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Multi-interval mapping of correlated trait
complexes
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Employing Monte Carlo simulations, we demonstrate the advantages of multitrait analysis in
detection of linked QTL effects within the framework of mixture models. In spite of an
increased number of parameters to be estimated, compared to the single-trait formulation, the
proposed method allows for an improvement of detection power and estimation precision of
linked QTLs in both adjacent or nonadjacent intervals, with coupling and repulsion effects.
The results obtained are illustrated by examples based on data of the North American Barley
Genome Mapping Project.
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Introduction

Many efforts have been devoted in the last decade
to increase the efficiency of marker analysis of quan-
titative traits. Among the most effective approaches
are interval analysis (Lander & Botstein, 1989;
Knott & Haley, 1992), selective sampling (Lebowitz
et al., 1987; Darvasi & Soller, 1992), replicated
progeny testing (Soller & Beckmann, 1990) and
sequential experimentation (Motro & Soller, 1993).
Especially encouraging are the recent successful
attempts to improve the efficiency of QTL mapping
by taking into account simultaneous segregation at
many genomic segments affecting the trait in ques-
tion (Jansen & Stam, 1994; Zeng, 1994; Jansen,
1996). A complementary situation, when one QTL
(or a chromosome segment) affects several traits
simultaneously, can also be considered, resulting in
increased resolution power (Korol et al., 1987, 1994,
1995; Preygel & Korol, 1989; Jiang & Zeng, 1995;
Ronin et al., 1995). Such analysis may be of major
importance in formulating marker-assisted breeding
strategies, dissecting heterosis as a multilocus multi-
trait phenomenon, obtaining unbiased parameter
estimates of QTL effects in selective genotyping of
correlated traits, developing an optimized pro-
gramme for evaluation and conservation of genetic
resources, revealing the genetic architecture of
fitness systems in natural populations, etc. The
combination of the multi-interval and multitrait
mapping strategies may help to cope with a difficult

problem arising when the chromosome under
consideration contains several QTLs (e.g. Jiang &
Zeng, 1995). It is known that if one attempts to fit a
single-locus model to such a case, a ghost QTL can
be found in an interval which has no effect on the
trait (Knott & Haley, 1992; Martinez & Curnow,
1992). It is especially difficult to recognize situations
with trans effects of linked QTLs (Haley & Knott,
1992; Luo & Kearsey, 1992).
Employing Monte Carlo simulations, we demon-

strate here the advantages of multitrait analysis in
detection of linked QTL effects within the frame-
work of mixture mapping models. In spite of an
increased number of parameters to be estimated,
compared to the single-trait formulation, the
proposed method allows for an improvement of
detection power and estimation accuracy of linked
QTLs. The results are illustrated by examples based
on data of the North American Barley Genome
Mapping Project.

Bivariate mixture model with two linked
QTLs

Formulation of the model

Consider a situation of two linked loci, A/a and B/b,
residing in two marker intervals, M11/m11µM12/m12

and M21/m21µM22/m22, and affecting correlated quan-
titative traits, x and y. We will demonstrate that joint
treatment of correlated traits may provide a better
power of detection and higher precision of param-
eter estimation for linked QTLs than the usual*Correspondence. E-mail: korol@esti.haifa.ac.il
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single-trait analysis. The consideration will be
confined to a dihaploid or backcross situation,
although other types of mapping populations can be
treated in a similar way. We assume additive gene
effects across loci and traits but this restriction can
easily be omitted. Generally, our analysis is free of
the standard simplifying assumption of equal vari-
ances (covariances) in the QTL groups. As was
shown elsewhere (Korol et al., 1996), this last
assumption can reduce the resolution power of the
QTL mapping analysis. This may confer certain
limits to the employment of the usual regression
mapping models based on the ‘no variance effect’
assumption.
For the case of two linked QTLs in a dihaploid

mapping population, four bivariate density distribu-
tion functions should be specified, for each allelic
combination at the linked QTLs, fAB(x,y), fAb(x,y),
faB(x,y) and faa(x,y). The expected mean values of the
traits and variance–covariance matrices will be
denoted by muAB, muAb, muaB and muab (u= x or y), and
SAB, SAb, SaB, Sab, respectively. Each matrix Si speci-
fies the residual variances and covariance of the pair
x, y: s 2

