.003 0.937¹0.004 0.936 0.936
4 0.965 0.958¹0.003 0.964¹0.004 0.968 0.968
5 0.976 0.975¹0.003 0.981¹0.003 0.986 0.951
6 1.022 0.984¹0.003 0.987¹0.004 0.989 1.017
7 1.201 1.150¹0.004 1.151¹0.006 1.164 1.170
8 1.200 1.170¹0.004 1.177¹0.006 1.164 1.173
9 1.166 1.152¹0.004 1.145¹0.006 1.168 1.154

10 1.021 0.967¹0.003 0.960¹0.004 0.981 0.977
11 1.016 0.995¹0.003 0.987¹0.004 1.006 0.992
12 1.012 0.997¹0.003 0.989¹0.004 1.010 1.027
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objectives of screening genes underlying human
complex disease have been seriously limited by the
difficulties involved in collecting large and informa-
tive pedigrees. However, data are more easily
obtained from natural populations than from struc-
tured pedigrees in human or animal populations or
segregating populations in plant or animal species.
The present analysis provides a fast screening of
individual markers which are significantly associated
with the genetic variation for the purposes of using
marker information either for improving selection
efficiency of quantitative traits or for mapping genes
underlying quantitative genetic variation. The
linkage disequilibrium mapping of a gene is based
on the study of association between the gene and
the marker(s) whose map position is well known.
This requires further knowledge about the magni-
tude of the disequilibrium and an appropriate para-
meterization of the decay of the disequilibrium in
terms of the genetic distance between the target
gene and the marker locus (Baret & Hill, 1997 for a
comprehensive review).

A novel quantitative genetics model has been
developed in the present paper to detect the
presence of linkage disequilibrium between a marker
locus and a locus contributing to quantitative genetic
variation in natural populations. The model is
appropriate for analysing linkage disequilibrium
generated from all potential causes. Theoretical
analyses demonstrated that this can be achieved by
the methods based upon an appropriate statistical
method of analysis of variance or analysis of regres-

sion. The powers of these statistical analyses were
adequately predicted and the factors affecting the
powers were investigated. The model differs from
others in various respects: the two-loci models of
Soller & Genizi (1978), Luo (1993) and Knott
(1994) assumed the disequilibrium to be produced
from crossing two lines in which the marker and
trait loci were linked or completely linked. The
MAS model proposed by Lande & Thompson
(1990) suggested the use of the regression coeffi-
cient of the number of favourable marker alleles in
MAS on the trait phenotype as a measure of the
magnitude of the disequilibrium, but no attempt was
made in their study to investigate the efficiency of
the method. The model presented in this paper is
appropriate for directly analysing the data of marker
genotypes and phenotypic records of a quantitative
trait without requiring knowledge of the haplotype
frequencies at the two loci which was assumed to be
available in Hill & Weir (1994) and in Terwilliger
(1995). An important assumption made in the
present analysis is random union of gametes with
respect to the marker and QTL loci. Any violation
of this assumption would result in a reduction of the
test statistic and thus a lowering of the power of the
disequilibrium test.

The present study has shown the following. (i)
There is an important difference in power between
the two approaches; the regression analysis is more
powerful than the analysis of variance, particularly
when the QTL has a low heritability. An examina-
tion of the calculation of the test statistics in the two

Table 5 Regression coefficients estimated from the average of repeated
simulations, together with the standard errors, and predicted from theoretical
calculations, as well as the observed statistical powers from simulations and
those from theoretical prediction, where power1 was predicted using the sample
variance eqn (5.1) and power2 was predicted using the sample variance eqn (5.2)

Simulated Predicted

Population b Power b Power1 Power2

1 1.790¹0.136 0.25 1.789 0.20 0.20
2 1.739¹0.070 0.41 1.789 0.45 0.46
3 3.571¹0.069 0.96 3.578 0.96 0.96
4 2.538¹0.069 0.75 2.540 0.75 0.75
5 1.715¹0.070 0.40 1.687 0.40 0.42
6 1.409¹0.071 0.30 1.461 0.30 0.29
7 2.255¹0.077 0.57 2.324 0.60 0.60
8 2.341¹0.077 0.57 2.324 0.60 0.60
9 2.136¹0.076 0.52 2.130 0.53 0.53

