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Parentage and sibship exclusions: higher statistical
power with more family members

J Wang
Institute of Zoology, Zoological Society of London, London, UK

Parentage exclusion probabilities are now routinely calcu-
lated in genetic marker-assisted parentage analyses to
indicate the statistical power of the analyses achievable for
a given set of markers, and to measure the informativeness
of a set of markers for parentage inference. Previous
formulas invariably assume that parentage is to be sought
for a single offspring, while in practice multiple full siblings
might be sampled (for example, seeds, eggs or young from a
pair of monogamous parents) and their father, mother or both
are to be assigned among a number of candidates. In this
study, I derive formulas for parentage exclusion probabilities
for an arbitrary number (n) of fullsibs, which reduce to
previous equations for the special case of n¼ 1. I also derive
sibship exclusion probabilities, and investigate the power of
differentiating half-sib, avuncular and grandparent–grandoff-

spring relationships using unlinked autosomal markers
among different numbers of tested individuals. Applications
of the formulas are demonstrated using both theoretical and
empirical data sets of allele frequencies. The results from the
study highlight the conclusion that the power of genealogical
relationship inferences can be enhanced enormously by
analysing multiple individuals for a given set of markers. The
equations derived in this study allow more accurate
determination of marker information and of the power of a
parentage/sibship analysis. In addition, they can be used to
guide experimental designs of parentage analyses in
selecting markers and determining the number of offspring
to be sampled and genotyped.
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Introduction

Parentage inferences from molecular marker data have
been widely applied to the studies of social behaviour/
organization, reproductive success, mating systems,
dispersal and spatial genetic structure in natural popula-
tions (Hughes, 1998; Coltman et al., 1999; Garant et al.,
2001; Avise et al., 2002; Robledo-Arnuncio and Gil, 2005;
Bretman and Tregenza, 2005). Several classes of statistical
methods are proposed to perform parentage analyses
using data of various genetic markers (Marshall et al.,
1998; Jones and Ardren, 2003). To evaluate the statistical
power of a parentage analysis and characterize the
informativeness of markers, the parentage exclusion
probability (PE) is usually calculated. It is defined as
the average capability of any marker system to exclude a
‘random’ individual from parentage when the other
parent (its genotype) is either known or unknown, or to
exclude a ‘random’ pair of individuals as both parents of
an offspring. A high PE value indicates that the marker
system is highly informative for parentage analysis and
that the parentage analysis using the marker system is
highly powerful.

PE calculation was first described by Wiener et al.
(1930) for biallelic loci, and was subsequently extended
to loci with any number of codominant alleles (Jamieson,

1965; Selvin, 1980; Ohno et al., 1982; Chakraborty et al.,
1988; Dodds et al., 1996; Weir 1996, p 209; Jamieson and
Taylor, 1997) and to dominant loci (Chakraborty et al.,
1974; Gerber et al., 2000). The probability of excluding a
relative of (rather than a random individual unrelated to)
the true father from paternity when the maternal
genotype is known was also derived (Salmon and
Brocteur, 1978; Thompson and Meagher, 1987; Double
et al., 1997; Fung et al., 2002; Hu et al., 2005).
In all previous studies, however, PE is calculated

invariably assuming that a single offspring is genotyped
to infer its parent or pair of parents. A single offspring
genotype contains only one paternal and one maternal
allele at an autosomal diploid locus, and has no
information about the other paternal and maternal
alleles. The probability that at least one copy of each
parental allele is represented in a set n offspring is
1�21�n, and the potential of the parental genotype being
fully inferable increases rapidly with n. Therefore,
genotyping multiple offspring increases parentage ex-
clusion probability for any given marker system. Some
statistical methods have been developed to use the
genotypes of multiple offspring in inferring their
common parentage (Emery et al., 2001; Jones, 2001;
Sieberts et al., 2002). Calculating PE for multiple offspring
helps in determining more accurately the power of a
parentage analysis, in screening markers by their
informativeness, and in deciding on the appropriate
numbers of offspring and markers to be genotyped in
designing a parentage assignment experiment.
Recently, various statistical methods have also been

proposed to infer sibships in a one-generation sample of
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individuals, using the genotypes of these individuals at a
number of marker loci (Painter, 1997; Almudevar and
Field, 1999; Thomas and Hill, 2000, 2002; Smith et al.,
2001; Beyer and May, 2003; Wang, 2004; Butler et al.,
2004). These methods allow the inference of sibships
consisting of an arbitrary number of individuals by
exclusion (Smith et al., 2001; Butler et al., 2004) or
likelihood (Thomas and Hill, 2000; Wang, 2004) ap-
proaches. Although two individuals cannot be excluded
from a full sibship using any number of autosomal
markers, three or more non-siblings can be excluded
from a full sibship using autosomal markers with three
or more codominant alleles (Almudevar and Field, 1999;
see below). Sibship exclusion probability (SE) can be
defined as the average capability of any marker system
to exclude a group of ‘random’-unrelated individuals
from a full-sib family. Similar to PE, SE can be calculated
to evaluate the informativeness of markers in and the
power of a sibship analysis. A formula for SE was
derived by Almudevar and Field (1999).

In this paper, I derive equations for parentage and
sibship exclusion probabilities when an arbitrary number
of individuals are involved. The equations for parentage
exclusion probabilities reduce to previous ones when
only one offspring is genotyped and used in parentage
analysis. The equations for sibship exclusion probabil-
ities are more explicit and easier to calculate than
previous ones (Almudevar and Field, 1999). I show that,
for both parentage and sibship inferences, the power of
analysis and amount of marker information increase
rapidly with an increasing number of individuals
involved in the exclusion analysis. Finally, I consider
the inference of half-sib (HS), grandparent–grandchild
and avuncular relationships, which have the same IBD
(identity by descent) sharing between pairs of indivi-
duals and are thus indistinguishable using unlinked
autosomal markers (Epstein et al., 2000; McPeek and Sun,
2000). I show that when one or more full siblings of each
of the two individuals are also genotyped for some
unlinked autosomal markers and included in the
relationship analysis, however, the three relationships
can be easily discriminated with a high statistical power.

