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O
ne of the most enduring ideas in
spatial population genetics is that
the ‘neighbourhood size’ deter-

mines the extent and geographic pattern
of genetic differentiation. In particular,
there is a widespread belief that the
effects of dispersal on genetic structure
are essentially determined by a straight-
forward parameter: the mean-squared
parent offspring distance s2, from which
the neighbourhood size can be calcu-
lated as Nb¼ 4pDs2 (for two-dimen-
sional habitats), where D is the
population density. If this principle
was sound, it would be highly conve-
nient. For example, to determine how
Nb affected a particular parameter
(characterizing the observed variation
in genetic data), it would be sufficient to
derive the relationship between Nb and
the parameter for some pattern of
dispersal that is readily simulated. This
relationship could then be applied to
more complex patterns of dispersal with
the same Nb. In one of the most recent
incarnations of this logic, Epperson
(2005, 2007) considered a method of
estimation of neighbourhood size from
values of Moran’s I, a long-used de-
scriptor of the spatial structure in
genetic data.

However, there is a fundamental
problem with this logic. The genetic
consequences of dispersal do not de-
pend solely on the variance of the
dispersal distribution, s2. The shape of
the dispersal distribution (for example,
how it deviates from a normal distribu-
tion) does affect the magnitude of
genetic differentiation from place to
place (Rousset, 1997). This principle
seems intuitively reasonable, so why
should the converse view be widely
established? It turns out that the neigh-
bourhood size is actually a robust
predictor of the increase of differentia-
tion with distance (robust in the sense
that the increase does not depend
strongly on the shape of the dispersal
distribution). Consequently, Nb can be
estimated from this rate of increase, but
is less directly related to the overall
magnitude of differentiation. Here, I
will recall how Moran’s I relates to the
increase of differentiation with distance,
from which I will explain Epperson’s

simulation results and clarify their im-
plications.

In a diploid population, Moran’s I can
be viewed as an estimator of (QC��Q)/
[(1þQw)/2��Q] (Hardy and Vekemans,
1999), where the Q’s are probabilities of
identity in state, QC for pairs of indivi-
duals within some distance class C,
�Q for all pairs in the sample and Qw

for gene diversity within individuals.
As such I shares the desirable general
properties of measures, such as this,
which are defined as ratios of differ-
ences of probabilities of identity. In
particular, when observations are taken
at a small spatial scale, they have a fast
approach to equilibrium and are robust
with respect to details of mutation
processes (Rousset, 2002). Further, the
occurrence of (1þQw)/2 in the denomi-
nator makes I independent of the effects
of selfing, except through effects on
dispersal itself (Hardy and Vekemans,
1999).

In a two-dimensional plant popula-
tion with selfing, the identity Qr of
genes at Euclidian distance r from each
other obeys

ar ¼
Q0 �Qr

ð1 þQwÞ=2 �Q0

� lnðrÞ
2Dps2

þ constant ð1Þ

(Rousset, 2004, pp 131–132), where the
constant does not depend on distance
but is a complex function of the shape
of the dispersal distribution (Rousset,
1997). Epperson (2005) argues that the
shape has little effect, citing for example

‘Malécot’s (1948) finding that spatial
structure depends (y) not much on
the shape of the dispersal function’. But
there is no such finding in Malécot’s
(1948) work. Indeed he gave general
expressions in terms of the full dispersal
distribution, and used the example for
bivariate Gaussian dispersal.

Any method for estimating neigh-
bourhood size will depend on the
specific assumptions of the dispersal
model on which it is based, or on
relationships that can only be approx-
imate when a wide range of dispersal
distributions is considered. Insofar as
the above approximation is valid for
most distances, the average I for indivi-
duals within distance class C would be

IC � ð1 þQwÞ=2 �Q0

ð1 þQwÞ=2 � �Q

� hlnðrÞi � hlnðrÞiC
2Dps2

ð2Þ

where / .S and / 
SC are the average
values within the total sample and
within distance class C, respectively.

There would be some problems asses-
sing this relationship in simulations
and then making use of it to interpret
real data. For example, the value of
/ln(r)S�/ln(r)SC was fixed in the simu-
lations below, but more generally its
variation should be taken into account
to derive an estimator of neighbourhood
size from I (Vekemans and Hardy, 2004).
The constant term from Equation (1)
still somewhat affects IC since it affects
the first ratio. In many cases, this ratio is
1/2o.o1 and may be neglected as a
first approximation. Otherwise, one
can correct for it—as discussed by
Vekemans and Hardy (2004) and Rous-
set (2004, p 132).

If we ignore the latter correction,
ln(IC) should be approximately linearly
related to ln(Nb), with a slope of �1. A
reanalysis of Epperson’s (2005) simula-
tions estimates the slope as �1.13
(Figure 1). In the original paper, ln(Nb)

Figure 1 Moran’s I revisited. � : I values from Table 1 of Epperson (2005); W: I values from
Table 4 of Epperson (2007).
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was fitted to I, and it can be shown that
ln(Nb)¼ 1.11–1.13 ln(I) is a better pre-
dictor of neighbourhood size, whether
the quality of the predictor is assessed
by mean, mean square or maximum
relative error.

The original predictor performs
poorly: the relative error ((estimated
Nb)/(true Nb)) ranges from 70% (too
low) to 91% (too high). The impro-
ved predictor reduces the root mean
squared error from 0.86 to 0.39.
Likewise, for more recent simulations
(Epperson, 2007, Table 4), ln(Nb)¼
1.38�1.16 ln(I), with root mean squared
error reduced from 0.93 (for the old
predictor) to 0.19. This reanalysis illus-
trates that, if one really wants to use the
simulation results to estimate Nb, the
relationship with ln(I) should be used
rather than I. The remaining variation
around the fits confirms that I is not
exactly a function of neighbourhood
size.

Should we then use Moran’s I at all?
There is no clear reason for doing so.
The parametric bias of the originally
proposed methods is generally larger
under their simulation conditions than
the realized bias reported in simulations
to assess some alternative estimators
(Rousset, 2000; Leblois et al., 2003, 2004;
Watts et al., 2007). My aim here is not to
advocate a particular alternative, but to
make clear what is known or what is

not. Further discussion should be based
on the performance of rival estimators
in head-to-head comparison in biologi-
cally relevant conditions.

It has been claimed that I performs
well if used for ‘only short distances’ in
comparison to an alternative method of
Vekemans and Hardy (2004). But in
such an approach, I would still be a
function of �Q and thus of all distances
within the sample. An alternative esti-
mator ‘may have some disadvantages,
including the fact that it assumes the
decrease with distance is exponential’
(actually, logarithmic). But I also de-
pends on the increase of differentiation
with distance, so the simulation-based
method makes the implicit assumptions
about this increase that are inherent to
the simulation conditions. Although not
fitted specifically to these conditions,
the analytical results presented above
suggest a better approximation to de-
scribe the simulation results, and form a
better basis for understanding the prop-
erties of Moran’s I.
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