i x, s 2
i y and COVi xy=Ris2

i xs 2
i y, caused by

segregation of genes from other chromosomes and
nongenetic factors (e.g. environmental hetero-
geneity). Based on marker scores and measurements
of the traits x and y, we should contrast, for the
considered chromosome, the hypotheses that one
(H1) or two (H2) intervals affect the observed varia-
tion of x and y and compare both with H0 (‘no effect
of the chromosome tested’). Clearly, H1 is a complex
hypothesis: for any pair of intervals one can assume
that either the first or the second interval has no
effect on the traits of interest. Actually, the situation
is even more complicated, because a series of
‘partial’ hypotheses should be considered ranging
from ‘full’ H2 (both traits depend on both QTLs) to
H0 (no effect of the QTLs on either of the two
traits). For the dihaploid case, the two-interval
consideration results in 16 marker groups. The
expected joint distribution of the traits x and y in
each is a mixture of four densities, fAB(x,y), fAb(x,y),
faB(x,y) and faa(x,y):

hi(x,y)= pi1 fAB+pi2 fAb+pi3 faB+pi4 fab, Sjpij=1,i=1,16,

where the size of the group i and mixture proportion
pij depend on relative positions of the putative QTLs
with respect to marker loci, recombination rates,
and interference mode and level (Jiang & Zeng,
1995). Some reasonable assumptions can be made
leading to a simplification of the analysis arising
from a reduction in the number of marker groups
and/or f-components within groups (see below). For

an arbitrary individual of the mapping population we
present its bivariate phenotype (x,y) as

x= mx+0.5daxga+0.5dbxgb+ex
y= my+0.5dayga+0.5dbygb+ey, (1)

where x and y are the individual’s phenotype scores
of the analysed traits, mx and my are trait means, dax
and day are the effects of substitution at the A/a
locus with respect to mean values of x and y (i.e.
dax= mxAAµmxaa and day= myAAµmyaa), ga denotes the
genotype at locus A/a (ga=µ1 for aa and 1 for AA);
the same symbol usage is applied to locus B/b. In
general, one may assume that the putative QTLs
affect not only the mean values of the traits but also
the trait variances and covariance. In such a case, ex
is a random variable with zero mean and variances
s2
11u, s2

12u, s2
21u and s2

22u for {(ga,gb)}= {(µ1,µ1),
(µ1,1), (1,µ1), (1,1)}, u= x or y. The variables ex
and ey are assumed to be correlated with correlation
coefficients R11xy, R12xy, R21xy and R22xy for
{(ga,gb)}= {(µ1,µ1),(µ1,1),(1,µ1),(1,1)}, respec-
tively. Correlation between the traits x and y within
the QTL groups may be caused by other segregating
QTLs or nongenetic correlation. Although we may
assume that loci A/a and B/b can also affect trait
variances and covariance, in most cases we will
deal mainly with the situation of equal variance–
covariance matrices in the QTL groups,
SAB=SAb=SaB=Sab=S.

LOD-score test and parameter estimation

The log-likelihood for a sample of two-dimensional
measurements xk, yk in marker groups with sizes Ni

(i=1,16) can be written as:

lnL(Yn2) = +
16

i=1

+
Ni

k=1

lnhi(xk, yk), (2)

where Yn2 is the vector of genetic parameters char-
acterizing the effects and positions of the putative
QTLs. In the general case, dau80, dbu80 (u= x or
y), and all s2

iju are different as well as all Rijxy, so that
Yn2 = {r1, r2,mx,my,dax,day,dbx,dby,s2

11x,s2
12x,s2

21x,
s2

22x,s2
11y,s2

12y,s2
21y,s2

22y,R11,R12,R21,R22} is the vector of
n2 = 20 unknown parameters, specifying recombina-
tion rates in the pair of trial intervals and joint
distributions of traits x and y in the QTL groups.
The assumption of no effect of genes from the inter-
vals M11/m11–M12/m12 and M21/m21–M22/m22 on the
traits (x,y) can be presented by another set of para-
meters, Y=Yn0 = {mx,my,sx,sy,R} (the null hypothe-
sis {H0: Y=Yn0}) as contrasted to the foregoing
‘full’ H2: Y=Yn2, or to any of the ‘partial’ alterna-
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tives {H1: Y=Yn1}. According to the likelihood
ratio test approach (Wilks, 1962), if H0 is true, the
statistic