Assumptions
I consider the use of autosomal diploid markers with an
arbitrary number of codominant alleles in parentage or
sibship analyses. The markers are assumed to follow
Mendelian inheritance without mutations and genotyp-
ing errors, to be in Hardy–Weinberg equilibrium and to
be unlinked and in linkage equilibrium. The allele
frequencies of a marker are known. These assumptions
were also made explicitly or implicitly in previous
calculations of PE.

Parentage exclusion probability
In classical parentage analyses, an individual is excluded
as the parent of an offspring if the offspring’s genotype at
some locus cannot be generated from the genotype of the
individual as a parent following Mendelian inheritance
and barring mutations. The average probability (PE) that
a ‘random’ individual unrelated to the true parent of an
offspring is excluded from the parentage of the offspring
using the information from a marker can be calculated,
which depends on the allele frequencies of the marker

only and indicates the informativeness (capability) of the
marker in a parentage analysis. PE also measures the
power of a parentage analysis using a given set of
markers.

Three cases of parentage exclusion can be distin-
guished in practice. An individual is excluded from
parentage of an offspring when the other parent (its
genotype) is either known or unknown, or a pair of
individuals is excluded as both parents of an offspring.
Traditionally, PE is calculated for the three cases assum-
ing a single offspring is genotyped to infer its parentage.
I extend previous studies by considering an arbitrary
number of full-sib offspring being genotyped to infer
their parentage.

Parentage exclusion probability when one parent is
known, PE1: Without loss of generality, I suppose a
number of n (X1) full-sib offspring and their mother are
genotyped at an autosomal locus with k codominant
alleles (Au) of known frequencies (pu, u¼ 1, 2,y, k). The
problem is to obtain the probability that a random male
unrelated to the true parents is excluded from paternity
of the n offspring, using the offspring and mother
genotypes and the allele frequencies of the marker.
Table 1 lists all possible mother–father–offspring
genotype combinations and the corresponding excluded
paternal genotypes given mother and offspring
genotypes. It also shows, for each combination, the
probabilities of the mother genotype, father genotype,
offspring genotypes (conditional on parents’ genotypes),
and the excluded paternal genotype given the mother’s
and offspring’s genotypes. PE1 is obtained by summing
the product of the joint probability of a mother–father–
offspring genotype combination and the corresponding
exclusion probability. For illustration, consider row 2 of
Table 1 as an example. The joint probability of an AuAu

mother (with probability pu2, column 2), an AvAy (vay)
father (with probability 2pupy, column 4) and n AuAv

offspring (with probability (1/2)n conditional on parental
genotypes, column 6) is p2u�2pvpy�ð12Þ

n; and this mother–
offspring genotype combination excludes all males that
do not have an Av allele. Such males have a frequency of
(1�pv)2 (column 8), so that the combination listed in row
2 of Table 1 has a combined exclusion probability of
p2u�2pvpy�ð12Þ

n�ð1� pvÞ2 . Adding these probabilities for
all mother–father–offspring genotype combinations listed
in the table leads, after some tedious algebra, to

PE1 ¼1� 4ca2 � 2ð1þ 4b� 2cÞa22 þ 8ðbþ c� dÞa32
� 2ð1� 3cÞa3 � 2ð6bþ 3c� 4dÞa23
þ ð3þ 8b� 6cÞa4 � 4ð9bþ 6c� 7dÞa2a4
þ 4ð7bþ c� 2dÞða2a3 � a5Þ þ 2ð20bþ 11c� 14dÞa6

ð1Þ
where

b ¼ ð14Þ
n; c ¼ ð24Þ

n; d ¼ ð34Þ
n

and as ¼
Pk

u¼1 p
s
u , the sum of the sth power of allele

frequencies.
For a single offspring (n¼ 1), (1) simplifies to

PE1 ¼ 1� 2a2 � 2a22 þ a3 þ 2a4 � 3a5 þ 3a2a3; ð2Þ
which is the same as derived earlier (Jamieson and Taylor,
1997). For a given number of offspring (n) and a given
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Table 1 Paternity exclusion configurations of multiple offspring genotypes at a k-codominant allele locus: mother known

Mother Father Offspring Excluded male

Type Probabilitya Type Probabilityb Genotypec Probabilityd Genotype¼AwAx Probabilitye

AuAu pu
2 AvAv pv

2 AuAv 1 w,xav (1�pv)
2

AvAy vay 2pvpy AuAv (1/2)n w,xav (1�pv)
2

AuAy (1/2)n w,xay (1�py)
2

AuAv,AuAy 1�(1/2)n�1 w,xav,y (1�2pvpy)
AuAv vau 2pupv AtAt t¼ u,v pt

2 AuAv (1/2)n w,xau; w,xav (1�pu�pv)
2

AtAt; AtAt,AuAv 1�(1/2)n w,xat (1�pt)
2

AuAv 2pupv AuAv (1/2)n w,xau; w,xav (1�pu�pv)
2

AtAt,AuAv; AtAt (t¼u,v) (3/4)n�(1/2)n w,xat (1�pt)
2

AuAu,AvAv,AuAv 1+(1/2)n�2(3/4)n w,xau,v 1�2pupv
AtAy yau,v; t¼ u,v 2ptpy AtAt; AtAt,AuAv (1/2)n�(1/4)n w,xat (1�pt)

2

AuAv (1/4)n w,xau; w,xav (1�pu�pv)
2

AuAy; AvAy; AuAy,AvAy (1/2)n w,xay (1�py)
2

AuAv,AuAy; AuAv,AvAy;
AuAv,AuAy,AvAy

(3/4)n�(1/2)n�(1/4)n w,xau,y; 1�2(pu+pv)py

w,xav,y
Other 1�(3/4)n�(1/2)n+(1/4)n w,xat,y 1�2ptpy

AyAy yau,v py
2 AuAy; AvAy; AuAy,AvAy 1 w,xay (1�py)

2

AyAz yau,v; zau,v;
yaz

2pypz AuAt; AvAt; AuAt,AvAt

(t¼ y,z)
(1/2)n w,xat (1�pt)

