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Many complex human diseases and traits of biological and/or
economic importance are determined by interacting networks
of multiple quantitative trait loci (QTL) and environmental
factors. Mapping QTL is critical for understanding the genetic
basis of complex traits, and for ultimate identification of
genes responsible. A variety of sophisticated statistical
methods for QTL mapping have been developed. Among
these developments, the evolution of Bayesian approaches
for multiple QTL mapping over the past decade has been
remarkable. Bayesian methods can jointly infer the number

of QTL, their genomic positions and their genetic effects.
Here, we review recently developed and still developing
Bayesian methods and associated computer software
for mapping multiple QTL in experimental crosses. We
compare and contrast these methods to clearly describe
the relationships among different Bayesian methods.
We conclude this review by highlighting some areas of
future research.
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Introduction

The variation of most complex traits results from
interacting networks of multiple quantitative trait loci
(QTL) and environmental factors (Reifsnyder et al., 2000;
Carlborg and Haley, 2004; Moore 2005; Stylianou et al.,
2006; Valdar et al., 2006; Wang et al., 2006). The main goal
of mapping QTL is to find regions or loci of a genome that
are strongly associated with a phenotype measured in an
experimental cross or other types of segregating popula-
tions. This is largely a model selection issue (Broman
and Speed, 2002; Sillanpää and Corander, 2002; Yi, 2004):
what is the genetic architecture, in terms of genomic
regions, gene action and possible interactions, that is best
supported by the data? Identification of multiple interact-
ing QTL has been a formidable challenge for geneticists
and statisticians, mainly due to numerous possible
variables associated with hundreds or thousands of
genomic loci (markers and/or loci within marker inter-
vals) that lead to a huge number of possible models
(for example, Yi et al., 2005). The problem is further
complicated by the facts that the genomic loci on the same
chromosome are highly correlated and the genotypes at
many loci are unobserved.

Non-Bayesian QTL mapping approaches have domi-
nated QTL mapping theory and practice for most of the
past two decades. Traditional non-Bayesian QTL map-
ping methods utilize pre-specified simple statistical
models, which fit the effects of only one QTL whose

putative position is scanned across the genome (for
example, Lander and Botstein, 1989; Zeng, 1994; Jansen
and Stam, 1994). Extensions of this approach can allow
for main and epistatic effects at two or perhaps a few
QTL at a time and employ a multidimensional scan to
detect QTL. Rather than fitting pre-specified models to
the observed data, model selection approaches proceed
by identifying from a set of potential models the subset
of models that are best supported by the data. Various
model selection methods for multiple QTL mapping
have been recently proposed from both non-Bayesian
and Bayesian perspectives. Non-Bayesian approaches
sequentially add or delete QTL using forward or
stepwise selection procedures and apply criteria such
as P-values or a modified Bayesian information criterion
to identify the ‘best multiple QTL model’ (Kao et al.,
1999; Carlborg et al., 2000; Reifsnyder et al., 2000;
Zeng et al., 2000; Bogdan et al., 2004; Baierl et al., 2006).

Our emphasis in this review is on the application of
Bayesian methodology and its related algorithms in
multiple QTL mapping. Emergence of the Bayesian
approach has been driven by not only the availability
of new and powerful computational techniques but also
the pragmatic advantages of the Bayesian framework. In
Bayesian analysis, a comprehensive probabilistic model
is employed to describe relationships among observed
(data and knowledge) and unobserved (parameters and
hypotheses) quantities (Carlin and Louis, 2000; Gelman
et al., 2004). Inference is then based on the conditional
distribution of the unknowns, given the observed data.
The Bayesian paradigm has inherent flexibility and
generality, which in principle allows it to cope with
models with virtually arbitrary complexity. The Bayesian
approach can fully take into account the uncertainties
associated with all unknowns. Inferences about any
particular parameter of interest can be obtained by
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averaging over possible models, rather than using a
single selected model. Therefore, Bayesian methods can
provide more robust inferences than non-Bayesian
methods. Another attractive feature of Bayesian analysis
is the ability to incorporate prior information into the
specification of the model.

Applied to multiple QTL analysis, the Bayesian
framework can treat the number of QTL (and thus the
size or dimensionality of the model) as an unknown, and
can simultaneously model main effects of QTL, environ-
mental factors, gene–gene interactions (epistatic effects)
and gene–environment interactions (G�E) (Yi et al.,
2005, 2007b). Uncertainties about unobserved quantities
are built directly into the Bayesian QTL model. That is,
we can assign a reasonable prior to each unobserved
quantity before observing any phenotypes. Assumptions
and information from previous studies can be incorpo-
rated into model priors about the shape of the distribu-
tion of phenotypic values, the relative importance of
different regions of the genome, and the likely number
and pattern of genomic regions that might be detected.

Over the past decade, a variety of Bayesian methods
have been developed to map multiple QTL for complex
traits in experimental crosses (Satagopan and Yandell,
1996; Satagopan et al., 1996; Sillanpää and Arjas, 1998;
Stephens and Fisch, 1998; Hoeschele, 2001; Sen and
Churchill, 2001; Gaffney, 2001; Yi and Xu, 2002; Xu, 2003;
Yi et al., 2003a, b, 2005; Narita and Sasaki, 2004; Wang
et al., 2005; Zhang et al., 2005). In this review, we describe
these recently developed and still developing Bayesian
multiple QTL mapping methods. We compare and
contrast these methods to clearly describe the relation-
ships among different Bayesian methods. We illustrate
improvements in QTL mapping using Bayesian vs
frequentist methods using hypertension data from a
murine backcross (Sugiyama et al., 2001). We conclude
this review by highlighting some areas of future research.

QTL data structure and notation

Experimental crosses for QTL mapping are usually
derived from two inbred parental lines. Parental lines are
first crossed to produce a hybrid F1 generation. Subsequent
segregating generations are obtained by selfing, sib-mating
or backcrossing to the parental lines. Observed data in
QTL mapping consist of phenotypic values of a complex
trait and molecular marker data. We denote the pheno-
typic values by the vector y¼ (y1, y2,y, yn)T, and the
marker data by the n� k matrix m¼ (mij), where n and k
represent the number of individuals and markers, respec-
tively, in the mapping population. This review does not
address the problem of building marker linkage maps and
assumes that the marker linkage map has been built before
QTL mapping. The observed marker data include not only
the marker genotypes but also the genomic positions of the
markers. Besides phenotypic values andmarker data, most
QTL studies usually measure some discrete or continuous
environmental factors that may affect the phenotype.
We use the term covariates synonymously with environ-
mental factors, and denote their observed values by the
matrix XE.