10 1.952¹0.071 0.51 1.952 0.53 0.53
11 2.733¹0.071 0.78 2.690 0.79 0.79
12 2.460¹0.071 0.70 2.510 0.73 0.72
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approaches indicates that the test statistic in the
analysis of variance essentially tests the significance
of the correlation ratio of a continuous quantitative
variate Z (i.e. the phenotypic records of the trait) on
a discrete variate T (i.e. the number of the marker
allele M), whereas the test statistic in the regression
analysis virtually tests linearity of the regression of
the variate Z on the variate T. It has been pointed
out in Kendall & Stuart (1961, pp. 296–300) that the
regression test will have higher power than the
correlation ratio test (i.e. the test of the analysis of
variance) if the alternative hypothesis is that the
regression of Z on T is linear. Moreover, it can be
seen, from comparing the powers of populations 2, 5
and 6 in Table 3 with those of the corresponding
populations in Table 5, that the superiority of the
regression analysis to the analysis of variance tends
to become less important as the dominance ratio at
the QTL increases from zero to one. This, however,
is paralleled with the trend that the powers of both
the approaches decrease to a very small value (s30
per cent) as the dominance ratio increases. The
difference between the two statistical tests will
become trivial when both of the tests have very low
powers. (ii) Although the variables in the regression
analysis do not strictly follow a normal distribution,
the variance estimate of the regression coefficient
predicted from using formula (5.1), which requires
the variables to be normal, was not significantly
different from that derived from using prediction
eqn (5.2) without the need of invoking normality.
(iii) Which factors affect the efficiency of the statisti-
cal tests of the linkage disequilibrium. Among the
parameters considered, the amount of disequi-
librium and size of the QTL are most important in
determining the powers. A comparison of the
powers among populations 2, 5 and 6 indicates that
the power decreases with an increase in the domi-
nance ratio at the QTL. The allelic frequencies at
the marker and QTL display an important effect on
the power in both models (the analysis of variance
and the regression analysis). When the allelic
frequencies at the two loci are low (e.g. population 7
in which p = q = 0.3) or high (e.g. population 8 in
which p = q = 0.7), the power is increased compared
to intermediate values (e.g. population 2 in which
p = q = 0.5). Moreover, comparison of the power for
populations 9 and 10 shows that the frequencies p
and q were interchangeable in determining the
power. These agree with the fact that the two loci
were symmetric in the theoretical model as
described in Table 1. It was found in our previous
study (Luo et al. 1997) that the allelic frequencies at
the marker locus and QTL play an important role in

determining the efficiency of MAS, but the effects of
allelic frequencies at the two loci on MAS efficiency
were not interchangeable. For a given amount of
linkage disequilibrium between the two loci, an
increase in the efficiency can be expected when both
the frequencies p and q are low. Combining the
findings of the present study with those of Luo et al.,
(1997) suggests that the allelic frequencies display a
more important influence on the efficiency of MAS
at the stage of selection than at the stage of screen-
ing the markers.

The present study has been focusing on modelling
linkage disequilibrium between a single marker locus
and a single QTL. This may seem distant from being
completely realistic for polygenic inheritance of
quantitative traits and for availability of marker
linkage maps. In distinct comparison with the model
present here, Lande & Thompson (1990) proposed a
multiple regression approach in which an infinite
loci model of quantitative genetic variation was
assumed and the use of multiple markers was
allowed. However, it has been shown in a simulation
example given by Gimelfarb & Lande (1994) that
either a false positive or a false negative inference
about the linkage disequilibria between the marker
loci and QTLs may be frequently made using
multiple regression analysis because the marker-
associated quantitative effects could be counter-
balanced or could inflate each other among the
linked marker loci. These problems, thus, leave the
multiple regression model far from being conclusive
for the theory of linkage disequilibria among marker
loci and QTLs. A full understanding of the multi-
dimensional marker-associated quantitative genetic
effects requires a further reparameterization of the
multiple regression coefficients in terms of genetic
parameters such as the disequilibrium coefficients of
different orders. The model studied here is increas-
ingly likely to be a subunit of the sophisticated
framework of multiple-loci disequilibria, and the
study of the two-locus system in isolation is an
important building block for an understanding of the
system as a whole.
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Appendix I

Calculation of expected mean squares in the analysis of variance model

Let fi be the frequency of the ith marker genotype and fij be the frequency of the jth QTL genotype and the
i th marker genotype (i, j = 1, 2, 3). These frequencies are related to the genetic parameters given in Table 1.
The expected mean squares must be calculated following an analysis of variance under an unbalanced linear
model as described in Searle (1987, pp. 111ff.) because nij, the number of individuals with the j th QTL
genotype and the i th marker genotype, is not constant for different i and j. When nij is considered as a random
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variate with a multinomial distribution of parameters fij and n (population sample size) (Knott, 1994), the
expected mean square between the marker genotypes is