2

Other 1�(1/2)n�1 w,xay,z 1�2pypz

aProbability of mother’s genotype.
bProbability of father’s genotype.
cDifferent combinations of offspring genotypes are separated by semicolons, and ‘Other’ refers to all other offspring genotype combinations given mother’s and father’s genotypes. Within a
combination, genotypes are separated by commas. Some genotype combinations are denoted by a generic allele index t, defined in brackets.
dProbability of n offspring’s genotypes given mother’s and father’s genotypes.
eProbability of excluded genotype given mother’s and offspring’s genotypes.
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number of alleles (k) at a locus, PE1 increases as the allele
frequencies become increasingly even. The maximum
value is reached when all k alleles have an equal
frequency of 1/k,

PE1 ¼1� ð2nk4 þ ð4n þ 2� 5�2n�1Þk3

� ð11þ 3�2n�1 � 4�3n þ 3�4n�1Þk2

þ ð19þ 17�2n�1 � 11�3nÞk
� ð10þ 11�2n�1 � 7�3nÞÞ=ð4n�1k5Þ

ð3Þ

which again reduces to

PE1 ¼ 1� ð2k3 þ k2 � 5kþ 3Þ=k4 ð4Þ
when n¼ 1 as derived previously (Weir, 1996). PE1 is also
a monotonically increasing function of the number of
offspring (n), and the maximum value when n-N is

PE1 ¼ 1� 2a22 � 2a3 þ 3a4 ð5Þ

The maximum value computed by (5) is generally
quickly attained with an increasing n, except when the
marker is very uninformative (that is, few alleles with
uneven frequencies).

Parentage exclusion probability when no parent is known,
PE2: An individual can be excluded from the parentage
of a group of offspring if the genotype of any offspring
at a locus cannot be generated from the genotype of
the individual. Without loss of generality, I assume a
number of n (X1) full-sib offspring are genotyped at
an autosomal locus with k codominant alleles to infer
their paternity without knowledge of their maternal
genotype. The (average) probability that a random male
unrelated to the true parents is excluded from paternity
of the n offspring, using the offspring genotypes
and allele frequencies of the marker, can be derived
similar to PE1,

PE2 ¼1� 8ca2 � 4ð1� 6bÞa22 � 8ð3b� 3cþ dÞa32
� 4ð1� 6b� cÞa3 � 8ð21b� 12cþ dÞa2a3
þ 2ð3þ 48b� 36cþ 4dÞa23 þ 6ð1� 14bþ 4cÞa4
þ 4ð2þ 45b� 37cþ 7dÞa2a4
þ 2ð1þ 108b� 62cþ 4dÞa5
� ð15þ 264b� 204cþ 28dÞa6:

ð6Þ
where a, b, c and d are as defined in (1). As is expected,
(6) reduces, for a single offspring (n¼ 1), to

PE2 ¼ 1� 4a2 þ 2a22 þ 4a3 � 3a4 ð7Þ
as derived previously (Jamieson and Taylor, 1997). Similar
to PE1, PE2 increases as the allele frequencies become
increasingly even for a given number of offspring (n) and
a given number of alleles at a locus. The maximum value
is reached when all k alleles have frequency 1/k,

PE2 ¼1� ð2nþ1k4 � 2ð6þ 2n�1 � 4nÞk3

þ ð69� 9�2nþ2 þ 4�3n � 6�4n�1Þk2

� ð123� 86�2n þ 11�3n þ 4nþ1Þk
þ 3ð22� 17�2n þ 7�3n�1 þ 5�4n�1ÞÞ=ð4n�1k5Þ

ð8Þ

When n¼ 1, (8) reduces to

PE2 ¼ 1� ð4k2 � 6kþ 3Þ=k3 ð9Þ
as derived previously (Jamieson and Taylor, 1997). Like
PE1, PE2 is also a monotonically increasing function of the
number of offspring (n), and the maximum value when
n-N is

PE2 ¼ 1� 4a22 � 4a3 þ 6a23 þ 6a4 þ 8a2a4 þ 2a5
� 15a6 ð10Þ

Exclusion probability of a pair of individuals as

parents, PE3

For a group of n (X1) full-sib offspring, we may be
interested in inferring the pair of parents that have
produced them. A pair of individuals can be excluded as
both parents of the n offspring if their genotypes cannot
be explained fully by those of the two individuals as
parents at a locus. The average probability of excluding
two random individuals, who are unrelated between
themselves and to the true parents, as parents of the n
offspring using an autosomal marker with k codominant
alleles is

PE3 ¼1� 32ba22 � 8ð1� 2cÞa42 � 16ð1� 2b� cÞa22a3

� 8ð1þ 3b� 4cÞa23 � 64ð3b� 3cþ dÞa2a23

þ 16ba4 þ 8ð1� 24bþ 10cÞa22a4

þ 8ð3� 26bþ 13c� 4dÞa3a4

þ 2ð5þ 120b� 94cþ 16dÞa24
� 16ð3b� cÞða5 � 2a2a3Þ

� 16ð2b� cÞa2ð3a4 þ 8a5 � 2a22Þ

þ 16ð1þ 31b� 31cþ 9dÞa3a5

þ 4ð1þ b� 4cÞa6
þ 32ð1þ 20b� 15cþ 2dÞa2a6

� 4ð1� 114bþ 67c� 8dÞa7

� ð996b� 880cþ 176dþ 59Þa8
ð11Þ

which can be derived using an approach similar to that in
deriving PE1 and PE2. In (11), a, b, c and d are as defined
in (1). For the case of a single offspring (n¼ 1), (11) is
simplified to

PE3 ¼ 1� 8a22 þ 8a2a3 þ 2a23 þ 4a4 � 4a5 � 3a6 ð12Þ
as derived earlier (Jamieson and Taylor, 1997). Similar to
PE1 and PE2, the maximum value of PE3 is reached when
all k alleles at a locus have frequency 1/k,

PE3 ¼1� ð8k5 � 4ð11� 2nþ2Þk4 þ 2ð17� 2nþ4 þ 4nþ1Þk3

þ ð211� 61�2nþ1 þ 24�3n � 9�4nÞk2

� 2ð229� 179�2n þ 34�3n þ 27�4n�1Þk
þ 249� 55�2nþ2 þ 44�3n þ 59�4n�1Þ=ð4n�1k7Þ

ð13Þ
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When n¼ 1, (13) reduces to