The marker data provide information about the
segregation of alleles at various genomic positions in
a mapping population. When the markers are densely
and regularly spaced, we restrict possible QTL to the

marker positions; otherwise, we insert some loci (called
pseudomarkers) between flanking markers separated by
some minimal distance, say 1 cM, and assume that
possible QTL occur at the genotyped markers and the
un-genotyped pseudomarkers (Sen and Churchill, 2001;
Wang et al., 2005; Yi et al., 2005). Inserting pseudomarkers
into marker intervals enables us to detect potential QTL
within the marker intervals, similar to the idea of
traditional interval mapping and composite interval
mapping methods (Lander and Botstein, 1989; Haley
and Knott, 1992; Zeng, 1994). However, inserting
pseudomarkers introduces a special statistical problem,
that is, QTL genotypes are generally unobserved and
thus are missing data. Unobserved QTL genotypes play a
central role in modeling the observed phenotype data.
We denote the QTL genotypes by the n� l matrix
g¼ (giq), where n and l represent the number of
individuals and QTL, respectively.
QTL mapping is the process of inferring the number of

QTL, their genomic positions, and the activity and size of
the associated genetic effects, given the observed data (y, m,
XE). Genetic effects include main effects of QTL as well
as gene–gene and gene–environment interactions. The
activity of a genetic effect refers to its inclusion or
exclusion from the model and will be described in detail
later. We organize the number of QTL, the positions of
QTL and the activity of the genetic effects into the vector
H. The vector H comprises a model index that identifies
the genetic architecture of the trait. As can be seen in the
next section, the statistical models and methods for
Bayesian QTL mapping are largely influenced by the
specification of H. We use the vector y to include
the corresponding environmental effects, genetic effects
and other model parameters (for example, overall mean,
residual variance, etc.). Therefore, the unobserved quan-
tities in QTL mapping include y, g and H.

Basic principles of Bayesian multiple QTL
mapping

Bayesian analysis refers to statistical methods for making
inferences from data using probability models for
quantities we observe and for quantities about which
we wish to learn. The full process of a typical Bayesian
analysis can be idealized by division into the following
main steps (Gelman et al., 2004): (1) setting up a full
probability model, the joint probability distribution, that
captures the relationships among all observable and
unobservable quantities (modeling); (2) calculating the
appropriate posterior distribution, the conditional distri-
bution of the unobserved quantities of ultimate interest,
given the observed data (computation) and (3) summar-
izing and interpreting the posterior distribution (poster-
ior inference).
In Bayesian QTL mapping, the joint probability

distribution of observed phenotypes y and unobserved
quantities (y, g, H) can be expressed as

pðy; y; g;HÞ ¼ pðyjXE; y; g;HÞ � pðgjm;HÞ � pðy;HÞ ð1Þ
where p(y|XE, y, g, H) is the likelihood function or the
sampling distribution of phenotypes conditional on all
the unknowns, p(g|m, H) is the conditional probability of
QTL genotypes, given the observed marker data and the
QTL positions, and p(y, H) is the prior distribution of the
parameters.
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Conditioning on the observed data (y, m, XE), using
the basic property of conditional probability known as
Bayes’ rule, yields the joint posterior distribution:

pðy; g;Hjy;m;XEÞ ¼
pðy; y; g;HÞ

pðyÞ
/ pðyjXE; y; g;HÞ � pðgjm;HÞ � pðy;HÞ

ð2Þ

where the denominator p(y) is the marginal likelihood of
the model, which does not depend on the unknown
quantities (y, g, H) and thus can be omitted from the joint
posterior distribution, yielding the unnormalized posterior
distribution (the right side of (2)). This joint posterior
distribution contains all information about the genetic
architecture of the phenotype.

From Equations ((1) and (2), the first challenge of
Bayesian QTL analysis is to develop the likelihood
function p(y|XE, y, g, H), the conditional probability of
QTL genotypes p(g|m, H) and the prior distribution p(y,
H), which must effectively capture the key features of the
underlying scientific problem. The second challenge is to
develop efficient algorithms to calculate the posterior
distribution p(y, g, H|y, m, XE). Great advances addres-
sing these two major challenges have been made in the
past decade, and many of these are reviewed throughout
the article.

The likelihood function p(y|XE, y, g, H) specifies the
distribution of phenotypes, given the QTL genotypes, the
genetic effects, the covariates and other model para-
meters, involving the problems such as how many loci
we should include in the model, and whether or not we
simultaneously model main effects of QTL, gene–gene
interactions (epistatic effects) and gene–environment
interactions (G�E effects). The specification of the prior
distribution p(y, H) is an important part of Bayesian
analysis. Indeed, through the prior distribution, we can
incorporate prior knowledge and information about the
unknown quantities. This is especially important in
multiple QTL analysis, since geneticists often have
substantial knowledge about the genetic architecture of
the phenotype under study. However, formal incorpora-
tion of prior knowledge is not trivial.

Evaluating p(g, y, H|y, m, XE) is analytically infeasible in
multiple QTL mapping and therefore requires computa-
tional methodology. Recent advances in computing
technology coupled with developments in Markov chain
Monte Carlo (MCMC) algorithms have opened up new and
promising directions for addressing the challenge of
sampling from a complicated posterior distribution (for
example, George and McCulloch, 1997; Chipman et al.,
2001; Godsill, 2001). MCMC methods simulate a Markov
chain {(y, g, H)(t); t¼ 1, 2,y,T}, which are random samples
(called posterior samples) from p(g, y, H|y, m, XE).
The posterior samples contain all of the information about
the joint posterior distribution and thus can be used to infer
the genetic architecture of the phenotype. Summarizing
and interpreting the posterior samples pose another
challenge, however, since the joint posterior distribution
includes a huge number of parameters.

R/qtlbim: QTL Bayesian interval mapping

A variety of Bayesian methods for mapping multiple
QTL are available. It is important that Bayesian methods
be easily accessible to scientists through user-friendly

software. Yandell et al. (2007) developed a comprehen-
sive package, called R/qtlbim, implementing several
Bayesian multiple QTL mapping methods in experi-
mental crosses (www.qtlbim.org). R/qtlbim is imple-
mented as an add-on package for the freely available and
widely used statistical language/software R (R Devel-
opment Core Team, 2006), and provides an extensible,
interactive environment for Bayesian analysis of multiple
QTL. It is built on the widely used R/qtl framework
(Broman et al., 2003), and includes all its advantages for
extensibility. Computationally intensive algorithms are
written in C, with data manipulation and graphics in
R. R/qtlbim is available across Window, Linux and
MacOS platforms and accepts a variety of input formats
via R/qtl.

R/qtlbim can simultaneously handle arbitrary covari-
ates, gene–gene interactions and gene–environment
interactions, and can analyze not only continuous traits
but also binary and ordinal traits. It includes several
efficient MCMC algorithms for generating posterior
samples from the joint posterior distribution of unknown
quantities, provides extensive informative graphical and
numerical summaries, and provides model selection and
convergence diagnostics of the posterior samples.

The implementation of R/qtlbim includes the full
process of a typical Bayesian analysis, (a) setting up the
conditional probability of QTL genotypes p(g|m, H),
the likelihood function of phenotypes p(y|XE, g, y, H)
and the prior distribution of the parameters p(y, H); (b)
generating samples from the joint posterior distribution
p(g, y, H|y, m, XE) and (c) graphically and numerically
summarizing the posterior samples and inferring the
genetic architecture of the trait.

In the following sections, we describe Bayesian multi-
ple QTL mapping methods, focusing on the methods that
have been implemented in R/qtlbim and discussing
other approaches.

Bayesian modeling of multiple QTL

As shown in Equation (1), the joint probability distri-
bution of observed phenotypes y and unobservable
quantities (y, g, H) can be divided into three components:
the conditional probability of QTL genotypes p(g|m, H),
the likelihood function p(y|y, g, H) and the prior
distribution p(y, H). Bayesian modeling of multiple
QTL requires specification of these three components.
In this section, we review recent developments of
the Bayesian multiple QTL modeling and highlight
connections and differences in terms of these three
specifications.