EMSb =
1

Gµ1 G +
G

i=1

finb2
i µC+

G

i=1

fi (1+(nµ1) fi)b2
i +2(nµ1) +

isjR3

fi fjbi bjD
++

G

i=1

1

fi C +
3

j=1

fij(1+(nµ1) fij)w2
ij+2(nµ1) +

jskR3

fij fik w ij wikD
µC +

G

i=1

+
3

j=1

fij[1+(nµ1) fij ]w2
ij+2(nµ1) +

isjR3

+
kslR3

fij fkl w ij wklDH+s 2
e

and the expected mean square within the marker genotype is

EMSw =
1

nµG G+
G

i=1

+
3

j=1

fij nw2
ijµ+

G

i=1

1

fi C +
3

j=1

fij (1+(nµ1) fij)w2
ij+2(nµ1) +

jskR3

fij fik w ij w ikDH+s 2
e

where G is the number of marker genotypes and w ij is the effect of the j th QTL genotype within the i th
marker genotype as defined in the model eqn (1) and is calculated as follows:

w11 =
2[Dµp(1µq)][(D+pq)hµpd]

p2

w12 =
µp[2Dµp(1µ2q)]d+[2D2µ2p(1µ2q)D+(1µ2q+2q2)p2]h

p2

w13 =
2(D+pq)[(Dµp+pq)hµpd]

p2

w21 = µ
[(1µ2p)Dµ2p(1µp)(1µq)]d+[2D2+(1µ2p)(1µ2q)D+2pq(1µp)(1µq)]h

p(1µp)

w22 = µ
[(1µ2p)Dµp(1µp)(1µ2q)]d+[2D2+(1µ2p)(1µ2q)Dµp(1µp)(1µ2q+2q2)]h

p(1µp)

w23 =
[(1µ2p)D+2pq(1µp)]d+[2D2+(1µ2p)(1µ2q)D+2pq(1µp)(1µq)]h

p(1µp)

w31 =
2(1+Dµpµq+pq)[(1µp)d+(Dµq+pq)h]

(1µp)2

w32 =
(1µp)[2D+(1µp)(1µ2q)]d+[2D2+2(1µp)(1µ2q)D+(1µ2q+2q2)(1µp)2]h

(1µp)2

w33 =
2(Dµq+pq)[(1µp)d+(D+(1µp)(1µq))h]

(1µp)2
.
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Appendix II

Variances and covariances involved in the calculation of the variance of the regression coefficient

Var [s2
T] =

1

n
(m4µm2

2)+
1

n3
[(m4µm2

2)+2(nµ1)(m2
2µm4

1)+4(nµ1)(nµ2)m2
1s2

T

+4(nµ1)m1(m3µm1 m2)]µ
2

n2
[(m4µm2

2)+2(nµ1)m1(m3µm1 m2)]

Var [Cov(T,Z)] =
(nµ1)2

n3
(w22µw2

11)+
(nµ1)

n3
[(m2 v2µm2

1v2
1)+(nµ2)v2

1s2
T+m2

1s2
Z)

+(2nµ3)m1v1(w11µm1v1)]µ
2(nµ1)2

n3
(m1w12+v1w21µ2m1v1w11)

Cov [Cov(T,Z),s2
T] =

1

n
(w31µm2w11)µ

1

n2
[2(w31µm2w11)+2(nµ1)m1(w21µm1w11)]µ

(nµ1)

n2
[(m3µm1m2)v1

+m1(w21µm2v1)]+
1

n3
{w31µm2w11+(nµ1)[(m3µm1m2)v1+m1(w21µm2v1)]

+2(nµ1)[(w21µw11m1)m1+(m2w11µv1m3
1)+(nµ2)(m1v1s2

T+sTZm2
1)]},

where mr = E(T r), vr = E(Zr) and w rs = E(T r Z s). They can be calculated as

m1 = 2p

m2 = 2p(1+p)

s2
T = 2p(1µp)

m3 = 2p(1+3p)

m4 = 2p(1+7p)

v1 = (2qµ1)d+2q(1µq)h

v2 = [q2+(1µq)2]d2+2q(1µq)h2+s2
e

s2
Z = 100.0 (see the text)

w11 = 2{[Dµp(1µ2q)]d+[D(1µ2q)+2pq(1µq)]h}

sTZ = 2D[d+(1µ2q)h]

w12 = 2{[p(1µ2q(1µq))µ(1µ2q)D] d2+[(1µ2q)D+2pq(1µq)]h2}+m1s2
e

w21 = 2{[(1µ2p)Dµp(1+p)(1µ2q)]d+[(1+2pµ4qµ4pq)Dµ2D2+2pq(1+p)(1µq)]h}

w22 = 2{[2D2µ(1+2pµ2qµ4pq)D+p(1+p)(1µ2q+2q2)]d2µ[2D2µ(1µ2p+2q+4pq)D

µ2pq(1+p)(1µq)]h2}+m2s2
e

w31 = 2{[(1+6p)Dµp(1+3p)(1µ2q)]d+[(1+6pµ2qµ12pq)Dµ6D2+2pq(1+3p)(1µq)]h}.
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