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Pooling DNA in the identification of parents

ROBERT N. CURNOW* & ANDREW P. MORRIS
Department of Applied Statistics, The University of Reading, PO Box 240, Earley Gate, Reading RG6 6FN, U.K.

The preliminary pooling of DNA samples to reduce the number of tests required to identify
which of a set of potential parents could be the parent of an individual progeny plant is
discussed. The progeny plant may be homozygous or heterozygous at the marker locus
involved and the marker alleles of the other parent plant may or may not be known. The
expected number of tests is derived for varying pool sizes when the DNA of each parent plant
is in one and only one DNA pool. Optimal pool sizes are calculated for a range of number of
potential parents and of marker allele frequencies. Designs with each parent in more than one
pool and the sequential use of up to three independent marker loci are also discussed.
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Introduction

Molecular markers are increasingly being used to
decide which of a group of animals or plants could
possibly be a parent of a particular individual animal
or plant and which can definitely be excluded as a
parent (Ellstrand, 1984; Tammisola et al., 1994).
Although equally applicable to animal populations,
we shall, for ease of presentation, assume that we
are dealing with a plant species which is outbreeding
and diploid. In this paper we shall assume that only
the male parent needs identification. We may or
may not have information about the marker alleles
of the female parent. A future paper will discuss the
identification of both parents. Often the parentage
of several different plants will be of interest and
compromises will then be needed because, as we
shall see, the best way to pool the DNA of the
potential parents does depend on the genotype of
the progeny plant.
Assuming no errors in the typing of the molecular

markers and no germ-line mutations, a plant can be
excluded as a possible parent if it possesses neither
of the alleles of the progeny plant. Knowing the
marker alleles of the female parent may provide
further evidence leading to exclusion. All the plants
to be tested will be referred to as potential parents,
and all the plants that cannot be excluded on the
basis of their marker alleles will be referred to as
possible parents. We shall assume throughout that
one of the potential parents is the real parent. This
can clearly only be a reasonable assumption in

controlled environments or with closed, isolated
populations.
Determining the molecular markers at a locus for

a large number of potential parents can be time-
consuming and expensive. If there are many poten-
tial parents and the probability of exclusion on the
basis of the marker alleles at the locus is high, then
a preliminary screen based on pooling the DNA of
groups of plants may substantially reduce the
number of tests required. If the pooled DNA does
not contain the required allele or alleles, then all the
parents contributing to the pool can be excluded. If
the pooled DNA does contain the required allele or
alleles then we know that the pool contains at least
one possible parent. We shall assume that a pool
being positive, i.e. containing the required allele or
alleles, does not provide any information about the
number of possible parents in the pool but simply
that there is at least one.
The pooling of the DNA is almost equivalent to

the use of group screening for defective items
described originally by Dorfman (1943) and Sterrett
(1957), with more recent work by Balding et al.
(1994) and Bruno et al. (1995) on the screening of
clone libraries for rare ‘positives’. Our problem
differs in that we know that there is at least one
possible parent, the real parent, among the potential
parents.
By pooling the DNA, we hope to reduce the

number of tests required to identify all the possible
parents. Until the penultimate section, only two
stages of testing will be allowed and so the parents
in pools not excluded by the first stage of testing will
be tested individually. More complicated schemes*Correspondence: E-mail: r.n.curnow@reading.ac.uk
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will often be too costly in time and organization. We
shall attempt to minimize, by choice of the size of
the pool, the expected number of tests required.
However, cost may depend on the number of tests
possible on each electrophoretic gel as well as on
the total number of tests. This may be a considera-
tion in choosing between similar schemes.
In the next section, we derive an expression for

the expected number of tests required using designs,
allocations of potential parents to pools, in which
each parent is allocated to a single pool. The
optimal pool size will be derived in terms of the
number of potential parents and the probability, q,
that a potential parent, not the real parent, does not
have the required allele or alleles to be a possible
parent. Then, the exclusion probability, q, will be
derived as a function of the genotype of the progeny
and the frequencies of the marker alleles in the
population. When the progeny plant is heterozygous
at the marker locus and the marker alleles of the
female parent are not known, the expected number
of tests has to be averaged over the probabilities of
the marker type of the female parent. Following this
the single-replicate designs will be compared with
designs including each parent in two, three or four

different pools. Finally the use of sequences of
molecular markers will be considered.