PE3 ¼ 1� ð8k3 � 12k2 þ 2kþ 3Þ=k5 ð14Þ
as derived earlier (Jamieson and Taylor, 1997). Like PE1

and PE2, PE3 is also a monotonically increasing function
of the number of offspring (n), and its maximum value
when n-N is

PE3 ¼1� 8a42 � 16a22a3 � 8a23 þ 8a22a4 þ 24a3a4

þ 10a24 þ 4a6 þ 32a2a6 � 4a7 þ 16a3a5 � 59a8

ð15Þ

Sibship exclusion probability
A group of individuals are excluded from comprising a
full sibship if their genotypes at a locus cannot be
generated by any pair of parental genotypes. For an
autosomal codominant locus, sibship exclusion is war-
ranted, for example, when the individuals display five or
more alleles. Like parentage exclusion, we can calculate
the average probability, SE, of excluding a group of n-
unrelated individuals as full siblings using a k-allele
codominant marker. Therefore, SE signifies the capability
of a marker in a sibship analysis, and the statistical
power of a sibship analysis using a given set of markers.

For an autosomal diploid locus with k codominant
alleles, the average probability of excluding n-unrelated
individuals as full siblings can be derived (Appendix) as

SE ¼1� 1
2ðk� 2Þðk� 3Þ

�
X
u

p2nu � 1
2

X
u

X
v6¼u

b2nuv � 1
6

�
X
u

X
v 6¼u

X
w 6¼u; v

ð3ðpucuv þ 2pwbuvÞ
n

� 2ðpucvw þ pvcuwÞn

� 3pnuðcnuv þ cnuwÞ

� 2nðpnwbnuv þ pnvb
n
uw � 2pnub

n
vw � dnvw � dnuv � dnuwÞÞ

� 2n�3
X
u

X
v 6¼u

X
w 6¼u; v

X
x 6¼u; v;w

ð2dnuv þ 3dnuw � dnvx

þ 2dnwx þ ðpnx � 3pnu þ bnuxÞbnvw þ ðpnv � 3pnwÞbnux

þ ðduw þ dvxÞn � ðduv þ duw þ dvxÞn � 2ðduv þ dwxÞn

þ 3ðduv þ duw þ dwxÞn � ðduv þ dvx þ dwxÞn

� ðduw þ dvx þ dwxÞnÞ
ð16Þ

where bst ¼ ps þ pt; cst ¼ ps þ 2pt; dst ¼ pspt (note cstacts)
for s; t ¼ u; v; w; x ¼ 1; . . . ; k. SE simplifies greatly in the
following special cases.

(1) n¼ 2 or k¼ 2
It can be shown that SE�0 when either n¼ 2 or k¼ 2. A

pair of individuals (n¼ 2) is never excluded from being
full siblings no matter how polymorphic a marker is, and
biallelic loci (k¼ 2) do not allow sibship exclusion
regardless of n.

(2) n¼ 3 and n¼ 4

For trios and quadruplets of unrelated individuals,
(16) reduces to

SE ¼1� 30a22 þ 16a32 � 22a23 þ 72a2a3

� 60a2a4 þ 15a4 � 48a5 þ 56a6
ð17Þ

SE ¼1� 60a42 � 192a22a3 � 112a23 þ 288a2a
2
3

þ 396a22a4 þ 480a3a4 � 315a24 þ 240a2a5

� 552a3a5 þ 84a6 � 696a2a6 � 480a7 þ 918a8

ð18Þ

respectively,
where

as ¼
Xk

u¼1
psu

(3) Equal allele frequency
Like PE, SE increases for given values of n (42) and k

(42) when allele frequencies become increasingly even.
The maximum SE is attained when all alleles have the
same frequency of 1/k,

SE ¼1� ð3� 7�2n�1 � 2�3n þ 13�4n�1 � 4�6n�1

þ 7n � 6�8n�1Þk1�2n þ 2�1ð5� 27�2n�1

� 6�3n þ 51�4n�1 � 2�6n þ 3�7n

� 22�8n�1Þk2�2n � 2�2ð2� 2nþ4 � 4�3n

þ 15�4n � 8�6n�1 þ 2�7n � 3�8nÞk3�2n

� 2n�3ð6� 5�2n þ 4nÞk4�2n

ð19Þ

Exclusion probabilities for multiple loci and multiple tests
For a number of L-independent loci, the cumulative
exclusion probability is calculated as

P ¼ 1�
YL
l¼1

ð1� PlÞ ð20Þ

where Pl is the exclusion probability for locus l calculated
by (1), (6), (11) or (16).
The above calculations are for a single test. In almost

all practical analyses, however, usually a large number
of groups of individuals are tested for parentage or
sibship and the aim is ideally to exclude all false
parentage or sibship relationships. For a given marker
system, the aim is obviously more difficult to achieve
with a larger number of tests. For a number of M
independently replicated tests, the number of non-
exclusions of a false relationship, m, is roughly binomi-
ally distributed, mBBinomial (M,1–P), with a mean of
M(1�P) and a variance of MP(1�P). Using a given set
of markers, the number of non-excluded false parentage
(or sibship) events is expected to increase linearly with
the number of tests M. The probability that exclusions
occur to all of the M tests (that is, perfect exclusion of all
false relationships) is PM, which decreases exponentially
with M.

Theoretical examples of exclusion probabilities
Parentage (sibship) exclusion probabilities depend on the
allele frequencies at a locus and the number of full-sib
offspring (the number of unrelated individuals) that are
genotyped for determining their parentage (sibship), n.
The effects of allele frequencies on exclusion probabilities
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are well known. As a numerical example to illustrate the
effect of n, I calculated exclusion probabilities using a
locus with k alleles in triangular frequencies of
pi ¼ i=ðkðkþ 1Þ=2Þ for i ¼ 1; . . . ; k. The changes of PE1,
PE2, PE3 and SE with n for a locus with k¼ 5 alleles are
shown in Figure 1. For any given value of n, PE3 is the
largest and PE2 is the smallest among the three parentage
exclusion probabilities. PE1 is always larger than PE2

because the extra maternal information allows more
exclusions of false fathers. All of the four exclusion
probabilities increase with an increasing value of n and
quickly become attenuated at n¼ 4–7. For this particular
locus, the minimum values of PE1, PE2, PE3 and SE are
0.53, 0.35, 0.71 and 0.00, respectively, when n¼ 1, and
maximum values are 0.81, 0.66, 0.93 and 1.00, respec-
tively, when n47.

