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Multivariate segregation analysis for quantitative
traits in line crosses

J Xiao1, X Wang1, Z Hu, Z Tang and C Xu
Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of Ministry of
Education, Yangzhou University, Yangzhou, China

Segregation analysis is a method of detecting major genes
for quantitative traits without using marker information. It
serves as an important tool in helping investigators to plan
further studies such as quantitative trait loci mapping or more
sophisticated genomic analyses. However, current methods
of segregation analysis for a single trait typically have low
statistical power. We propose a multivariate segregation
analysis (MSA) that takes advantage of the correlation
structure of multiple quantitative traits to detect major genes.
This method not only increases the statistical power, but
allows dissection of the genetic architecture underlying
the trait complex. In MSA the observed phenotypes of
multiple correlated traits are fitted to a multivariate Gaussian
mixture model. Model parameters are estimated under
the maximum likelihood framework via the expectation-

maximization algorithm. The presence of major genes is
tested using likelihood ratio test statistics. Pleiotropy is
distinguished from close linkage by comparing three possible
models using the Bayesian information criterion. Two
simulation experiments were performed based on the F2

mating design. In the first, the statistical properties of MSA
under varying heritabilities and sample sizes were investi-
gated and the results compared with those obtained from
single-trait analysis. In the second simulation the efficacy of
MSA in separating pleiotropy from close linkage was
demonstrated. Finally, the new method was applied to real
data and detected a major gene responsible for both plant
height and tiller number in rice.
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Introduction

It has generally been thought that quantitative traits are
controlled by an infinite number of loci, each with an
infinitely small effect – the ‘infinitesimal’ model (Lynch and
Walsh, 1998). This view has been challenged by the
observation that many quantitative traits are controlled
by a few major genes plus numerous genes with small
effects – the ‘oligogenic’ model. Segregation analysis that
identifies major genes solely on phenotypic information is
the basis of quantitative trait loci (QTL) mapping, since the
current statistical methods and sample sizes used in gene
mapping studies can detect only genes with major or
moderate effects. In the post-genomics era, segregation
analysis serves as an important intermediate tool to help
investigators plan more sophisticated genomic studies. It
also enables plant breeders to manipulate major genes
(Wang et al., 2001; Zeng and Li, 2003; Yang et al., 2006).

A number of statistical methods have been developed
to detect major genes for a variety of species (Lynch and
Walsh, 1998). The most widely accepted is segregation
analysis based on the mixture model(Tan and Chang,
1972; Elston and Stewart, 1973; Tan and D’Angelo, 1979;

Elston, 1984; Loisel et al., 1994; Zhang et al., 2003). Various
analytical strategies have been adopted in an attempt to
make the method more reliable and robust. A mixed-
inheritance model that incorporates the polygenic effect
has been developed (Wang and Gai, 1997; Wang et al.,
2001). Gai and Wang (1998) also proposed joint segrega-
tion analysis to fit various mixed-inheritance models
using phenotypic information from multiple popula-
tions. This method has been applied successfully to
major gene detection in many plant species (Wang and
Gai, 1997; Wang et al., 2001). Other approaches, such as
complex segregation analysis (which takes advantage of
transmission information from traits within pedigrees),
have been widely used in humans and animals and have
been extended to plant studies (Tourjee et al., 1995;
Aulchenko et al., 1999). A major limitation of phenotype-
based segregation analysis, however, is that it lacks
sufficient statistical power to detect genes with relatively
low heritability. Its power is also low in more complex
inheritance models owing to the increased number of
unknown parameters.
In real experiments it is common to score a number of

traits simultaneously. These traits are often correlated
through a common genetic basis, such as pleiotropy or
close linkage, or through shared environmental influ-
ences. Joint analysis of multiple traits can yield more
substantial benefits than can be achieved through single-
trait analysis. Statistically, multivariate analysis allows
information from correlations between variables to be
incorporated, which should result in increased statistical

Received 8 June 2006; revised 3 December 2006; accepted 16
February 2007; published online 28 March 2007

Correspondence: Dr C Xu, Department of Agronomy, Yangzhou
University, Yangzhou 225009, China.
E-mail: qtls@yzu.edu.cn
1These authors contributed equally to this work.