The conditional probability of QTL genotypes p(g|m, H)
For regular experimental designs (for example, F2,
backcross (BC) and recombinant inbred lines (RILs), we
can directly calculate the conditional probability dis-
tribution of genotypes for any locus, given the observed
marker data using multipoint methods (Jiang and Zeng,
1997; Rao and Xu, 1998).

Assume that a locus q (pseudomarker or marker) on
chromosome c is located between markers j and jþ 1,
and there are kc ordered markers on chromosome c. We
denote the genotype of individual i at locus q by giq, and
the marker data of individual i on chromosome c by mc.
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Then, the multipoint conditional probability of giq can be
computed by

pðgiqjmcÞ

¼
1TD1T12 � � �TjqDgiqTqðjþ1Þ � � �Dkc	1Tðkc	1Þkc1P
giq
1TD1T12 � � �TjqDgiqTqðjþ1Þ � � �DKc	1Tðkc	1Þkc1

ð3Þ

The terms in this equation depend on the experimental
cross design. For example, for a backcross population,
there are two genotypes for any locus. We denote the two
genotypes by bqbq and Bqbq for locus q. In Equation (3), giq
takes bqbq or Bqbq, 1¼ (1 1)T, Dk¼diag(p(bkbk) p(Bkbk)),
k¼ 1, 2,y, kc	1, Dgiq ¼ diagð1 0Þ for giq¼ bqbq or diag(0 1)
for giq¼BqBq, and Tjq is the genotype transition prob-
ability matrix from marker j to locus q, computed as

Tjq ¼
1	 rjq rjq
rjq 1	 rjq

� �
;

with rjq being the recombination ratio between marker j
and locus q. The transition probability matrix for two
markers is similarly defined. Note that when a marker is
fully informative, each genotype is uniquely identified
and thus p(bkbk) and p(Bkbk) equal 1 or 0. On the other
hand, if a marker is non-informative or missing, p(bkbk)
and p(Bkbk) equal 0.5.

By using Equation (3), we can calculate the conditional
probabilities of genotypes for all pseudomarkers and
markers before QTL mapping (Broman et al., 2003; Yi
et al., 2005). This probability distribution is used as the
prior distribution of QTL genotypes.

The likelihood function p(y|XE, y, g, H)
The likelihood function p(y|XE, y, g, H) specifies the
distribution of phenotypes, given the QTL genotypes,
the genetic effects, the covariates and other model
parameters. For a continuous trait, we usually use a
normal linear model to describe the likelihood function.
For a binary or ordinal trait, a generalized linear model
should be used (Yi and Xu, 2000; Yi et al., 2004, 2007a). In
this review, we focus on continuous traits. The likelihood
function p(y|XE, y, g, H) depends on how many loci
are included in the model, and whether or not we
simultaneously model main effects of QTL, covaria-
tes, gene–gene interactions (epistatic effects) and
gene–environment interactions (G�E effects). Most of
earlier Bayesian multiple QTL mapping methods only
considered main effects of multiple QTL (Satagopan and
Yandell, 1996; Satagopan et al., 1996; Sillanpää and Arjas,
1998; Stephens and Fisch, 1998; Gaffney, 2001; Xu, 2003).
Recently, Bayesian methods have been extended to
simultaneously include main and epistatic effects of
QTL (Yi and Xu, 2002; Yi et al., 2003a, b, 2005), and
arbitrary covariates and G�E effects (Yi et al., 2007b).

Assume that L loci are included in the model. For a
continuous trait, the phenotype can be expressed as a
linear model

y ¼ mþ XGbG þ XGGbGG þ XEbE þ XGEbGE

þ e9Xbþ e ð4Þ
where m is the overall mean; bG and bGG represent the
vectors of all main and epistatic effects associated with
L loci, respectively; bE and bGE represent the vectors of
environmental effects and gene–environment inter-
actions, respectively; XG, XGG, XE and XGE are the design

matrices of effect predictors and e is the vector of
independent normal errors with mean zero and variance
se2. Model (4) can be equivalently expressed as

yjXE; y; g;H 
 NnðXb; s2eIÞ ð5Þ
with I being the n�n identity matrix.
The number of genetic effects (and effect predictors)

depends on the experimental design. For a mapping
population with (Kþ 1) genotypes per locus, there are K
main effects for each locus and K2 epistatic effects for
any two loci. The ith row of XGbG and XGGbGG can be
expressed as

ðXGbGÞi ¼
XL
q¼1

XK
k¼1

x
ðqÞ
ik bðqÞk ; and

ðXGGbGGÞi ¼
XL
qoq0

XK
kok0

x
ðqÞ
ik x

ðq0 Þ
ik0 b

ðqq0 Þ
kk0

ð6Þ

where xik(q) and bk(q) are the main-effect predictors and the
main effects of locus q, respectively, and xik(q)xik0(q0) and bkk0(qq0)

are the epistasis predictors and the epistatic effects
between loci q and q0, respectively. Effect predictors are
determined from the genotypes of locus q by using a
particular transformation called a genetic model.
A commonly used genetic model is the Cockerham
genetic model (Kao and Zeng, 2002; Yi et al., 2005; Zeng
et al., 2005). For a backcross design with two segregating
genotypes denoted by bqbq and Bqbq at locus q, the
Cockerham model defines xi1(q)¼ ziq	0.5, where ziq
denotes the number of allele Bq. For an intercross (F2)
design with three segregating genotypes denoted by
bqbq, Bqbq and BqBq at locus q, the Cockerham model
defines xi1(q)¼ ziq	1 and xi2(q)¼ ziq (2	ziq)	0.5, respectively.
bk(q), for k¼ 1, 2, represent additive and dominance effects
of locus q, respectively, and bkk0(qq

0
), for k, k0 ¼ 1, 2, are called

additive–additive, additive–dominance, dominance–ad-
ditive and dominance–dominance interactions, between
loci q and q0, respectively.
The environmental term XEbE is defined as in

convenient hierarchical linear models and quantitative
genetics models (for example, Gelman et al., 2004; Lynch
and Walsh, 1998). The gene–environment interaction
predictors XGE are formed by multiplying two corre-
sponding predictors XG and XE. In Model (4), we only
include those (continuous or discrete) covariates that
may be important in understanding the effect of
genotype on phenotype in the model (for example,
gender, family indicators, locations and some other traits
correlated to the phenotype under study). Including
relevant covariates can make data collection approxi-
mately ignorable or help identify alternate sets of QTL
involved in different pathways. We only consider gene–
environment interaction terms that are highly probable
(for example, gene–sex interactions).

Three ways to deal with unobserved effect predictors
The above phenotype model reveals two special statis-
tical problems in multiple QTL mapping. First, the effect
predictors include many missing values because geno-
types at all pseudomarkers and at markers with missing
values are unobserved. Second, we need to define the
number of loci included in the model.
There are three approaches to deal with the problem of

unobserved genotypes. All three approaches need the
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conditional probability of QTL genotypes p(g|m, H). The
first approach takes uncertainty of the missing genotypes
into account by treating QTL genotypes as unknowns
and sampling them in the MCMC update procedure. The
second approach, a Bayesian analog to Haley and Knott
(1992), replaces all missing genotypes by their expected
values conditioning on the observed marker data, and
thus essentially removes QTL genotypes g¼ (gil) from the
list of unknowns. Although this second method ignores
the uncertainty of missing genotypes, which is unwise
when the rate of missing genotypes is high (say 20%) or
there is selective genotyping (Lander and Botstein 1989),
it has a big computational advantage over the first
method. These two methods are available in the package
R/qtlbim (Yandell et al., 2007). The third method, known
as multiple imputation, is to sample genotypes from the
conditional probability p(g|m, H) multiple times for each
locus. These multiple imputations are then averaged in a
careful way (Sen and Churchill, 2001).