x 2 = 2ln[maxL(Yn1)/maxL(Yn0)] (3)
Yn1b S1 Yn0b S0

is distributed asymptotically as chi-squared with
n1µn0 degrees of freedom, where S0 and S1 are the
parameter spaces corresponding to H0 and H1,
respectively (Wilks, 1962). The same method is
applied to compare H2 and H1. If x2 exceeds some
critical value, corresponding to a preset level a, then
the H1 hypothesis can be rejected. In such a case,
the numerical values providing the maximum to
L(Yn2) could be considered as ML-estimates of the
parameters characterizing our putative QTL loci A/a
and B/b. However, in multi-interval mapping the
problem of the exact asymptotic distribution of the
test statistic remains unsolved even for the single-
trait analysis (see Zeng, 1994). This is especially true
when linked QTLs are considered (Lander &
Botstein, 1989). If so, one could use extensive
Monte Carlo simulations to obtain an empirical
critical value of the statistics for each situation.
One more comment on multi-interval mapping

models of correlated trait complexes is worth
mentioning (see also Korol et al., 1995). Introduc-
tion of additional parameters specifying the QTL
mapping model should be justified statistically by
comparison to the corresponding ‘reduced’ model.
This is relevant to any complication of the mapping
model, the replacement both of single-trait mapping
analysis by its multitrait analogue and of a single-
interval model by a two-interval one. Parameters
which do not affect the significance level should be
removed from the model.

Monte Carlo simulations

Generating the data

For each situation studied, 200 repeated mapping
populations were generated using pseudorandom
numbers. A bivariate normal distribution was used
for the trait groups AABB, aaBB, AAbb and aabb.
The compositions of the marker groups (mixtures hi,
i=1,16) were modelled as four-component distribu-
tions. The length of the marker interval was 20 cM
with the QTLs in the middle of their intervals. No
double exchanges were assumed within the intervals
in the data presented below (hence Morgan’s
mapping function is suitable). The simulated
chromosomes consisted of eight intervals each, with
QTLs residing in intervals 3 and 4 or 3 and 5.

Obtaining numerical solutions

Optimization was by modified gradient and Newton
methods. The possibility of multiple maxima was
tested by optimizing a few test cases using various
starting points. In all cases only a single maximum
was found. Thus, for all Monte Carlo experiments
the simulated parameter sets were used as starts
(Titterington et al., 1985). When dealing with real
data on barley, multiple random initial points were
used to provide the unique solution.

Estimation of the power of the test

To estimate the power of the log-likelihood ratio
test we used the critical level of the statistics (eqn 3)
x2 = x2

critical based on the asymptotic distribution
(chi-squared with d.f. = n1µn0 when H0 vs. H1 is
tested, or d.f. = n2µn1 for H1 vs. H2 comparisons).
The goodness of fit of the expected distribution was
tested by simulations using 5000 trials. Provided H1

is true, the proportion of cases where the second
QTL is revealed when it really exists was measured
for different situations using critical values obtained
in these simulations. A similar approach was also
proposed by Doerge & Churchill (1996) on the basis
of a permutation test. We found that the asymptotic
and simulated distributions result in close estimates
of power.

Simulation results

For the dihaploid case, we have simulated and
analysed several situations when two QTLs (A/a and
B/b) residing in adjacent or nonadjacent intervals
affect two correlated traits, x and y. In order to show
the advantages of joint analysis of correlated traits,
we compare power of the test for detection of both
QTLs and accuracy of parameter estimates with
those obtained for situations with no correlation
between the involved quantitative traits.
Four basic configurations were analysed, with the

two QTLs residing in adjacent (AD) and nonadja-
cent (NA) intervals and acting in the same direction
(coupling phase, CP) and in opposite ones (repul-
sion phase, RP), correspondingly. Following are the
results obtained for several possible combinations of
the traits and QTLs involved.
(i) One of the traits, x, depends on both QTLs,

A/a and B/b, whereas the correlated trait y is inde-
pendent of these QTLs (see also Korol et al., 1994,
1995; Ronin et al., 1995). The results of scanning
along possible pairs of intervals for all four
configurations (adjacent and nonadjacent locations
of the QTLs, each at coupling and repulsion phase)
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are presented in Table 1. Based on these data the
following conclusions can be made. The maximum
of the average LOD scores of the two-QTLs model
is attained at the true pair of the intervals. More-
over, the modal class of the bivariate distribution of
the individual LODs also corresponds to the true
pair of intervals (see the part of Table 1 which lies
below the diagonal). Although the correlated trait y
does not depend on either of the two QTLs, the
additional information provided by y allows, as
expected, the LOD values to increase. Moreover,
the differences between LODs corresponding to the
true and neighbouring positions of the QTLs are
also increased when the correlated trait y is taken
into account. These results hold for both adjacent
and nonadjacent configurations, independently of
the phase (coupling or repulsion).
How are these effects reflected in the test power