Increasing n is more beneficial for less informative
markers. Figure 2 plots exclusion probabilities (PE1) for
multiple offspring (n41) relative to that for a single
offspring (n¼ 1) as a function of n. A locus with k
(¼ 2,4,6,8,10) equally frequent alleles was used in
calculating PE1 from (3). As can be seen, a smaller k
leads to a faster increase in PE1 with n. While the relative
exclusion probability for n¼ 10 is only about 120% for a
highly informative locus with k¼ 10 alleles, it is about
200% for a much less informative biallelic locus (k¼ 2).
Therefore, less informative markers are more efficiently
compensated by sampling and genotyping multiple
offspring in parentage analyses. The same conclusion is
true for PE2 and PE3, and for loci with any allele
frequency distributions.

Because parentage exclusion probabilities increase
with both the number of loci and the number of full-sib
offspring, one may want to know in a practical parentage
analysis whether it is more rewarding to genotype more
loci or more offspring for a given cost or alternatively
whether it is more economical to genotype more loci or
more offspring to achieve a given statistical power.
Figure 3 shows the exclusion probabilities for L¼ 1 and
n¼ 2, 4, 6 relative to those for L¼ 2 and n¼ 1, as a
function of the number of alleles (k) per locus. The allele
frequencies are assumed to be in a triangular distribu-
tion. As can be seen, L¼ 1 and n¼ 6 results in similar (for
PE1 and PE3) or even larger (for PE2) parentage exclusion
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with frequencies in a triangular distribution is used in the
calculation.
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probabilities than L¼ 2 and n¼ 1. While one should
always try to use as many markers as possible in a
parentage analysis for maximal power, he/she can also
improve the analysis power by genotyping more off-
spring. The development of markers such as microsa-
tellites in relationship analyses for a given species is
expensive, and furthermore, the number of informative
markers available may be limited. In such situations,
therefore, the power of parentage analyses can be
improved substantially by genotyping more offspring
in a litter.

Practical examples of exclusion probabilities
The allele frequencies of seven microsatellite loci in
Atlantic salmon were published in Villanueva et al.
(2002). The parentage and sibship exclusion probabilities
for the loci are calculated using (1), (6), (11) and (16) and
are listed in Table 2. The most informative locus for
parentage or sibship inference is locus 1 which has 14
alleles, rather than locus 2 that has 21 alleles. This is
because the allele frequencies of locus 1 are more even
than those of locus 2. The rank order of the informative-
ness among the seven markers changes only slightly,
depending on the specific exclusion probability being
computed and compared. Locus 2 gives slightly larger
values of PE1 and PE2 but smaller values of PE3 and SE
than locus 3. For each of the seven loci, its exclusion
power increases rapidly with an increasing number of
full-sib offspring genotyped and included in a relation-
ship analysis.

The combined exclusion probabilities over the seven
loci are very high, close to the maximum value of 1.
However, this does not necessarily mean that all false
relationships can be excluded in a given parentage
analysis. The accuracy of a parentage analysis depends
on not only how informative the markers are as indicated
by exclusion probabilities, but also the total number of
tests to be carried out in the analysis. As an example,
consider the exclusion of paternity for offspring with
known maternal genotypes. The combined PE1 for the
seven microsatellites is 1�2.00� 10�4¼ 0.9998 when a
single offspring (n¼ 1) is tested for paternity. If a sample
of N offspring–mother pairs and N candidate fathers
unrelated to any of the N offspring is obtained, and
each candidate is tested for paternity of each offspring,
there would be a total number of N2 tests. These N2

tests are not truly independent, because an individual
appears in multiple tests. However, to a good approx-
imation, the following calculation is conducted under the
assumption of independent tests. The probability of
complete exclusion of the N2 false offspring–father
relationships is 0:9998N

2
, which is 0.923 for N¼ 20,

0.135 for N¼ 100 and 0.000335 for N¼ 200. With an
increasing sample size, the exclusion power of the 7
microsatellites diminishes exponentially. If there are
four full-sib offspring instead of only one offspring in
each of the N mother–offspring group, the combined
PE1 for the seven microsatellites is increased to
1–3.13� 10�7¼ 0.999999687. The probability of complete
exclusion of the N2 false offspring–father relationships
becomes 0:999999687N

2
, which is 0.9999 for N¼ 20, 0.9969

for N¼ 100 and 0.9876 for N¼ 200.
The above numerical examples illustrate that a high

exclusion probability may still result in a low probability T
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of complete exclusion of all false parentage if the sample
size is large, and that the use of multiple full-sib
offspring can increase the power dramatically. In a
similar context, we should realize the importance of
recording exclusion probabilities with a sufficient num-
ber of significant digits. In the above numerical example
of N offspring–mother pairs (n¼ 1) and N candidate
fathers with N¼ 100, the probability of complete exclu-
sion of the 104 false offspring–father relationships is 0.135
if EP1¼ 0.9998 but becomes 0.368 if EP1¼ 0.9999 and 0.050
if EP1¼ 0.9997. A tiny change in exclusion probability can
translate to a substantial alteration in the measurements
of the overall power of a parentage analysis. For this
reason, it is more convenient to calculate and record
non-exclusion probabilities rather than exclusion pro-
babilities.

Distinguishing half-sib, avuncular and

grandparent–grandoffspring relationships
In a parentage analysis, the use of multiple full-sib
offspring increases dramatically the probability of
excluding a false parent or a false pair of parents as
shown above. Analysing trios rather than pairs of
individuals simultaneously for genealogical relation-
ships in a likelihood framework also increased the power
substantially (Sieberts et al., 2002). It is well known that
the three relationships, half-sib (HS), avuncular and
grandparent–grandoffspring (GG), between a pair of

individuals cannot be distinguished using unlinked
autosomal markers and can be distinguished with very
low power using linked autosomal markers (Epstein
et al., 2000). In this section, I show that when one or both
individuals in the pair have one or more relatives (for
example, fullsibs) and the genotype data of the two
individuals and their relatives are analysed jointly, these
three relationships can be easily differentiated using
unlinked autosomal markers. Avuncular refers to any of
the four combinations of aunt–nephew, aunt–niece,
uncle–nephew and uncle–niece, and I consider aunt–
niece (AN) as an example.