Four ways to specify L, the number of loci included in the

model
Bayesian QTL mapping methods are largely determined
by the specification of L, the number of loci included in
the model. There are four ways to specify L, leading to
four types of Bayesian QTL mapping methods. As
discussed below, these ways affect the definition of the
model index H.

Setting up L as a small number: Earlier Bayesian QTL
mapping approaches were developed to estimate the
positions and the effect parameters of multiple QTL
based on models with a small number of included loci,
say L¼ 1, 2 or 3 (Stephens and Smith, 1993; Uimari et al.,
1996). With a few included loci, it is possible to evaluate
all loci or pairwise combinations across the genome.
The advantages of such approaches are simplicity
and similarity to traditional QTL mapping methods.
Although successful in many applications, such
approaches ignore the nature of complex traits in
statistical modeling and require prohibitive corrections
for multiple testing.

Treating L as the number of QTL––the variable dimension
model space approach: In QTL mapping studies, the
number of QTL is in fact unknown. A natural choice is to
directly treat L as the number of QTL (that is, L¼ l), an
unknown random variable. In this setting, the model
index H includes the number of QTL L and the positions
of L QTL denoted by l. Even with a moderate number of
L, the multiple interacting QTL model (4) includes many
close-to-zero genetic effects that can be removed from the
model. The unknown vector H also includes an additional
vector g of binary indicator variables, indicating inclusion
(gj¼ 1) or exclusion (gj¼ 0) of each genetic effect
associated with the L QTL (Yi et al., 2003a, b).

This choice results in an unknown dimension of the
parameter space in Model (4), and thus requires MCMC
algorithms to sample from the joint posterior distribution
of parameters with variable dimension. Green (1995)
developed the reversible jump-MCMC (RJ-MCMC)
algorithm that can move between spaces of differing
dimensions. The RJ-MCMC technique has become a
widely used tool in Bayesian multiple QTL mapping
(Hoeschele, 2001). Over the past decade, a variety of

RJ-MCMC algorithms have been proposed to map multi-
ple non-epistatic QTL (Satagopan and Yandell, 1996;
Sillanpää and Arjas, 1998; Stephens and Fisch, 1998;
Yi and Xu, 2000; Gaffney, 2001), and epistatic QTL in
experimental crosses (Yi and Xu, 2002; Yi et al., 2003a, b).

Setting up L as a large number and including all possible
effects in the model—shrinkage and stochastic search
variable selection methods: Xu (2003) proposed a
Bayesian hierarchical model in inbred line crosses that
simultaneously fits a large number of fixed loci (for
example, all observed markers) and always includes all
possible main effects, similar to the work of Meuwissen
et al. (2001) for outbred populations where each locus
may have multiple alleles. This approach removes the
model index H from the list of unknowns. Wang et al.
(2005) extended this method to fit a fixed number of loci
for each chromosome in a hierarchical model and include
the position of each locus as an unknown, thus allowing
the possibility of detecting QTL within marker intervals.
The key to the success of the above methods is Bayesian
hierarchical modeling, that is, each effect is assumed to
have its own variance parameter that is estimated from
the data. The hierarchical model approach shrinks
negligible effects close to zero and is thus able to
handle a large number of loci. The key advantage of
this shrinkage method is that it is easy to implement
MCMC algorithms and it avoids complicated model
selection procedures.

An alternative method that always includes all
possible effects in the model was proposed by Yi et al.
(2003b). This method is based on a variable selection
method, called stochastic search variable selection
(SSVS), developed by George and McCulloch (1993).
The difference between SSVS and other variable selection
approaches is that the dimensionality is kept constant
across all possible models by limiting the posterior
distribution of genetic effects for nonsignificant terms in
a small neighborhood near zero instead of removing
them from the model as is usually done. Due to this
unique property, SSVS is able to be easily implemented
via MCMC algorithms and can evaluate each effect on
the dependent response.

Setting up L as the upper bound of detectable QTL and
removing small effects from the model—the composite
model space approach: Yi (2004) and Yi et al. (2005)
developed a unified Bayesian model selection
framework to identify multiple QTL for complex traits
in experimental designs, based upon a composite model
space approach (Godsill, 2001). The composite model
space approach deals with the number of included loci L
as an upper bound on the number of detectable QTL
across the entire genome. The upper bound L is treated
as a fixed constant and is chosen to be larger than the
number of detectable QTL for a given data set. Even with
a moderate value for the upper bound, there are many
possible genetic effects, especially when considering
interactions, but most are negligible (that is, close to
zero) and can be excluded from the model. The
composite model space approach thus uses an
unobserved vector g of binary indicator variables to
indicate which genetic effects (main effects, epistatic
effects and gene–environment interactions) are included
in (gj¼ 1) or excluded from (gj¼ 0) the model. In this

Bayesian multiple QTL mapping
N Yi and D Shriner

244

Heredity



setting, the actual number of QTL l is not treated as an
explicit parameter but can be determined by g and L (Yi
et al., 2005). Thus, we have H¼ (g, l), where the vector
l represents the genomic positions of l QTL.

The key advantages of the composite model space
approach are that it provides a convenient way to
reasonably reduce the model space and to construct
efficient MCMC algorithms, especially for simulta-
neously mapping main effects, epistatic effects and
gene–environment interactions (Yi et al., 2005, 2007).
The composite model space approach has been imple-
mented in the package R/qtlbim.

The prior distribution p(y, H)
A Bayesian QTL analysis proceeds by placing prior
distributions on the unknowns (y, H). We outline in detail
the composite model space approach that has been
implemented in the package R/qtlbim (Yi, 2004; Yi et al.,
2005, 2007b) and discuss other methods described in the
last section.

The prior for the overall mean m is chosen to be
normally distributed with mean Z0 and variance t02. We
choose Z0¼ 1/n

P
i¼ 1
n yi, and t02¼ (1/n	1)

P
i¼ 1
n (yi	ȳ)2.

We choose an inverse-Gamma(a, b) as the prior of se2.
Gaffney (2001) suggested a¼ 3 and b¼ sy2, which has
prior mean and variance equal to sy2/2. In the package R/
qtlbim, we take the non-informative prior p(se2)p1/se2.

For the positions of QTL, the simplest and most widely
used prior assumption is that the positions are indepen-
dently and uniformly distributed over the pre-set loci
across the genome. The basic framework of the compo-
site model space approach provides flexible ways to
reduce the model space by putting some constraints
on models. We have incorporated two global constraints
on models into our algorithms and software R/qtlbim as
options (Yi et al., 2007b). These constraints dramatically
reduce the model space and may be useful for efficiently
detecting multiple interacting QTL. The first constraint
restricts the spacing among multiple linked QTL. On
chromosome c, forcing QTL to be at least dc cM apart
excludes the possibility of fitting closely linked QTL if dc
is large. The distance dc should depend on the density of
markers on chromosome c and on the sample size n. We
suggest setting it to the average length of marker
intervals on chromosome c. The second constraint
restricts the number of detectable QTL on each chromo-
some to Lc with Lp

P
Lc and LcpDc/dc, where Dc is the

length of chromosome c. End users can use these global
constraints to rule out many unrealistic or undistinguish-
able models from consideration.