and estimation precision? Table 2 illustrates the
gains of the two-trait analysis compared to the
single-trait analysis. These are manifested in: (a)
increase in power of detection of any QTL activity in
the marked chromosome, as reflected in the differ-
ences between the mean LOD values for H2 and H0;
(b) higher power of discrimination between H2 and
H1. The benefit of two-trait analysis is higher for NA
configurations (nonadjacent location of the QTLs),
and for the repulsion phase as compared to the
coupling one; (c) reduced biases of parameter esti-
mates, manifested mainly for the coordinates of the
QTLs within the intervals; and (d) lower variances in
all parameter estimates.
(ii) A/a affects both of the traits whereas B/b

affects only one trait, x; within each of the four QTL
groups x and y are correlated because of nongenetic
mechanisms and segregation of genes from other
chromosomes. Comparisons of the test power and
estimation accuracy enable us to conclude that
bivariate mapping analysis is superior to the single-
trait one (Table 3). This is manifested in: (a) a
higher power of QTL detection (compare LODs for
H2 vs. H0) and discrimination between ‘two-QTLs’
and ‘single-QTL’ hypotheses, i.e. H2 vs. H1; and (b)
lower variances of parameter estimates. Notably, the
reduction in the variance for recombination
distances is more pronounced for the QTL affecting
both traits as compared to that affecting only one of
the traits. Also, a slight reduction is found in biases
of the estimates of QTL positions resulting from the
bivariate analysis. But in contrast to the case (i), the
bivariate model has no advantages with respect to
the biases of the QTL effects (Table 3).
(iii) Both A/a and B/b have pleiotropic effects on

both traits, x and y. All conclusions reached for the

previous case hold also here (see the results in Fig. 1
and Table 4). For instance, correlation between the
analysed traits leads to a pronounced increase in the
proportion of the modal class which corresponds to
the true pair of intervals (compare (b) vs. (a) and
(d) vs. (c) in Fig. 1. In addition, we compare here
two estimates of the power of the test ‘H2 vs. H1’
(the assumption of the presence of two QTLs
contrasted to that of one). These estimates were
obtained when the critical value of the test was
calculated from the asymptotic chi-squared approxi-
mation (eqn 3), and from 5000 Monte Carlo simula-
tions of the situation when H1 is true. It appeared
that the resulting two estimates of the power are
close (compare bt and bmk in the last column of
Table 4).

Examples from the barley ‘SteptoeÅMorex’
dataset

As an example of the application of multi-interval
two-trait analysis, we have chosen two economically
important traits — malt extract (%) and alpha
amylase activity — from the SteptoeÅMorex barley
mapping data set (Hayes et al., 1996). The Steptoe
ÅMorex population is an extensively described
mapping and QT reference population (Hayes et al.,
1993, 1994). Malting quality is determined by a
number of component traits. Malting is a carefully
controlled germination process in which complex
proteolytic pathways are manipulated to develop an
ideal substrate for subsequent fermentation. Kernel
carbohydrates are hydrolysed by a-amylases. Malt
extract percentage is a measure of soluble sugars
and proteins and thus expresses the overall effi-
ciency of the malting process. Thus, a-amylase may
be a component of malt extract, and coincident
QTLs for the two traits could be attributed to pleio-
tropic effects of a-amylase. This is probably the case
on chromosome 1, where malt extract and a-amylase
QTLs were detected in the vicinity of the Amy2
locus (Hayes et al., 1993).
In Table 5 some examples of two-trait mapping

analysis of a-amylase and malt extract are presented.
For the measurements in environment 4, previous
analysis revealed a QTL in interval no. 12 of
chromosome 2 (ABG14–His3C) (Hayes et al., 1994).
Two-interval analysis of the same trait allows the
detection of a second significant QTL in interval no.
2 (ABG703–CHS1B). Although two-trait two-
interval analysis results in the same power of detec-
tion of a second interval affecting a-amylase, it gives
a slightly different location for both QTLs. The
same conclusions were reached using data from
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Table 1 Variation of bivariate LOD scores across interval pairs in the case of two linked QTLs affecting a quantitative
trait when another trait correlated with the target one and independent of the chromosome under consideration is
involved