Derivation of the expected number of tests

If the number of potential parents, N, can be factor-
ized as N= nk, then we can form n pools of k
parents each. The probability that a pool will
contain at least one possible, i.e. nonexcludable,
parent will be (1µqk), where q is the probability
that an individual parent can be excluded. All
parents in such a pool will be tested individually and
so, recalling that all the parents in the pool contain-
ing the real parent are bound to be tested, the
expected number of tests is N if k=1, and
N/k+k+(Nµk)(1µq k) if ke2. The expected
number of tests per potential parent is therefore
E=1 if k=1, and:

E=1+
1

k
µA1µ

k

NB q k, if kE2. (1)

The values of E for these single-replicate designs for
a range of values of N and q are given in Table 1.
The possible larger pool sizes omitted from the table

Table 1 Expected number of tests per potential parent required in single-
replicate designs for a range of values of number of potential parents, N, pool
size, k, number of pools, n, and probability of exclusion, q

q

k n 0.0 0.1 0.5 0.8 0.9 0.95 1.0

N=36
1 36 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 18 1.500 1.491 1.264 0.896 0.735 0.648 0.556
3 12 1.333 1.332 1.219 0.864 0.665 0.547 0.417
4 9 1.250 1.250 1.194 0.886 0.667 0.526 0.361
6 6 1.167 1.167 1.154 0.948 0.724 0.554 0.333

N=64
1 64 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 32 1.500 1.490 1.258 0.880 0.715 0.579 0.531
4 16 1.250 1.250 1.191 0.866 0.635 0.403 0.312
8 8 1.125 1.125 1.122 0.978 0.748 0.410 0.250

N=144
1 144 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 72 1.500 1.490 1.254 0.869 0.701 0.563 0.514
3 48 1.333 1.732 1.211 0.832 0.620 0.426 0.354
4 36 1.250 1.250 1.189 0.852 0.612 0.371 0.278
6 24 1.167 1.167 1.152 0.915 0.657 0.343 0.208
8 18 1.125 1.125 1.121 0.966 0.718 0.354 0.181
9 16 1.111 1.111 1.109 0.985 0.748 0.365 0.174
12 12 1.083 1.083 1.083 1.020 0.824 0.407 0.167
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were never optimal. Clearly, for these values of N,
the testing of each individual parent (k=1) is to be
preferred if the probability of exclusion, q, is less
than q=0.5. When q approaches 1, the expected
number of tests per potential parent approaches

E=
1

k
+

k

N
,

which is minimized by n= k=GN. Therefore, if q is
likely to be much above q=0.5, a reasonable choice
for n and k is n= k=GN. There will be substantial
savings in the number of tests if q is near q= 1 with
the proportional saving increasing with the number
of potential parents, N.

Calculating the probability of exclusion

The probability, q, that a particular plant can be
excluded on the basis of an individual test depends
on whether the progeny plant is homozygous or
heterozygous at the marker locus, and also on the
frequencies of the marker alleles in the population.
Write f1, f2, . . . , fm, with

+
m

i=1

f i=1,

for the frequencies of the m marker alleles M1,
M2, . . . , Mm in the population.
Consider first a homozygous progeny with marker

genotype M1M1. The only potential parents that can
be excluded by their genotype at the marker locus
are those with no M1 allele and so q=(1µf1)2, what-
ever the marker genotype of the female parent.
Equation 1 and Table 1 can therefore be used with
q=(1µf1)2.
Consider now a heterozygous progeny, M1M2.