Suppose a pair of individuals, A and B, may have a
HS, AN or GG relationship, and n1–1 full siblings to A
and n2–1 full siblings to B are also sampled and
genotyped at an autosomal marker with k codominant
alleles. Here I consider the likelihood of these n1þ n2
individuals falling into the three possible pedigrees as
depicted in Figure 4. When n1¼n2¼ 1, this reduces to
inferring HS, AN and GG relationships between a pair
of individuals, A and B. Notice that any pair of
individuals taken separately from clusters 1 with n1
individuals and 2 with n2 individuals has the same
relationship for the HS or AN pedigree, but can have one
of two possible relationships, grandparent–grandoff-
spring or grandaunt–grandniece, for the GG pedigree
if n141 (Figure 4).

The likelihoods of the two full-sib clusters with n1 and
n2 individuals falling into the HS, AN and GG pedigrees

× ×
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Figure 4 Pedigrees involving aunt–niece (AN), half-sib (HS) and grandparent–grandoffspring (GG) relationships. Males and females are
indicated by squares and circles, respectively, and individuals that are sampled and unsampled are indicated by solid and broken lines,
respectively.
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in Figure 4 are
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where

PrðGijjGuv;GwxÞ ¼ 1
4ðPrðGijjGuwÞ þ PrðGijjGuxÞ
þ PrðGijjGvwÞ þ PrðGijjGvxÞÞ

is the probability of observing the genotype of offspring j
in cluster i (i¼ 1,2; j¼ 1,y, ni), given parental genotypes
Guv and Gwx. Pr(Gij|Guw)¼ 1 if the genotype of offspring
j in cluster i has both alleles u and w and Pr(Gij|Guw)¼ 0
if otherwise. Note that in LGG, t indexes the two alleles, c
and d, in the genotype of the grandparent of full-sib
cluster 2.

It can be shown that LHS�LAN�LGG when n1¼n2¼ 1,
LHS�LGGaLAN when n1¼1 and n241, LHS�LANaLGG
when n141 and n2¼ 1, indicating that these three
relationships cannot be distinguished no matter how
many markers are used when n1¼1 and/or n2¼ 1. If
both n141 and n241, however, the three likelihood
values are different for an autosomal marker and
therefore the three relationships can be differentiated.
As a numerical example, the seven microsatellite
markers in Atlantic salmons listed in Table 2 are utilized
to distinguish the three relationships when the two full-
sib clusters have various sizes. The HS, AN or GG
pedigrees depicted in Figure 4 are simulated and the
genotypes of the two full-sib clusters at the seven
microsatellite loci are generated following Mendelian
segregation. LHS, LAN and LGG are then calculated from
the genotype data, and the relationship between the two
clusters of full siblings is inferred as the one with the
maximum likelihood. Whenever two or three relation-
ships have the same maximum likelihood, they are
assigned as the true relationship with an equal prob-
ability. Each pedigree is simulated 100 000 times for a
given value of n1 or n2, assuming n1¼ n2. The rates that
an actual relationship is inferred as HS, AN and GG are
plotted against n1 (or n2) in Figure 5. When n1¼n2¼ 1,

the three relationships are indistinguishable regardless of
the actual relationship, resulting in a correct classification
rate of 1/3. With an increasing value of n1 (¼n2),
however, the relationship-misclassification rate decreases
rapidly for all of the three simulated pedigrees. Even
with n1¼n2¼ 3, the misclassification rate is only 0.10,
0.10 and 0.08 for the simulated relationship of AN, HS
and GG, respectively. The statistical power of the
analysis using merely seven microsatellites is extremely
high compared with that of the analysis using pairs of
individuals but hundreds of linked markers (Epstein
et al., 2000). Using 399 autosomal markers (each with four
equally frequent alleles) spaced at 10-cM intervals across
the human genome, a pair of individuals with GG, HS
and AN relationships is still assigned an incorrect
relationship at a rate of 0.28, 0.63 and 0.38, respectively
(Epstein et al., 2000). The comparison highlights the
impact of analysing simultaneously multiple individuals
with partially known or completely unknown relation-
ships. When the relationships among the n1þn2 sampled
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Figure 5 The effect of the number of full siblings on the accuracy of
distinguishing aunt–niece, grandparent–grandoffspring and half-
sib relationships. Lines marked by AN, GG and HS show the
proportions of the actually simulated aunt–niece (top), grand-
parent–grandoffspring (middle) or half-sib (bottom) relationships
between the two full-sib clusters being inferred as AN, GG and HS
relationships, respectively. The numbers of individuals in the two
full-sib clusters are assumed to be the same (n1¼ n2) as shown on
the x axis. The data are simulated using the seven microsatellite
markers in the Atlantic salmons.
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individuals in Figure 4 are completely unknown but are
confined to a few candidates such as GG, HS, AN and
full-sib (FS), it is still possible to reconstruct the pedigree
using unlinked autosomal markers in a likelihood
approach (Sieberts et al., 2002; Wang, 2004) if n141 and
n241. The accuracy of the inferences can be smaller than
that shown in Figure 5, but the difference in accuracy
should diminish rapidly with an increasing amount of
marker information.

Discussion

In marker-assisted parentage analyses, it is common that
a mother and a number of her offspring (or fertilized
eggs/seeds) are genotyped to infer their paternity
(Kichler et al., 1999; Adams et al., 2005; Bretman and
Tregenza, 2005; Chapple and Keogh, 2005; Gosselin et al.,
2005; Madsen et al., 2005). Some of the offspring sampled
from a mother may be full siblings fathered by the same
male, and their genotypes can be used jointly to infer the
paternity more accurately. Although the full- and HS
relationships among the offspring from a mother are
usually unknown, they can be identified and utilized to
infer their paternity by some recently developed statis-
tical methods (Emery et al., 2001; Sieberts et al., 2002). In
such cases, therefore, parentage exclusion probabilities
calculated using previous equations assuming a single
offspring underestimate the statistical power of paren-
tage analyses and undervalue the amount of information
of markers. The equations derived in this study allow
more accurate determination of marker information and
of the power of parentage analyses. In addition, they can
be used to guide experimental designs of parentage
analyses in selecting markers and determining the
number of offspring to be sampled and genotyped.