A variety of prior distributions for genetic effects b
have been proposed. It is desirable that effect priors be
invariant to the scales of the phenotype and the effect
predictors and model complexity. This can be accom-
plished by hierarchical models in which the priors
have empirical hyper-priors that depend on the total
phenotypic variance and the sample variances of the
predictors. Following Yi et al. (2007b), we partition the
genetic effects into batches, corresponding to different
types of effects, for example, additive, dominance,
additive–additive, additive–environment interactions,
etc. Effects in the same batch k follow the same prior,

bkjjgkj 
 ð1	 gkjÞI0 þ gkjNð0; s2kÞ ð7Þ

where gkj is the indicator variable for bkj, and I0 is a point
mass at 0. Under this prior, when gkj¼ 0, bkj is assigned to
be 0 and thus is actually removed from the model; when
gkj¼ 1, bkj follows a normal distribution N(0, sk2). We treat
the variance sk2 as a random variable with an inverse w2
hyper-prior distribution:

s2k 
 Inv	 w2ðnk; s2kÞ ð8Þ
The prior degrees of freedom nk and scale parameters
sk2 are chosen to control the prior expected mean and
the prior confidence region of the proportion of the
phenotypic variance explained by bkj. One attractive
feature of this strategy of specifying the hyperparameters
is that it causes the above priors to be invariant to the
scales of the phenotype and the effect predictors in
Model (4). Under the prior (8), sk2 has expected value
E(sk2)¼ nksk2/(nk	2). The degrees of freedom nk control
the skew of the prior for sk2, with larger values
recommended (here nk¼ 6) to tightly center the prior
around sk2 (see Chipman, 2004). The scale sk2 controls
the prior heritability per effect (also see Gaffney, 2001).
The proportion of phenotypic variance explained by
bkj is hkj¼Vkjbkj2 /Vp, with Vkj the sample variance for
the column of X associated with effect bkj. Setting
sk2¼ (nk–2)E(hkj)Vp/(nk Vkj) yields E(hkj)¼VkjE((sk2)/Vp.
Expected effect heritabilities, E(hkj), can be set small
(say 0.05–0.2) to reflect prior knowledge about genetic
architecture.
Priors on environmental effects in bE can be assigned

uniform distributions or normal distributions with mean
0 and unknown variances, labeled fixed or random
effects from the non-Bayesian tradition, respectively
(Gelman et al., 2004). For the unknown variances,
conjugate prior distributions are scaled inverse w2
distributions with prior degrees of freedom and scale
parameters specified as they were for genetic effects.
For the vector of genetic-effect indicators g, we could

use an independence prior of the form

pðgÞ ¼
Y

w
gj
j ð1	 wjÞ1	gj ð9Þ

where wj¼ p(gj¼ 1) is the prior inclusion probability for
the jth effect and equals the predetermined hyperpara-
meter wm or we, depending on the jth effect being a main
effect or an epistatic effect, respectively. Under this prior,
the importance of any effect is independent of the
importance of any other effect and the prior inclusion
probability of a main effect is different from that of an
epistatic effect. The hyperparameters wm and we control
the expected numbers of active main and epistatic
effects, respectively, and thus the expected number of
QTL; small wm and we would concentrate the priors on
parsimonious models with few main effects and epistatic
effects. Instead of directly specifying wm and we, it would
be better to first determine the prior expected numbers of
main-effect QTL, lm, and all QTL, l0Xlm (that is, main-
effect and epistatic QTL) and then solve for wm and we

from the expressions of the prior expected numbers (Yi
et al., 2005). The prior expected number of main-effect
QTL, lm, could be set to the number of QTL detected by
traditional non-epistatic mapping methods, for example,
interval mapping or composite interval mapping (Land-
er and Botstein, 1989; Zeng, 1994). The prior expected
number of all QTL, l0, should be chosen to be at least lm.
The number of QTL detected by traditional epistatic
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mapping methods, for example, a two-dimensional
genome scan from R/qtl, could provide a rough guide
for choosing l0.

Independence priors for g work well for many
situations (Yi et al., 2005, 2006), but may not be
appropriate when either (1) loci with large main effects
are more likely to have large interactions or (2) many loci
have detectable main effects and thus the probability of
detecting additional QTL with weak main effects but
strong interactions is low. Yi et al. (2007b) proposed
dependence priors capturing relations between inter-
action and main effect terms (see Chipman, 1996, 2004;
Chipman et al., 2001). Consider two QTL indexed by j
and k, with main effect and epistasis indicators gj, gk and
gjk. Setting a common inclusion probability for main
effects, P(gj¼ 1)¼P(gk¼ 1)pm (Yi et al., 2005), we con-
struct conditional inclusion probabilities for epistasis as

Pðgjk ¼ 1jgj; gkÞ

¼
c0pm if ðgj; gkÞ ¼ ð0; 0Þ
c1pm if ðgj; gkÞ ¼ ð1; 0Þ or ð0; 1Þ
c2pm if ðgj; gkÞ ¼ ð1; 1Þ

8<
: ð10Þ

Typically, 0pc0pc1pc2p1, implying that main effects are
more likely to be detected than epistasis, and that the
importance of an interaction depends on the importance
of its ‘parent’ terms. Setting some ci to zero rules out
certain interactions: c0¼ c1¼ 0 and c240 allows interac-
tions only if both main effects are included. These values
establish a principle of variable selection, modifying
prior mass across possible genetic architectures and
greatly reducing the model space.

For the varying dimensional model space approach,
the prior distribution of the number of QTL l may be a
truncated Poisson distribution with mean l0 and max-
imum integer L, or a uniform distribution between 0 and
L. The choice of l0 influences the posterior of l but Bayes
factors for l are relatively insensitive to the choice of prior
distribution for this hyperparameter (Satagopan and
Yandell, 1996; Gaffney, 2001; Yi et al., 2003a).

MCMC algorithms

MCMC is a class of algorithms for drawing values of
unknown parameters y from the target posterior dis-
tribution p(y|y). The keys to MCMC algorithms are to
design and simulate a Markov chain (that is, the
distribution of the sampled draws depending on the last
value drawn) whose stationary distribution is the target
distribution p(y|y) and to run the simulation long
enough that the distribution of the current samples is
close enough to this stationary distribution. MCMC
is used when it is not possible (or not computationally
efficient) to analytically calculate p(y|y) or directly
sample y from p(y|y). A major advantage of MCMC
algorithms is their ability to deal with high-dimensional
and complex problems. These algorithms serve our
purpose ideally because in Bayesian multiple QTL
analysis we want to evaluate the joint posterior distribu-
tion p(y, g, H|y, m, XE), which includes a large number of
parameters.