All the other alleles, M3, M4, . . . , Mm, can be
classified as a single allele, M, with frequency
f= f3+f4+ . . .+fm=1µf1µf2. The marker genotype
of the female parent, which may be known, must be

M1M1, M1M2, M2M2, M1M or M2M. Bayes’ Theorem
can be applied to the genotypes of the female parent
and the progeny plant to obtain the probability of
the genotype of the female parent given the geno-
type of the progeny plant as:

P(Female Parent Genotype|Progeny Genotype)

=
P(Progeny Genotype|Female Parent Genotype)

P(Progeny Genotype)
ÅP(Female Parent Genotype).

Assuming random mating with respect to the marker
locus, the probabilities of the five genotypes for the
female parent are shown in the second column of
Table 2. The third column shows the male parent
genotypes that would be excluded if we knew the
female genotype and the final column the probabili-
ties of these genotypes in the population.
If the marker genotype of the female parent is

known, then the last column of Table 2 can be used
to provide the values of q for (1) and hence for
Table 1.
If the marker genotype of the female parent is not

known, then the expected number of tests (eqn 1)
must be averaged over the distribution of q shown in
Table 2. So (1) becomes:

E=1 if k=1

E=1+
1

k
µA1µ

k

NB E(q k) if kE2, (2)

where

E(q k)= 1
2 (1µf2)2k+1+ 1

2 (1µf1)2k+1+ 1
2 (1µf )f 2k.

Table 3 shows the expected number of tests for
N=36, 64 and 144 when the pool sizes are k= 1

2N
1
2

and N
1
2 for some possible sets of values for the

marker allele frequencies f1, f2 and f. The only gains
from pooling, Es1, occur when both of the alleles
of the progeny plant are rare, f1 = f2 = 0.05. In this
case, a pool size of k= 1

2N
1
2 is slightly more efficient

than k=N
1
2.

Table 2 Probability calculations for a heterozygous progeny, M1M2

Female parent Excluded male Probability
marker genotype Frequency parent genotype exclusion, q

M1M1
1
2 f1 M1M1, M1M (1µf2)2

M1M2
1
2 ( f1+f2) — f 2

M2M2
1
2 f2 M2M2, M2M (1µf1)2

M1M 1
2 f M1M1, M1M (1µf2)2

M2M 1
2 f M2M2, M2M (1µf1)2
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Similar calculations are possible when more than
one progeny plant is available but the results will
then depend on the individual genotypes of all the
progeny.

Pools with parents replicated

So far, only pool designs with each potential parent
in one and only one pool have been considered. The
calculation of the expected number of tests, E, for
designs with replicates, is complicated by the need to
allow for the possibility that in a nonexcludable pool
all but one of the parents can be excluded on the
basis of information from other pools. The prob-
ability of this occurring depends on high-order
association patterns of parents in pools and can only
be expressed algebraically if there is so much repli-
cation that there will almost certainly be more
testing than with individual testing of the potential
parents.
Ignoring this complication, we shall assume that

each parent is replicated equally often and does not
occur in the same pool with any other parent more
than once. As before, N is the number of potential
parents, k the pool size, and q the probability of
exclusion of a parent on the basis of an individual
test. The number of replicates of each parent will be
r, so that the number of pools is:

n=Nr/k.

The real parent and all other nonexcludable
parents will require further individual testing and
the expected number of these further tests is:

1+(Nµ1)(1µq). (3)

Any of the excludable parents in a pool containing
the real parent will be further tested if all of the

other (rµ1) pools containing it include at least one
possible parent. This has probability:

(1µq kµ1)rµ1

and contributes an expected number of further tests:
qr (kµ1)(1µq kµ1)rµ1. (4)

Similarly, the expected number of further tests for
excludable parents not in a pool with the real
parent, is:

q [Nµ1µr (kµ1)](1µq kµ1)r. (5)

Adding eqns 3, 4 and 5 and the first-stage testing of
the n pools and dividing by N, gives the expected
number of tests per potential parent as:

E=1, k=1

E= [n+1+(Nµ1)(1µq)+qr(kµ1)(1µq kµ1)rµ1

+q(Nµ1µr (kµ1))(1µq kµ1)r]/N kE2. (6)

Setting r=1 reproduces, as it must, formula 1. As
before, the expected number of tests (eqn 6) will
need to be averaged over the distribution of q in
Table 2 if the progeny plant is heterozygous and the
marker genotype of the female plant is not known.
Designs do not exist for all combinations of N, r

and k. The simplest two-replicate designs, (r=2),
occur when N is a perfect square. As a simple
example, when N=9 we can write the number of
each potential parent in a square array:

1 2 3
4 5 6
7 8 9

and form six pools of three parents each by using
the rows and columns of the square. Three-replicate
designs can similarly be formed if N is a perfect
cube. These designs with k=N

1
2 and k=N

1
3 are

special cases of lattice designs (Cochran & Cox,
1957) and larger numbers of replicates can be
obtained. In Table 4 all these designs are listed for
N=36, 64 and 144 with rR4. With ra4, the number
of pools is greater than 4N

1
2 or 4N

2
3 and little would

be gained over individual testing. Table 4 includes
the one other design available for N=36 which has
r=2, k=8 (Bose et al., 1954).
Table 4 shows the expected number of tests per

potential parent for the various designs when the
progeny plant is homozygous, q=(1µf1)2, or is
heterozygous and the female parent’s marker geno-
type is known so that q is one of the values in the
final column of Table 2. Table 4 shows, as expected,
that replication is only worthwhile compared with
single-replicate designs in terms of reducing the
number of further tests required if the probability of
individual exclusion, q, is large, for example greater

Table 3 Expected number of tests per potential parent for
a heterozygous progeny plant for varying number of
potential parents N, pool sizes k, and marker allele
frequencies f1, f2, f. Single-replicate with k=1

2N
1
2 and N

1
2

E

N f1 f2 f k=1
2N

1
2 k=N

1
2

36 0.10 0.90 0.00 1.114 1.061
36 0.05 0.05 0.90 0.669 0.727

64 0.10 0.90 0.00 1.068 1.052
64 0.05 0.05 0.90 0.639 0.751

144 0.10 0.90 0.00 1.045 1.050
144 0.05 0.05 0.90 0.661 0.825
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than 0.8. Even then the savings are only appreciable,
about 20 per cent, with the largest value of N
studied, when three- or four-replicate designs are
best. The designs with replicates may have an advan-
tage in that they may provide some check on the
occurrence of errors in classifying pools as exclud-
able or not.
Table 5 gives a few examples of the expected

number of tests when the progeny plant is hetero-
zygous and the marker type of the female parent is
unknown. Pooling is still preferable to no pooling,
Es1, only when both alleles in the heterozygous
progeny are rare, f1 = f2 = 0.05. Additional replica-
tion does not reduce the number of tests per parent
by a worthwhile amount.
Some checks can be made on the importance of

ignoring the possibility of identifying a possible
parent because all other parents in a pool containing
it have been excluded on the basis of evidence from
other pools. If the only possible parent is the real
parent, then, for a single-replicate design, the
expected number of tests per potential parent is:

E=1/k+k/N (7)

and for a two-replicate design (k=N
1
2, n=2N

1
2), the

true parent will be identified without further testing
and so:

E=2/k. (8)

If there is just one possible parent in addition to
the real parent, then, with a single-replicate design,
the probability that the two possible parents are in
the same pool is (kµ1)/(Nµ1) leading to:

Table 4 Approximate expected number of tests per potential parent for designs
with replication compared with the ‘best’ single-replicate designs and designs
with no pooling

q

N k n r 0 0.1 0.5 0.8 0.9 0.95 1.0

36 1 36 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
36 6 6 1 1.167 1.167 1.154 0.948 0.724 0.554 0.333