Recently, exclusion (Smith et al., 2001; Butler et al.,
2004) and likelihood (Thomas and Hill, 2000; Wang,
2004) approaches have been developed to infer sibships
in a sample of individuals using their marker genotypes
without parental information. To assess the power of and
the informativeness of markers in a sibship analysis,
Almudevar and Field (1999) derived equations for the
probabilities of excluding a number of n-unrelated
individuals, a number of n–1 full siblings and 1 unrelated
(or HS) individual as comprising a full sibship. In the
present study, I derived a formula for sibship exclusion
probability (SE) which reduces to very simple forms in
some special cases (equations 17–19). I showed that, for a
given marker system, SE increases very rapidly with n,
indicating that a group of unrelated individuals is much
easily excluded from a full sibship if the group size (n) is
large. In other words, an inferred sibship of n individuals
becomes increasingly reliable with an increasing value of
n, regardless of the methodology (exclusion or like-
lihood) used in a sibship analysis using a given marker
system. The implication for sibship analyses is that the
statistical power would be low if most sibships are small
in size (say, no4). In such a case, more informative
markers are required to attain sufficient statistical power.
On the contrary, when most sibships in a sample of
individuals are large, then it is easy to infer the sibships
with even a small number of markers.

Traditionally, genealogical relationships or relatedness
is inferred between a pair of individuals. Although
simple to implement, the pairwise approach suffers from

a number of drawbacks. First, valuable information may
be lost in breaking the sampled individuals into pairs
and considering each in isolation (Sieberts et al., 2002;
Wang, 2004). All individuals in a sample may provide
direct and indirect information concerning the relation-
ship of a dyad, especially those closely related to the
dyad. In diploid species, for example, sibship exclusion
of a group of n individuals is impossible if n¼ 2 but is
feasible if n42 from codominant marker data, as is
shown by the present study. Indeed, more accurate
relationship inferences are achieved by analysing trios
rather than pairs of individuals (Sieberts et al., 2002). This
investigation further demonstrates that HS, avuncular
and GG relationships can be easily discriminated using
unlinked markers when three or more related indivi-
duals are analysed jointly. If only a pair of individuals are
analysed, however, the three relationships are indistin-
guishable using unlinked markers, and are only margin-
ally differentiated using linked markers (Epstein et al.,
2000). Second, the inferred pairwise relationships are not
guaranteed to be self-compatible. Among three indivi-
duals, for example, two dyads may be inferred as fullsibs
and the other dyad as non-fullsibs from the pairwise
methods. The three inferred pairwise relationships are
obviously incompatible. In a pairwise parentage analysis,
a male and a female may be inferred independently as
the father and mother of an offspring, respectively. When
the trio are considered jointly, however, the two adults
may be incompatible as both parents of the offspring.
Third, pairwise approaches infer direct relationships at
the lowest level, between a pair of individuals. Such
pairwise relationships suffice in some instances in which
they are used, for example, to avoid mating between
relatives in managing conservation populations (Herbin-
ger et al., 1995). In most cases, however, knowledge of
higher order relationships is desirable, which requires all
the individuals in a sample to be allocated into various
genetic groups (Smith et al., 2001). Further information
may be lost in subsequent analyses, such as estimating
heritability (Thomas and Hill, 2000), if only pairwise
relationships are inferred and used. Although it is
possible to first infer pairwise relationships and then
cluster them into genetic groups (Blouin et al., 1996;
Beyer and May, 2003), such a two-step procedure does
not exploit the marker information fully and has to resort
to some heuristic rules to resolve the conflicts among
some pairwise relationships. This study highlights the
great benefits of analysing multiple-related (for example,
in inferring parentage or distinguishing GG, HS and AN
relationships) or -unrelated (for example, in sibship
analyses) individuals to infer their relationships.

I wish to emphasize that parentage (sibship) exclusion
probabilities measure adequately the informativeness of
markers and the power of parentage (sibship) analyses
only when the exclusion approach is adopted in relation-
ship inferences. For other approaches such as likelihood,
these probabilities serve the purposes only approximately.
In general, a set of markers with a high cumulative
exclusion probability and thus a high power in relation-
ship exclusion analyses is also highly informative and
gives a high statistical power in likelihood analyses.
However, exceptions do exist. For example, biallelic
dominant markers such as AFLPs do not allow paternity
exclusion in the absence of maternal genotypes (Chakra-
borty et al., 1974; Gerber et al., 2000). No matter how many

Parentage and sibship exclusions
J Wang

214

Heredity



such loci are used, therefore, PE2�0 and the paternity
exclusion analysis is powerless. These markers are never-
theless informative and can be used to infer paternity in
the likelihood framework. Similarly, biallelic codominant
markers such as SNPs are completely uninformative in
sibship exclusion analyses (SE¼ 0) but provide informa-
tion to differentiate sibship from other relationships by
likelihood (Wang, 2006). Some alternative informativeness
measurements other than exclusion probabilities have
been proposed to measure the information content of
markers in inferring genealogical relationships, which
apply to all kinds of markers (dominant or codominant,
two or more alleles per locus) and relationships and allow
for genotyping errors (Wang, 2006).