For high-dimensional models, MCMC algorithms
usually proceed by partitioning the set of parameters
into components or subvectors y¼ (y1,y, yd) and then
drawing each subset from the conditional distribution

p(yj|y	j, y), j¼ 1,y, d, given the latest values of all other
parameters y	j and the data y. Each iteration of the
MCMC algorithm cycles through the subvectors of y.
This process continues for a large number of iterations to
obtain a random sample from the joint posterior
distribution p(y|y). Various methods have been devised
for constructing and sampling from the conditional
distribution p(yj|y	j, y). The Metropolis–Hastings (M–H)
algorithm is a general term for a family of Markov
chain simulation methods that are useful for drawing
samples from many distributions (Metropolis et al., 1953;
Hastings, 1970). The Gibbs sampler and the Metropolis
algorithm are two commonly used special cases of the
M–H algorithm. These algorithms can be used as
building blocks for sampling from complicated distribu-
tions. If the conditional distribution p(yj|y	j, y) has a
standard form, the Gibbs sampler can be used to directly
sample from it; otherwise, we have to use the
M–H algorithm (Gelman et al., 2004).

We now describe the MCMC algorithms for sampling
from the joint posterior distribution p(y, g, H|y, m, XE),
focusing on those implemented in R/qtlbim and dis-
cussing others. In our notation, we have partitioned the
set of unknown quantities into three subvectors y, g and
H, where y includes all model parameters, that is, y¼
(b, se, sb)9 (b, s), g¼ (giq), is the n�Lmatrix of genotypes,
and the model index H includes the indicator variables of
genetic effects g and the QTL positions l. For the varying
dimensional model space approach, H also includes
the number of QTL l. The posterior distribution for the
unknown quantities (y, g, H) can be simulated using
MCMC, alternately updating the model parameters
y given (g, H), the genotypes g given (y, H) and the
model index H given (y, g).

Updating y
A notable feature of the multiple QTL model is that,
given (g, H), Model (4) is a conventional hierarchical
normal model. Therefore, given (g, H), y can be drawn
using standard Gibbs algorithms for hierarchical linear
models (Gelman et al., 2004). The variance parameters are
sampled one at a time from their conditional posterior
distributions; for each j, p(sj2|y, XE, b, g, H, s	j), is a
scaled inverse w2 distribution and can be directly
sampled, where s	j is all elements of s except sj. For
hierarchical normal models, there are two Gibbs sampler
algorithms to update b. In one version, the vector b is
drawn all at once from the conditional posterior
distribution p(b|y, XE, g, H, s); this algorithm requires
large matrix operations at each simulation iteration.
In the other version, the components of b are drawn
one at a time; for each j, bj is sampled from p(bj|y, XE, g,
H, s, b	j), where b	j represents all of b except bj, so that
bj is sampled from a simple univariate normal distribu-
tion. In the package R/qtlbim, we use the second
algorithm. This one-at-a-time algorithm has the advan-
tage of never requiring matrix operations; if set up
carefully, with the appropriate intermediate results held
in storage, this algorithm can be very efficient in terms of
computation time (Gelman et al., 2004; Yi et al., 2005,
2007b). There is also the potential for extending the
model to include additional genetic or non-genetic
factors by simply adding additional steps in the Gibbs
algorithm. It is worth noting that at each iteration the
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composite model space approach drops many possible
genetic effects from the model and hence significantly
reduces computation (Yi, 2004; Yi et al., 2005, 2007b). In
contrast, the shrinkage and the SSVS methods always fit
and update all effects (Xu, 2003; Yi et al., 2003b;
Wang et al., 2005).

Updating g
The matrix of genotypes g is updated one at a time
from the conditional posterior distributions. If locus q
is included in the model and the genotype giq is not
observed, then giq is sampled from the conditional
posterior distribution

pðgiq ¼ kjy;XE; y; g	iq;HÞ

¼
pðyijXE; y; g	iq; giq ¼ k;HÞpðgiq ¼ kjm; lqÞP

giq
pðyijXE; y; g	iq; giq;HÞpðgiqjm; lqÞ

ð11Þ

where giq is the genotype of individual i at locus q, g	iq

represents all elements of g except giq, p(yi|XE, y, g, H) is
the likelihood for individual i, and p(gij¼ k|m, lq) is the
prior probability of giq¼ k that has been calculated by
Equation (3). This posterior is a simple multinomial
distribution, and thus can be sampled directly. If giq is
observed (for example, for fully observed markers), we
do not need to sample giq.

When the pre-set upper bound L is large, the
composite model space approach usually excludes many
of L loci from the model and thus the genotypes at these
excluded loci do not need to be updated (Yi, 2004; Yi
et al., 2005, 2007b). However, the shrinkage and the SSVS
methods update genotypes of all L loci because they
always include L loci in the model (Xu, 2003; Yi et al.,
2003b; Wang et al., 2005).

Updating l
The vector of QTL positions l is updated one at a time
using the Metropolis algorithm. For QTL q, the joint
conditional posterior distribution of the position lq and
the genotypes gq¼ (g1q,y, gnq) is

pðlq; gqjy;m;XE; y; g	q;H	lqÞ
/ pðyjXE; y; g	q;H	lq ; lq; gqÞpðlqjl	qÞpðgqjlq;mÞ

ð12Þ

where g	q ðH	lqÞ represents all elements of g(H) except
gq(lq), pðyjXE; y; g	q;H	lq ; lq; gqÞ is the likelihood calcu-
lated by Model (4), p(lq|l	q) is the conditional prior of lq
given all other elements of l, and p(gq|lq, m) is the
prior probability of giq that has been calculated by
Equation (3).

This posterior is not a standard distribution, and thus
an M–H algorithm is needed to update lq and gq jointly.
We first propose a new position lq* from a proposal
distribution q(lq* ;lq), and then generate new genotypes,
gq* , at this new position for all individuals from the
conditional posterior q(gq*)¼Pip(giq|y, XE, y, g	iq, H	lq ,
lq*). The proposals for lq* and gq* are then accepted
simultaneously with probability (Yi and Xu, 2002)

a ¼ min 1;
pðl�q; g�qjy;m;XE; y; g	q;H	lqÞqðlq; l�qÞqðgqÞ
pðlq; gqjy;m;XE; y; g	q;H	lqÞqðl�q; lqÞqðg�qÞ

 !

ð13Þ
The proposal distribution for the new position q(lq* ;lq) is
usually constructed as uniformly distributed over 2d

most flanking loci of lq, with d being a predetermined
tuning integer. This local proposal never allows the QTL
to move to different chromosomes. An alternative
scheme—which allows long-distance moves––has been
proposed by Gaffney (2001). In R/qtlbim, we use
the local move scheme and take d¼ 2, incorporating the
previously described pre-set constraints on QTL posi-
tions into our algorithm.
Proposing the new genotypes from the conditional

posterior q(gq*) is equivalent to integrating over the
genotypes at QTL q, that is, the acceptance probability
equals

a ¼ min 1;
pðl�qjy;m;XE; y; g	q;H	lqÞqðlq; l�qÞ
pðlqjy;m;XE; y; g	q;H	lqÞqðl�q ; lqÞ

 !
ð14Þ

In principle, the genetic effects associated with QTL q can
also be integrated out, allowing further improvement of
the algorithm, especially for long-range moves, as
observed by Gaffney (2001). However, for multiple
interacting QTL models, many genetic effects are
associated with a QTL, and thus integrating out these
effects involves large matrix operations.