36 6 12 2 1.333 1.333 1.308 0.956 0.666 0.503 0.361
36 8 9 2 1.250 1.250 1.244 1.010 0.700 0.488 0.278
36 6 18 3 1.500 1.500 1.462 1.008 0.722 0.603 0.528
36 6 24 4 1.667 1.667 1.617 1.092 0.836 0.750 0.694

64 1 64 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
64 8 8 1 1.125 1.125 1.122 0.978 0.748 0.544 0.250

64 8 16 2 1.250 1.250 1.243 0.983 0.654 0.444 0.266
64 4 48 3 1.750 1.750 1.594 1.068 0.888 0.820 0.766
64 8 24 3 1.375 1.375 1.365 1.011 0.653 0.485 0.391
64 8 32 4 1.500 1.500 1.486 1.056 0.706 0.581 0.516

144 1 144 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
144 12 12 1 1.083 1.083 1.083 1.020 0.824 0.588 0.167

144 12 24 2 1.167 1.167 1.166 1.046 0.723 0.434 0.174
144 12 36 3 1.250 1.250 1.249 1.076 0.676 0.405 0.257
144 12 48 4 1.333 1.333 1.332 1.110 0.666 0.436 0.340

Table 5 Expected number of tests per potential parent for
a heterozygous progeny plant for varying number of
potential parents, N, pool sizes, k, and marker allele
frequencies f1, f2, f. Female parent marker alleles
unknown. Varying number of replicates, r, with k=N

1
2

N k r n f1 f2 f E

36 6 1 6 0.10 0.90 0.00 1.061
36 6 1 6 0.05 0.05 0.90 0.727

36 6 2 12 0.10 0.90 0.00 1.152
36 6 2 12 0.05 0.05 0.90 0.671

36 6 4 24 0.10 0.90 0.00 1.396
36 6 4 24 0.05 0.05 0.90 0.843

144 12 1 12 0.10 0.90 0.00 1.050
144 12 1 12 0.05 0.05 0.90 0.825

144 12 2 24 0.10 0.90 0.00 1.104
144 12 2 24 0.05 0.05 0.90 0.727

144 12 4 48 0.10 0.90 0.00 1.219
144 12 4 48 0.05 0.05 0.90 0.674
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E=1/k+(2Nµkµ1) k/[N(Nµ1)]. (9)

With a two-replicate design four individual tests are
needed if the two possible parents are never in the
same pool, leading to:

E=2/k+4(Nµ2k+1)/[N(Nµ1)]. (10)

Equations (7) and (9) show that, at least for NR100,
E is generally minimized for single-replicate designs
by taking n= k=N

1
2. The only exception is when

there is an additional possible parent and N=36;
then n=9, k=4 is slightly preferable to n= k=6,
with E=16.7 compared with E=17.1. With k=N

1
2,

single- and two-replicate designs have the same
E-value when the only possible parent is the real
parent.
Table 6 shows the values of E from eqns (7), (9)

and (10) for a range of values of N with k=N
1
2. The

two-replicate designs are more efficient than the
single-replicate designs when there is a possible
parent in addition to the real parent. The advantage
increases to 20 per cent when N=100.

Using several molecular markers

An alternative to replication is to test those pools
not excluded using one molecular marker by using a
second molecular marker, and those pools not
excluded by the second marker by a test using a
third marker, and so on. We shall assume a single-
replicate design for the N potential parents with n
pools of k plants each, N= nk. We shall assume that
there are no correlations in the occurrence of
particular alleles at different molecular marker loci.
As potential parents are eliminated, the optimal
pool size k will change. The resulting changes in the

number of tests required would probably not be
sufficient to compensate for the extra work involved
in reconstructing the pools. The pools will therefore
be kept intact.
Writing Pi as the probability that a particular pool

not containing the real parent would be excluded by
the ith molecular marker, the probability that the
pool would be excluded by at least one of the first l
markers is (Feller, 1968):

P[l] =P1+P2+. . .+Plµ(P1P2+P1P3+. . .+Plµ1Pl)

+. . .+(µ1)lµ1P1P2 . . .Pl. (11)

The expected number of tests of the pool using up
to M molecular markers will be:

1+(1µP[1])+(1µP[2])+. . .+(1µP[Mµ1])

=M µ[P[1]+P[2]+. . .+P[Mµ1]).