QTL in adjacent intervals 3 and 4 QTL in nonadjacent intervals 3 and 5

jg R ih1 2 3 4 5 6 1 2 3 4 5 6 7

0.0 4.5 11.9 21.1 21.7 14.7 8.1 3.3 8.6 14.7 17.2 17.0 12.5 7.4
CP

0.7 6.2 17.3 32.1 32.9 21.3 11.3 4.6 13.3 22.0 25.8 25.5 17.7 9.7
1

0.0 0.9 1.2 1.4 2.0 2.1 1.4 1.1 2.0 2.4 2.5 3.8 3.7 2.3
RP

0.7 1.2 1.7 2.0 2.3 3.4 2.2 1.6 3.7 4.2 3.9 6.1 5.9 3.5

0.0 0 11.8 21.3 22.8 18.6 14.1 0 8.3 14.8 18.1 19.2 16.0 11.7
CP

0.7 0 17.2 32.6 35.1 27.8 20.7 0 13.0 22.1 28.3 30.2 24.7 17.4
2

0.0 1 1.4 2.1 3.4 3.4 2.2 0 2.1 2.4 4.4 5.9 5.4 3.5
RP

0.7 0 2.0 3.5 5.8 5.7 3.5 0 3.8 4.3 7.8 10.8 9.9 6.4

0.0 2 0 21.1 23.2 22.9 21.7 0 0 14.4 18.6 20.6 19.3 16.5
CP

0.7 0 0 31.9 36.1 35.2 32.9 0 0 21.6 29.3 32.6 29.7 24.6
3

0.0 1 3 1.3 3.8 3.4 2.1 0 0 2.1 5.9 7.5 6.1 3.7
RP

0.7 0 0 1.9 6.9 5.9 3.4 0 0 3.9 10.1 13.5 11.3 6.9

0.0 1 24 37 21.2 21.5 21.3 0 5 0 16.3 19.1 18.7 17.4
CP

0.7 0 9 75 31.9 32.9 32.7 0 1 2 24.3 29.3 28.2 25.6
4

0.0 1 17 58 1.3 2.0 1.3 0 0 5 1.0 6.1 4.8 2.5
RP

0.7 0 10 77 1.9 3.4 2.0 0 0 0 1.8 10.4 8.4 4.4

0.0 0 0 28 2 12.6 12.7 0 10 75 5 15.4 15.7 15.8
CP

0.7 0 0 15 0 17.9 32.2 0 5 95 0 22.9 27.5 23.2
5

0.0 0 6 9 0 1.4 1.1 0 0 85 0 2.1 2.4 2.4
RP

0.7 1 2 7 0 2.0 1.6 0 0 100 0 3.5 4.1 3.8

0.0 0 0 3 3 0 4.9 0 0 5 0 0 10.0 10.4
CP

0.7 0 0 0 1 0 6.4 0 0 0 0 0 14.0 14.4
6

0.0 0 3 0 0 1 0.9 0 0 10 0 0 2.1 2.0
RP

0.7 0 3 0 0 0 1.2 0 0 0 0 0 3.5 3.4

The results of Monte Carlo simulations (100 runs) of a doubled haploid mapping population with 200 genotypes. A single
chromosome was modelled with two QTLs (A/a and B/b) of equal additive effects in coupling (CP) and repulsion (RP)
phases. The distance between consecutive markers was 20 cM, QTLs were located in the middle of adjacent or
nonadjacent intervals (nos 3 and 4, or nos 3 and 5). The effects of each of A/a and B/b were dax= dbx=0.5; day= dby=0;
the residual standard deviations s jx= s jy=0.5; and residual phenotypic correlation coefficient R={0, 0.7}. The data under
the diagonal are the observed frequencies of outcomes in which the maximum LOD appeared in the indicated pair of
intervals; the data above the diagonal are the mean values of the two-interval LODs. The cases i= j represent the results
of appication of a ‘single-QTL model’.
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environment no. 14. However, in this case the
detectability of the second QTL for a-amylase by
single-trait analysis is rather poor (P20.27) whereas
the significance for the second QTL in the two-trait
analysis is P20.037. The next example in Table 5

concerns the pair ‘a-amylase–kernel weight’ in
environments 9, 10 and 13, for chromosome 1. Usual
single-trait interval analysis (see Hayes et al., 1994)
reveals a QTL for a-amylase at interval 10
(Brz–ABC156D) or 11 (ABC156D–ABG22A) mani-