Updating g
We here describe two algorithms to update the indicator
vector g: The first one is a Gibbs sampler similar to that
of Yi et al. (2005), modified by incorporating the new
priors and the constraints, and the second is a novel
M–H scheme developed by Yi et al. (2007b). The M–H
algorithm offers significant computational savings over
the Gibbs sampler, especially when the number of effects
is large (Yi et al., 2007b). Both of these algorithms are
available in the package R/qtlbim.
At each iteration of the MCMC simulation, the full

Gibbs sampler generates each of the indicator variables,
gBj, from its conditional posterior distribution

pðgj ¼ 1jy;m;XE; y	j; g;H	jÞ ¼
wL1

ð1	 wÞL0 þ wL1
ð15Þ

where y	j is all elements of y except bj, H	j is all elements
of H except gj, w¼ p(gj¼ 1|g	j) is the prior inclusion
probability of the effect bj, and Lk¼ p(y|XE, y	j, g, H	j,
gj¼ k) for k¼ 0, 1. Note that bj is integrated out from L1. L1
can be calculated using the identity of simple conditional
probability

L1 ¼
pðyjXE; y	j; g;H	j; gj ¼ 1; bjÞpðbjÞ

pðbjjy;XE; g;H; s; b	jÞ
ð16Þ

where p(y|XE, y	j, g, H	j, gj¼ 1, bj) is the phenotype
likelihood, p(bj) is the prior distribution of bj, and p(bj|y,
XE, g, H,s, b	j) is the conditional posterior distribution of
bj. Notationally, the right side of (16) depends on bj, but
from the definition of L1, we know it cannot depend on
bj in a real sense. That is, the factors that depend on bj in
the numerator and denominator must cancel. Thus, we
can compute (16) by inserting any value of bj into the
expression. A convenient, stable choice for bj is the
conditional posterior mean of bj (Gelman et al., 2004).
The full Gibbs sampling scheme works reliably (Yi

et al., 2005, 2006). However, when the number of possible
genetic effects (that is, the number of indicator variables)
is large, most of the genetic effects are near zero and thus
gj is zero for most j. If the current value of gj is 0, gj
is likely to be regenerated as zero because the prior
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probability w¼ p(gj¼ 1|g	j) in (15) is very small. In the
Gibbs sampler, it is always necessary to calculate
the conditional posterior probability (15) when gj is
currently 0. Such computation may be wasteful.

As with the Gibbs sampler, at each iteration of the
MCMC simulation, the M–H scheme of Yi et al. (2007b)
proceeds to update all indicator variables. Denote the
current value of gj by C (¼ 0 or 1). The M–H algorithm
proposes a new value P (¼ 0 or 1) for gj from the
conditional prior probability p(gj¼C | g-j). If P¼C,
the M–H acceptance probability is 1, and thus gj remains
at C and there is no need to compute any values.
Otherwise, we update gj from the current value C to the
proposal 1	C with acceptance probability

a ¼min 1;
pðgj ¼ 1	 Cjy;m;XE; y	j; g;H	jÞ
pðgj ¼ Cjy;m;XE; y	j; g;H	jÞ

 
pðgj ¼ Cjg	jÞ

pðgj ¼ 1	 Cjg	jÞ

!

¼min 1;
L1	C

LC

� �
ð17Þ

in which all terms are defined in (15). If gj is currently 1
(that is, bj is currently included in the model), we can
calculate the two values L0 and L1 using the prior
variance of bj and the column of X corresponding to the
effect bj. If gj is currently 0 (that is, bj is currently
excluded from the model) and the involved QTL(s) is
(are) not currently in the model, we first expand X;
sample from the corresponding priors one or two new
QTL position(s) as needed, new genotypes for all
individuals, and the prior variance of bj if this parameter
is currently out of the model; and then calculate the
acceptance probability to update gj. This procedure is
also needed for the full Gibbs sampler (Yi et al., 2005).

In this M–H algorithm, the proposal probability to
generate gj¼ 1 when it is currently 0 is p(gj¼ 1|c-j), which
is very small when the number of possible genetic effects
is large and most of them are near 0, and thus gj is likely
to be proposed as 0. Therefore, it is unnecessary to
compute any values for most gj, and hence this new
algorithm is much faster than the full Gibbs sampler.

We can illustrate the relative advantages of the Gibbs
sampler to the M–H algorithm in terms of statistical
efficiency. The transition probability for gj from C to P,
Q(C-P), for the Gibbs sampler and the M–H algorithm is

QGð0 ! 1Þ ¼ wL1
ð1	 wÞL0 þ wL1

;

QGð1 ! 0Þ ¼ ð1	 wÞL0
ð1	 wÞL0 þ wL1

and

QMHð0 ! 1Þ ¼ w �minð1;L1
L0
Þ;

QMHð1 ! 0Þ ¼ ð1	 wÞ �minð1;L0
L1

Þ

respectively, with w¼ p(gj¼ 1|g	j). Following Kohn et al.
(2001), QG(C-1	C)4QMH(C-1	C). Thus, the Gibbs
sampler is statistically more efficient per scan than the
M–H algorithm in terms of transition probabilities. When
the upper bound of QTL is large and w is small, the new
faster algorithm does not sacrifice much statistical effi-
ciency, since it can be easily shown that QMH(C-1	C)E
QG(C-1	C).

The above M–H algorithm is derived using the
conventional M–H technique based on the composite
model space. However, it is similar to a RJ-MCMC
algorithm, which cycles through each indicator variable
and, using the prior probability as the proposal,
generates one or two new QTL position(s), new
genotypes for all individuals and the prior variance
of bj from the corresponding priors and the asso-
ciated effect bj from the full conditional posterior.
This RJ-MCMC algorithm can be derived from our
composite model space approach. For non-epistatic
models, Yi (2004) showed that the composite model
space approach includes many RJ-MCMC algorithms as
special cases.

Updating l
The traditional M–H algorithm can only be used to
generate samples from the posterior distributions with
fixed dimension, and thus cannot be applied to the
variable dimensional model space approach. Green
(1995) introduced a generalization of M–H algorithms
for sampling from models with variable dimensionality,
called RJ or trans-dimensional MCMC. This method is
extremely flexible and can jump from one model to
another, provided that we carefully select appropriate
proposal densities. The RJ-MCMC sampler has been
successfully applied to mapping multiple non-epistatic
QTL (Satagopan and Yandell, 1996; Stephens and
Fisch, 1998; Sillanpää and Arjas, 1998; Yi and Xu, 2000;
Gaffney, 2001). Recently, we have extended RJ-MCMC
algorithms to map epistatic QTL (Yi and Xu, 2002;
Yi et al., 2003a).