If all individuals in the pools not excluded by the M
markers are tested individually using all M markers,
the expected total number of tests for the (nµ1)
pools not containing the true parent is:

(nµ1)[Mµ{P[1]+P[2]+. . .+P[Mµ1]}+kM(1µP[M])].

The pool containing the true parent will require
(M+kM) tests. Thus the expected total number of
tests per potential parent is:

[Mn(1+k)µ(nµ1)[P[1]+P[2]+. . .+P[Mµ1]]

µ(nµ1)kMP[M]]/N. (12)

With no pooling, k=1 and the expected total
number of tests per potential parent is:

{M+(Nµ1)[1µP[1]µP[2]µP[Mµ1]]}/N.

The expected number of possible parents at the
conclusion of the testing is:

1+(Nµ1) *
M

i=1

(1µqi), (13)

where qi is the probability of a potential parent
being excluded on the basis of alleles at the marker
i locus.
If the ith marker locus in the progeny plant is

homozygous, Pi in (11) is:

Pi= q k
i =(1µfi1)2k,

where fi1 and, later, fi2 and f̄i now refer to the
frequencies of the marker alleles M1, M2 and M at
the ith marker locus. If the ith marker locus in the
progeny plant is heterozygous:

Pi=E(q k
i ),

Table 6 Expected number of tests per potential parent, E,
one- and two-replicate designs with k=N

1
2

Real parent+one
possible parent

Real parent only
N r=1, 2 r=1 r=2

4 1.00 1.33 1.33
9 0.67 0.91 0.89
16 0.50 0.70 0.65
25 0.40 0.57 0.51
36 0.33 0.48 0.41
49 0.29 0.41 0.35
64 0.25 0.36 0.30
81 0.22 0.32 0.26
100 0.20 0.29 0.23
144 0.17 0.24 0.19
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where as in eqn (2):

E(q k
i )= 1

2 (1µfi2)2k+1+1
2(1µfi1)2k+1+1

2 (1µfi)f 2ki

if the marker genotype of the female parent is
unknown. The value of qi can be taken from the last
column of Table 2 if the maternal marker type is
known.
Table 7 shows the performance of a three-locus

system with 64 possible parents for a variety of
frequencies for the alleles of the progeny plant; for
example, 0.05 represents a homozygote with allele
frequency 0.05 and 0.05/0.2 a heterozygote with
allele frequencies 0.05 and 0.2. The genotypes of the
maternal parent are assumed not known. The order

of testing and k, the size of the pool, have been
chosen to minimize the expected number of tests.
The fifth column shows the expected number of tests
per parent; the sixth column the expected number of
tests with no pooling, k=1, and the seventh column
the expected number of possible parents after the
testing. Table 8 shows comparable values for single-
locus and two-loci testing.
Table 7 shows that pooling has considerable

advantages in terms of number of tests required
unless the allele frequencies are relatively high. The
overall, and unsurprising, advantage of rare alleles is
clear in terms of both the expected number of tests
and the expected number of possible parents

Table 7 Performance of three-marker loci. Test loci in optimal order and pool size optimal, N=64