Table 2 Efficiency of bivariate two-interval mapping of two linked QTLs
affecting a quantitative trait assisted by another trait correlated with the target
one and independent of the chromosome under consideration

dax dbx r1 r2
R LOD bt

H2|H0 H1|H0 H2|H1 sdax sdbx s r 1 s r 2

0.53 0.49 42.91 79.98
0.0 23.31 21.78 1.53 9

0.21 0.22 14.34 21.65
CP

0.52 0.49 47.63 74.30
0.7 36.16 32.74 3.42 55

0.14 0.14 7.94 9.71
AD

0.46 µ0.45 42.03 72.51
0.0 3.96 2.04 1.92 20

0.22 0.23 13.35 14.08
RP

0.48 µ0.48 45.93 73.45
0.7 6.99 2.84 4.1 73

0.15 0.14 10.06 10.67

0.48 0.53 46.40 89.98
0.0 20.20 16.53 3.67 59

0.09 0.10 10.55 7.49
CP

0.49 0.53 48.85 90.49
0.7 31.79 24.44 7.35 97

0.07 0.06 5.85 2.06
NA

0.47 µ0.46 48.86 91.02
0.0 8.23 3.33 4.90 85

0.10 0.10 3.61 11.05
RP

0.48 µ0.47 50.07 89.79
0.7 14.17 5.01 9.16 100

0.08 0.06 2.85 4.03

The results of simulations experiments are described in Table 1. AD and NA
indicate ‘adjacent’ and ‘nonadjacent’ intervals, respectively. LOD here denotes
mean value of the maximum lods across all pairs of intervals averaged over 100
runs. All these lods were obtained for three pairs of contrasted hypotheses:
H2|H0 (two QTLs vs. no QTL), H2|H1, (two QTLs vs. a single QTL), and
H1|H0 (a single QTL vs. no QTL). The standard deviations of the parameters
are presented under the mean values: dax and sdax, dbx and sdbx, etc., r1 and r2 are
the recombination distances of the QTLs (in cM), starting from the first marker
position; bt is the test power for detecting a second QTL (H2|H1) based on
chi-squared approximation for the calculation of the critical value of test
statistics under H1 (here and in Tables 3 and 4 the chosen significance level was
0.1 per cent).
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festing in environments 9 and 10. In environment 13,
in addition, a factor from interval 15
(ABC455–Amy2) was also detected (Hayes et al.,
1994). Two-interval single-trait analysis shows a
significant (P=0.007) additional effect of the inter-
val no. 21 (ABG461–Cat3) in environment 9; the
putative QTL is in repulsion phase with that of
interval 10. Incorporation of the second trait, kernel
weight, into the mapping model increases the signifi-
cance (P=0.002). Especially pronounced enhance-
ment in detection power of the test for the presence
of the QTL for a-amylase in interval 21 was found
for environment 10: from P=0.045 in single trait
analysis to P=0.003 in bivariate analysis.

Concerning the detection of the effect of interval
21 on a-amylase, the situation for environment 13 is
similar to those in environments 9 and 10. However,
in the last case the two-interval analysis is compli-
cated by the presence of an additional QTL at inter-
val 15. It is noteworthy that when the interval 10 (or
11) was ignored, its effect was ‘absorbed’ by the
interval 15, so that the two-interval analysis for the
pair of intervals 15 and 21 results in a biased
(upward) estimation of the effect of interval 15. This
can be seen when interval pair 10 and 15 is
considered (the last row of Table 5).
Coincident QTLs may result from tight linkage or

pleiotropy. In these terms, there are three possible

Table 3 Efficiency of bivariate two-interval mapping of linked QTLs, when the
first of the correlated QTs depends on both QTLs (A/a and B/b) whereas the
second trait depends only on one of the QTLs (A/a)