The algorithm of Yi et al. (2003a) includes two steps:
(a) adding one new QTL with main effects or epistatic
effects with some of the existing QTL, or deleting a QTL
from all existing QTL and (b) adding two QTL with main
effects or epistatic effects among themselves or with
some other existing QTL, or deleting two QTL from all
existing QTL. Here, we use step (b) as an example to
show how to perform the RJ-MCMC. For step (b), we
first randomly decide to propose adding two new QTL
with probability j(lþ 2; l), or deleting two existing QTL
with j(l; lþ 2)¼ 1	j(lþ 2; l). To add two QTL, we need to
generate additional parameters associated with the new
QTL, that is, two new positions l1* and l2* , genotypes g1*

and g2* , effect indicators g* associated with these two QTL,
and new main and epistatic effects b*. New positions,
genotypes and indicators are sampled from their priors.
b* are sampled from the conditional posterior distri-
bution, which is a multivariate normal distribution. The
change in the number of QTL from l to lþ 2, together
with the proposed parameters, is accepted or rejected
according to the RJ algorithm. Deleting two QTL is
simply the reverse process. Two QTL are randomly
chosen among the existing QTL. The chosen QTL,
together with all corresponding parameters, are then
proposed to be deleted. In most of Bayesian mapping,
the proposal probabilities for birth and death, j(lþ 2; l)
and j(l; lþ 2), have been chosen to be constants, for
example, j(lþ 2; l)¼ j(l; lþ 2)¼ 0.5 (for example, Yi et al.,
2003a). Alternatively, these proposal probabilities can be

chosen so that pðlþ2Þ
pðlÞ

jðl;lþ2Þ
jðlþ2;lÞ

1
ðlþ2Þðlþ1Þ is unity (Satagopan and

Yandell, 1996; Gaffney, 2001).
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Summarizing and interpreting the posterior
samples
The MCMC algorithms described above are used to
simulate a Markov chain {(y, g, H)(t); t¼ 1, 2,y,T} from
the joint posterior distribution p(y, g, H|y, m, XE) to
generate posterior samples. If enough iterates have been
run, the posterior samples contain all the information
about the posterior distribution. Inference using the
posterior samples requires some care, however (Gelman
et al., 2004). First, if insufficient iterates have been run,
the simulation may not have converged and thus may
not be representative of the target distribution. Even
when the simulations have reached convergence, early
iterates may still be influenced by initial values. A second
problem is within-sequence correlation; inference from
correlated draws is generally less precise than from the
same number of independent draws.

We handle these special problems in different ways. To
diminish the dependence on initial values, we generally
discard (thousands of) early iterates, referred to as ‘burn-
in.’ To reduce sequential correlation, the subsequent
sample is thinned by keeping every kth simulation draw

and discarding the rest (for example, k¼ 40). For a high-
dimensional problem, the mixing behavior and conver-
gence rates of MCMC algorithms are critical issues. It is
very difficult to say conclusively that a chain has
converged, only to diagnose when it definitely has not.
The package R/qtlbim provides tools to monitor mixing
behavior and convergence of the simulated Markov
chain, either by examining trace plots of the sample
values of scalar quantities of interest, such as the
numbers of QTL and epistatic effects or by using formal
diagnostic methods provided in the package R/coda
(Plummer et al., 2007).
For all of the Bayesian multiple QTL mapping

methods we have described, the basic principle of
posterior inference is to use all of the saved iterates of
the Markov chain, corresponding to model averaging,
which assesses characteristics of the genetic architecture
by averaging over possible models weighted by their
posterior probability. Model averaging accounts for
model uncertainty and hence provides more robust
inference compared to a single ‘best’ model approach
(Raftery et al., 1997; Ball, 2001; Sillanpää and Corander,
2002). For Bayesian methods involving model selection,
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Figure 1 Genome-wide scan for main effects using R/qtl (the top panel) and R/qtlbim (the bottom panel). The gray lines indicate the
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the posterior samples can be used to search for models
with high posterior probability. The idea here is that
larger effects should tend to appear more often and early
in the posterior sample, making them easier to identify.

A key advantage of the Bayesian approach, as
implemented by MCMC simulation, is the flexibility
with which posterior inferences can be summarized.
The package R/qtlbim provides various graphical and
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Figure 2 Genome-wide scan for epistatic effects using R/qtl (the top panel) and R/qtlbim (the bottom panel). In the top panel, epistatic lod
scores are plotted in the upper left triangle using the left scale, and joint lod scores are plotted in the lower right triangle using the right scale.
In the bottom panel, epistatic Bayes factors are plotted in the upper left triangle using the left scale, and joint Bayes factors scores are plotted
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tabular summaries that assess the contribution of
individual loci and pairs of loci while adjusting for
effects of all other possible loci and covariates via model
averaging (Yandell et al., 2007). One such summary is the
posterior inclusion probability for each locus or each pair
of loci, estimated as its frequency in the posterior
samples. Taking prior probabilities into consideration,
we can then use Bayes factors to compare models with
and without the locus or loci (Kass and Raftery, 1995).
Because each locus may be included in the model
through its main effects and/or interactions with other
loci (epistasis) or environmental effects, we can sepa-
rately estimate the posterior inclusion probabilities and
corresponding Bayes factors of main effects, epistasis
and gene–environment interactions per locus. These
estimates can be further divided into Cockerham effects
(additive and dominance for main effects or the four
types of epistatic interactions), if desired. In addition to
posterior inclusion probabilities and Bayes factors,
the package R/qtlbim provides tools to estimate
marginal heritabilities, genetic effects, genotypic means,
Bayesian log posterior densities and other features
(Yandell et al., 2007).

Example analysis

To illustrate these above methods, we compare and
contrast results from R/qtl and R/qtlbim using murine
backcross data. Briefly, Sugiyama et al. (2001) described a
backcross of salt-sensitive C57BL/6J and non-salt-sensi-
tive A/J mice. They measured blood pressure for 250
male mice. A total of 170 markers were genotyped at
approximately 15 cM intervals over the 19 autosomes.

We first performed a one-dimensional scan using
R/qtl (the top panel of Figure 1). This analysis suggested
the presence of three QTL, two on chromosome 1 and
one on chromosome 4. We also scanned the genome for
main effects using R/qtlbim (the bottom panel of
Figure 1). The Bayesian analysis revealed, in addition
to the same three QTL, evidence supporting another QTL
on chromosome 4 and QTL on chromosomes 6 and 15.
Note the improved separation between noise and signal
the Bayesian method provides over the frequentist
method.

We then scanned the genome for epistatic interactions
using a two-dimensional scan in R/qtl (the top panel of
Figure 2) and in R/qtlbim (the bottom panel of Figure 2).
The frequentist analysis yielded evidence for an epistatic
interaction between chromosomes 6 and 15. In addition
to that interaction, the Bayesian analysis also yielded
evidence for epistatic interactions between chromosomes
1 and 4, 1 and 6, 1 and 15, 4 and 6, 4 and 15, and 15 and
15. As with the scan for main effects, the Bayesian
method of scanning for epistatic effects yields improved
separation between noise and signal.

Conclusions

Bayesian modeling of multiple QTL, coupled with
advances in posterior search and computation, has led
to an explosion of research in mapping multiple QTL for
complex traits. To illustrate the rapid evolution of these
methods, we have highlighted some of these develop-
ments. We have a clear sense of the potential gains to
be achieved using the Bayesian approach to mapping

multiple interacting QTL. Bayesian methods and asso-
ciated computer software provide us with tools to
comprehensively unravel the genetic basis and architec-
ture of complex trait variation. What is standard in
complex trait analysis has changed much in the past
years, and with the continuing development of sophis-
ticated statistical mapping methods, further dramatic
improvement may be possible. Future research directions
include extensions to joint analysis of multiple traits, and
experimental crosses derived from multiple inbred lines
and outbred populations. Computationally efficient
algorithms are an essential feature for the practical
analysis of complex genetic architectures in these more
complicated cases.
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