Progeny allele frequencies Expected
Optimal remaining

Locus 1 Locus 2 Locus 3 pool size, k E (optimal k) E (k=1) possible parents

0.05 0.05 0.05 4 0.907 2.025 1.058
0.05 0.05 0.05/0.05 4 0.911 2.025 1.061
0.05 0.05/0.05 0.05/0.05 4 0.915 2.025 1.064
0.05/0.05 0.05/0.05 0.05/0.05 4 0.922 2.026 1.067
0.05 0.05 0.2/0.05 4 0.992 2.025 1.147
0.05 0.05/0.05 0.2/0.05 4 1.000 2.025 1.154
0.05/0.05 0.05/0.05 0.2/0.05 4 1.010 2.026 1.161
0.05 0.05 0.2 4 1.065 2.025 1.216
0.05 0.05 0.2/0.2 4 1.074 2.025 1.249
0.05 0.05/0.05 0.2 4 1.075 2.025 1.226
0.05 0.05/0.05 0.2/0.2 4 1.085 2.025 1.261
0.05/0.05 0.05/0.05 0.2 4 1.087 2.026 1.237
0.05/0.05 0.05/0.05 0.2/0.2 4 1.097 2.026 1.273
0.05 0.2/0.05 0.2/0.05 4 1.160 2.039 1.369
0.05/0.05 0.2/0.05 0.2/0.05 4 1.176 2.040 1.386
0.05 0.2/0.05 0.2 4 1.291 2.039 1.542
0.05 0.2/0.05 0.2/0.2 4 1.308 2.039 1.626
0.05/0.05 0.2/0.05 0.2 4 1.310 2.040 1.567
0.05/0.05 0.2/0.05 0.2/0.2 4 1.328 2.040 1.656
0.05 0.2 0.2 2 1.430 2.050 1.796
0.05/0.05 0.2 0.2 2 1.444 2.052 1.834
0.05 0.2 0.2/0.2 2 1.448 2.020 1.920
0.05/0.05 0.2 0.2/0.2 2 1.462 2.052 1.964
0.05 0.2/0.2 0.2/0.2 2 1.472 2.056 2.063
0.05/0.05 0.2/0.2 0.2/0.2 2 1.487 2.057 2.113
0.2/0.05 0.2/0.05 0.2/0.05 4 1.502 2.075 1.926
0.2/0.05 0.2/0.05 0.2 2 1.644 2.075 2.361
0.2/0.05 0.2/0.05 0.2/0.2 2 1.671 2.075 2.573
0.2/0.05 0.2 0.2 2 1.792 2.102 3.000
0.2/0.05 0.2 0.2/0.2 2 1.831 2.102 3.312
0.2/0.05 0.2/0.2 0.2/0.2 2 1.881 2.116 3.671
0.2 0.2 0.2 2 2.062 2.143 3.939
0.2 0.2 0.2/0.2 2 2.119 2.143 4.397
0.2 0.2/0.2 0.2/0.2 1 2.163 2.163 4.924
0.2/0.2 0.2/0.2 0.2/0.2 1 2.186 2.186 5.535
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remaining after the tests. The latter is independent
of the number of parents in each pool.
Table 8 shows the same general features noted for

Table 7. Comparing the results of Tables 7 and 8,
the two-locus tests incur more tests per parent than
a single-locus test but at considerable savings in the
number of possible parents remaining at the end of
the tests. The same is true for the comparison of
three-loci tests in place of two. The loci for which
the progeny plant is homozygous and the loci for
which the progeny plant has the rarest allele should
be tested before the other loci. The optimal size of
the pool for a single locus is four for rare alleles and
one for the commoner alleles. For two loci, the
optimal pool size can also be two for intermediate
or mixed-allele frequencies. The optimal size of pool
with three loci is often four, and only one when all
the alleles possessed by the progeny plant are rela-
tively common.

Discussion

There are clear advantages in pooling the DNA of
the potential parents if the number of such parents
is large and the alleles found in the progeny are
rare. A good rule, whether the parent of a single
progeny plant or animal or the parents of several

different progeny are sought, is to choose a pool size
close to 12N

1
2, where N is the number of potential

parents. There are considerable advantages in the
sequential use of different markers in terms of
reducing the number of possible parents remaining
at the conclusion of the tests. Unless the number of
potential parents is very large, there is little advan-
tage in including each potential parent in more than
one pool.
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