dax day dbx r1 r2
R LOD bt

H2|H0 H1|H0 H2|H1 sdax sday sdbx sr1 sr2

0.34 0.36 0.37 46.24 80.45
0.0 17.32 15.78 1.54 6

0.23 0.09 0.22 12.35 15.64
CP

0.34 0.35 0.37 49.38 74.60
0.7 36.57 33.65 2.92 43

0.15 0.07 0.14 6.22 11.35
AD

0.32 0.36 µ0.32 48.25 79.50
0.0 6.93 5.16 1.77 16

0.20 0.09 0.19 13.03 17.04
RP

0.32 0.36 µ0.33 49.35 78.09
0.7 13.30 10.28 3.02 46

0.15 0.07 0.14 6.83 13.14

0.32 0.37 0.40 47.65 93.66
0.0 15.66 12.81 2.85 40

0.09 0.10 0.09 10.17 13.88
CP

0.31 0.37 0.40 51.21 87.77
0.7 33.14 27.57 5.57 90

0.07 0.06 0.05 3.03 7.21
NA

0.33 0.37 µ0.32 51.21 98.13
0.0 9.18 5.84 3.34 54

0.10 0.10 0.11 9.90 11.35
RP

0.32 0.37 µ0.31 50.72 91.15
0.7 18.94 13.02 5.92 89

0.07 0.06 0.06 2.83 7.65

All details are the same as described in Tables 1 and 2. The only difference is in
the QTL effects. The effects of A/a and B/b were dax= dbx= day=0.375 and
dby=0.
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scenarios involving malt extract and a-amylase: (i)
coincident malt extract and a-amylase QTLs, where
the latter is a determinant of the former, as on
chromosome 1; (ii) malt extract QTL without
accompanying a-amylase QTL, where, by default,
the observed extract is attributed to a factor other
than a-amylase, such as another enzyme or starch
structure/composition; or (iii) an a-amylase QTL
with an accompanying malt extract QTL.
Based on single-interval mapping, chromosome 2

appears to be an example of scenarios (ii) and (iii)
as described above: a-amylase QTL at LOD a2.0 is
seen near the centromere, and malt extract QTLs
with LOD a2.0 are seen on the short arm (Hayes et
al., 1993). However, with a two-trait analysis, the
malt extract QTLs are observed to coincide with
a-amylase QTLs (see Table 5). This provides an
additional and potentially valuable insight into the
basis of the observed malt extract effect, transform-
ing it from a type (ii) to a type (i) scenario. These
results provide new tools for studying the
biochemistry of the malting process, as barley
a-amylases are of two types (the Amy1 and Amy2
groups) and loci determining the isoforms map to
chromosomes 6 and 1, respectively. No a-amylase
loci have been mapped to chromosome 2, so the

observed a-amylase QTLs may be attributable to
genes that somehow regulate or modulate a-amylase
expression.

Discussion

An approach to increase the resolution power of
interval mapping of QTLs was proposed earlier
based on analysis of correlated trait complexes
(Korol et al., 1987, 1994, 1995; Preygel & Korol,
1989; Jiang & Zeng, 1995; Ronin et al., 1995). It is
well known that, in an attempt to fit a single-locus
mapping model to a case with several QTLs, a QTL
can be found in an interval which actually does not
affect the considered trait (Haley & Knott, 1992;
Martinez & Curnow, 1992). As a result, the esti-
mated effect of this ghost locus could be much
higher than that of any of the real QTLs in the
chromosome. An opposite and even more difficult
situation could be when the chromosome in question
contains a couple of linked QTLs in repulsion phase.
Then, a conclusion of ‘no effect’ on the considered
trait may result from single-interval mapping analy-
sis. That trans-association of QTLs could be a rather
common phenomenon even in interspecific crosses
has been demonstrated by DeVicente & Tanksley

Fig. 1 Variation of LOD scores
across interval pairs in the case when
both of the correlated quantitative
traits depend on two linked QTLs
(residing in adjacent intervals nos 3
and 4). For most of the parameter
values used in simulations see
Table 4; (a) R=0, coupling phase;
(b) R=0.7, coupling phase; (c) R=0,
repulsion phase; (d) R=0.7, repul-
sion phase.
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(1993) in tomato: they found that up to 36 per cent
of the detected QTLs had alleles with effects oppo-
site to the direction expected from the parental
differences.
The usual way of dealing with several linked

QTLs is multiple regression analysis or mixture-
model interval analysis which include markers as
regression-derived cofactors to account for segrega-
tion of QTLs on the same chromosome (Jansen &
Stam, 1994; Jiang & Zeng, 1995). Employing Monte

Carlo simulations, we have demonstrated here the
advantages of multitrait analysis in the detection of
linked QTLs within the framework of mixture
models. In spite of an increased number of param-
eters to be estimated, the proposed method allows
for an improvement in the correct detection and
estimation of linked QTLs. Although our model
deals with bivariate trait distributions, multivariate
situations can also be considered without a necessity
for a further increase in the number of parameters.