In the derivation, I followed previous studies in
assuming that the markers are in Hardy–Weinberg
equilibrium (HWE). It should be noted that this
assumption may be violated in real populations, leading
to an under- or over-estimation of the exclusion
probabilities. A number of conditions are required for a
population to reach at and remain in HWE (Crow and
Kimura, 1970). Deviation from HWE is resulted when,
for example, the marker is under direct or indirect
selection, population size is small, mating is not at
random with respect to kin (for example, inbreeding
avoidance, population subdivision). Whatever the cause
of the deviation, its impact on exclusion probability can
be formulated using Wright (1965) statistic of FIS denoted
by f, following the same approach as adopted in deriving
(1), (6), (11) and (16). The formulas become quite
complicated, however. For the case of paternity exclusion
probability with a known mother, for example, the
formula can be derived as

PE1 ¼1� ðf þ 2cf1Þf2a2 � 2f1ðf1 � cf2 � cf1Þa3
þ f1ð3ð1� 2cÞf1 þ 2cff2 þ 4bf1f2Þa4
þ 2ð20bþ 11c� 14dÞf31 a6 � 4f21 ð2bþ 2c� d

þ ð5b� c� dÞf1Þða5 � a2a3Þ þ 8ðbþ c� dÞf31 a32
� 2ð6bþ 3c� 4dÞf31 a23 � 4ð9bþ 6c� 7dÞf31 a2a4
� 2f1ðf1 þ cf þ ð2b� cÞf1f2Þa22

where f1¼1�f and f2¼ 2�f, and a, b, c and d are as defined
in (1). When the marker is in HWE so that f¼ 0, the above
formula reduces to (1) as expected. The impact of f on PE1

is shown in Figure 6 for a locus with five codominant
alleles of an equal frequency. It can be seen that the
magnitude of effect on PE1 of the deviation from HWE is
relatively small, and that the direction of effect on PE1

depends on n. When n is small, inbreeding (positive f)
leads to an increase in PE1, while when n is large,
inbreeding results in a decrease in PE1. As an empirical
example, consider the marker with 14 codominant alleles
with frequencies listed in the first row of Table 2. When
n¼ 1, the values of PE1 are 0.7759, 0.7873, 0.7985 with
f¼ –0.1, 0, 0.1, respectively. When n¼ 4, the values of PE1

become 0.9430, 0.9336, 0.9251 with f¼ –0.1, 0, 0.1,
respectively.
The assumption of linkage equilibrium (LE) is

required to calculate multi-locus exclusion probabilities
simply from single-locus values. Unlike HWE, it is
difficult to relax this assumption in deriving the
exclusion probabilities. However, like HWE, slight
deviations from LE should have a small effect on
exclusion probabilities. To investigate quantitatively the
impact of deviation from LE, a further simulation study
should be conducted.
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Appendix

Deriving sibship exclusion probability
To derive SE, I first consider the probability (TE) that n
unrelated individuals cannot be excluded from a sibship,
and 1–TE gives SE. Denote the genotypes of n-unrelated
individuals at a k-allele locus as G¼ {G1, G2,y, Gn}. G
does not allow sibship exclusion in the following cases.

1. G contains one allele
In this case all of the n individuals display the

same homozygous genotype, with a probability TE;1 ¼P
u ðp2uÞ

n

2. G contains two alleles
The probability is

TE; 2 ¼
1

2

X
u

X
v 6¼u

X2n�1

i¼1

ð2nÞ!
i!ð2n� iÞ!p

i
up

2n�i
v

3. G contains three alleles observed in two or three
kinds of heterozygotes

In this case, G consists of genotypes {AuAv, AuAw} or
{AuAv, AuAw, AvAw}, where u 6¼ v 6¼ w ¼ 1; . . . ; k . The
probability is

TE;3 ¼
1

2

X
u

X
v6¼u

X
w 6¼u;v

Xn�1

i¼1

n!

i!ðn� iÞ!�ð2pupvÞið2pupwÞn�i

þ 1

6

X
u

X
v6¼u

X
w 6¼u;v

Xn�2

i¼1

Xn�i�1

j¼1

n!

i!j!ðn� i� jÞ!

�ð2pupvÞið2pupwÞjð2pvpwÞn�i�j

4. G contains three alleles observed in one kind of
homozygote and one or more kinds of heterozygotes

In this case, G consists of genotypes {AuAu, AvAw}, or
{AuAu, AvAw, AuAv}, or {AuAu, AvAw, AuAw}, or {AuAu,
AuAv, AuAw}, or {AuAu, AvAw, AuAv, AuAw} where
u 6¼ v 6¼ w ¼ 1; . . . ; k. The probability of the case is
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TE; 4 ¼
1

2

X
u

X
v6¼u

X
w6¼u; v

Xn�1

i¼1

Xn�i

j¼1

Xn�i�j

s¼0

n!

i!j!s!ðn� i� j� sÞ!

�ðp2uÞ
ið2pvpwÞjð2pupvÞsð2pupwÞn�i�j�s

þ 1

2

X
u

X
v6¼u

X
w 6¼u; v

Xn�2

i¼1

Xn�i�1

j¼1

n!

i!j!ðn� i� jÞ!

�ðp2uÞ
ið2pupvÞjð2pupwÞn�i�j

5. G contains four alleles observed in two kinds of
heterozygotes

The genotypes in G are {AuAv, AwAx}, where
u 6¼ v 6¼ w 6¼ x ¼ 1; . . . ; k: The probability of the case is

TE; 5 ¼
1

8

X
u

X
v6¼u

X
w6¼u; v

X
x 6¼u; v;w

Xn�1

i¼1

n!

i!ðn� iÞ!

�ð2pupvÞið2pwpxÞn�i

6. G contains four alleles observed in three kinds of
heterozygotes that do not share an allele among all of
them

A possible genotype combination in G is {AuAv, AuAw,
AvAx}, where u 6¼ v 6¼ w 6¼ x ¼ 1; . . . ; k: The probability
of the case is

TE; 6 ¼
1

2

X
u

X
v 6¼u

X
w 6¼u;v

X
x6¼u;v;w

Xn�2

i¼1

Xn�i�1

j¼1

n!

i!j!ðn� i� jÞ!

�ð2pupvÞið2pupwÞjð2pwpxÞn�i�j

7. G contains four alleles observed in four kinds of
heterozygotes that do not share an allele among any
three of them
A possible genotype combination in G is {AuAv, AuAw,

AvAx, AwAx}, where u 6¼ v 6¼ w 6¼ x ¼ 1; . . . ; k: The
probability of the case is

TE; 7 ¼
1

8

X
u

X
v 6¼u

X
w 6¼u;v

X
x6¼u;v;w

Xn�3

i¼1

Xn�i�2

j¼1

�
Xn�i�j�1

s¼1

n!

i!j!s!ðn� i� j� sÞ!

�ð2pupvÞið2pupwÞj

�ð2pvpxÞsð2pwpxÞn�i�j�s

The total non-exclusion probability, TE, is obtained by
summing TEi for i¼ 1, 2,y, 7. After some tedious algebra,
SE¼ 1�TE becomes (16) in text.
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