Table 4 Efficiency of bivariate two-interval mapping of linked QTLs, when both
of the correlated QTs depend on both QTLs (A/a and B/b)

dax day dbx dby r1 r2 bt

R LOD
H2|H0 H1|H0 H2|H1 sdax sday sdbx sdby sr1 sr2 bmk

0.26 0.27 0.27 0.26 40.13 78.37 2
0.0 16.09 14.56 1.53

0.22 0.21 0.23 0.21 17.24 18.61 2
CP

0.24 0.29 0.29 0.24 48.73 72.71 50
0.7 35.90 32.11 3.79

0.16 0.13 0.15 0.13 6.13 10.07 46
AD

0.22 0.22 µ0.22 µ0.22 40.64 79.30 8
0.0 3.51 1.77 1.74

0.25 0.29 0.25 0.26 21.07 22.57 3
RP

0.24 0.27 µ0.24 µ0.27 46.58 74.83 69
0.7 7.33 2.81 4.52

0.15 0.15 0.14 0.14 10.58 11.61 61

0.27 0.28 0.26 0.25 48.70 90.82 15
0.0 13.86 11.48 2.38

0.17 0.13 0.18 0.13 15.86 16.19 12
CP

0.26 0.27 0.28 0.26 49.49 89.35 95
0.7 31.55 24.21 7.34

0.09 0.09 0.09 0.06 5.84 4.72 97
NA

0.28 0.27 µ0.28 µ0.27 49.38 91.86 42
0.0 6.09 2.83 3.26

0.17 0.20 0.18 0.18 15.48 15.68 37
RP

0.26 0.27 µ0.26 µ0.28 49.76 89.87 100
0.7 14.34 5.10 9.24

0.10 0.09 0.09 0.09 5.85 5.62 100

Most details are the same as described in Tables 1 and 2. The QTL effects were
equal: dax= dbx= day= dby=0.265. Two estimates of the power of the test
H2|H1 (two QTLs vs. a single QTL) were compared here: (i) bt, based on the
chi-squared approximation for calculation of the critical value of the test
statistics under H1, and (ii) bmk, based on the critical value derived from the
distribution of the test statistics when the two-QTLs model was applied to 5000
Monte Carlo experiments with one segregating QTL (i.e. H1 was true).
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Table 5 Some examples of two-interval mapping analysis on barley data of NABGMP (Steptoe/Morex dihaploid mapping
population)

Int LOD dax dbx sx day dby sy R PH2|H1 (d.f.)

Single-trait analysis: a-amylase
Example 1

12 4.96 µ 2.9 3.4
Chr2–Env4 0.0015 (2)

2,12 7.77 2.0 2.8 3.3

Two-trait analysis: a-amylase – malt extract
3,11 7.06 µ 2.8 3.4 0.5 µ 1.4 0.62

0.0012 (1)
3,11 9.28 1.9 2.4 3.3 0.9 µ 1.4 0.61

Single-trait analysis: a-amylase
Example 2

12 4.19 µ 3.4 4.1
Chr2–Env14 0.270 (2)

6,12 4.68 1.4 2.6 4.1

Two-trait analysis: a-amylase – malt extract
5,12 6.09 µ 3.1 4.1 0.9 µ 1.4 0.27

0.037 (1)
5,12 7.03 1.3 2.7 4.0 1.0 µ 1.3 0.31

Single-trait analysis: a-amylase
Example 3

10 5.26 3.5 µ 4.2
Chr1–Env9 0.007 (2)

10,21 7.41 3.7 µ2.5 4.0

Two-trait analysis: a-amylase – kernel weight
10,21 6.21 3.5 µ 4.2 µ1.0 µ0.4 2.4 µ0.13

0.002 (1)
10,21 8.25 3.6 µ2.3 4.0 µ0.4 µ0.8 2.4 µ0.13

Single-trait analysis: a-amylase
Example 4

10 6.79 4.1 µ 4.2
Chr1–Env10 0.045 (2)

11,21 8.14 4.5 µ2.2 4.0

Two-trait analysis: a-amylase – kernel weight
11,21 7.23 4.3 µ 4.2 0.2 µ0.6 3.1 µ0.23

0.003 (1)
11,21 8.99 4.5 µ2.3 4.0 0.2 µ0.5 3.1 µ0.24

Int LOD dax dbx dcx sx day dby dcy sy R PH2|H1 (d.f.)

Single-trait analysis: a-amylase
Example 5

11 7.95 4.4 — — 3.9
Chr1–Env13 0.038 (2)

11,21 9.33 4.5 — µ1.7 3.8

Two-trait analysis: a-amylase – kernel weight
11,21 10.83 4.5 µ µ 3.9 µ1.8 µ µ2.7 4.2 µ0.39

0.021 (1)
11,21 11.98 4.7 µ µ1.6 3.8 µ1.8 µ µ2.0 4.2 µ0.39
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This seems to be possible if for any pair of intervals
one can use the first two principal components of
the multivariate complex (Korol et al., 1994; Ronin
et al., 1995; Weller et al., 1996).
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