Heredity (2007) 98, 427–435
& 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00

www.nature.com/hdy



power and more precise estimates. Moreover, the
increase in dimension improves the degree of separation
between mixture components, further augmenting its
power (Hamilton, 1991; Dolan and van der Maas, 1998).
Biologically, multivariate analysis is likely to yield more
interesting and informative results with respect to the
interplay among the trait complexes. Multitrait genetic
analysis has been used routinely in human genetics to
improve the efficacy of gene detection in complex
diseases (Blangero and Konigsberg, 1991; Almasy et al.,
1997; Schmitz et al., 1998; Chien et al., 2006) but has not
yet been applied to analysis in line crosses.

The objective of this study was to develop a means of
segregation analysis that would use multiple correlated
traits in line-crossing experiments – ‘multivariate segrega-
tion analysis’ (MSA). Observed phenotypes of multiple
correlated traits were fitted to a multivariate Gaussian
mixture model. Parameter estimations were obtained
using the maximum likelihood (ML) method, implemen-
ted via the expectation-maximization (EM) algorithm
(Dempster et al., 1977). The presence of major genes was
tested using the likelihood ratio test (LRT) statistic. A test
to determine whether the significant effects were due to
pleiotropy or close linkage was also performed. Simula-
tions under a variety of scenarios were conducted to
compare the results obtained using MSA with those
produced by conventional single-trait analyses. The use of
MSA with real data was demonstrated by testing rice for
two traits: plant height and tiller number.

Theory and methods

Genetic model
Let A and a be the two alleles of the locus controlling k
correlated quantitative traits. In the segregating population,
the major gene will have three genotypes: AA, Aa and aa.
Let Yj ¼ ðYj1 Yj2 � � �YjkÞ be a row vector of phenotypic
values for the k traits measured from the jth individual in
the segregating population. The phenotypic values may be
described by the following linear model

Yj ¼ Xjbþ ej ð1Þ
where Xj¼ (1 X1j X2j) is the indicator variable vector for the
genotype Gj of the jth individual with Xj¼H1¼ (11 0)
when Gj¼AA, Xj¼H2¼ (1 0 1) when Gj¼Aa, and
Xj¼H3¼ (1�10) when Gj¼ aa. Let

b ¼
b01 b02 � � � b0k
b11 b12 � � � b1k
b21 b22 � � � b2k

0
@

1
A

be the matrix of parameters, where b01; b02; � � � ; b0k
correspond to the population mean of the k traits,
b11; b12; � � � ; b1k and b21; b22; � � � ; b2k correspond to the
additive effects and dominance effects, respectively, for the
major gene. Let ej ¼ ðej1 ej2 � � � ejkÞbe the vector of residual
effects with an assumedmultivariate Gaussian distribution,
that is, MVNð0; VeÞ;where 0 ¼ 0 0 � � � 0ð Þ is a row
vector of zeros and

Ve ¼

s21 s12 � � � s1k
s21 s22 � � � s2k
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is the residual variance-covariance matrix.

Model (1) is now considered as a general multivariate
linear model with values of Xj missing. Conditioning on
the major gene genotype Gj, Yj has a density of YjjGj

¼ AA � MVNðH1b;VeÞ; YjjGj ¼Aa � MVNðH2b; VeÞ or
YjjGj ¼ aa � MVNðH3b;VeÞ.

Multivariate segregation analysis
Since genotypes of the major gene in the segregating
population are unknown, the total phenotypic value Yj of
the jth individual for the k traits is a mixture of three
Gaussian distributions, with mixing proportions equal to
the genotype probabilities, denoted by p1j, p2j and p3j
for the three possible genotypes AA, Aa and aa. The
probability density of Yj is

fðYjÞ ¼
X3
l¼1

pljflj ð2Þ

where

flj ¼ ð2pÞ�k=2jVej�1=2 exp½�ð1=2ÞðYj �HlbÞV�1
e ðYj

�HlbÞT


is the probability density function of the jth individual
conditioning on the lth genotype. The overall likelihood
of n independent observations in the segregating
population is

L ¼
Yn
j¼1

fðYjÞ ð3Þ

The ML estimates of parameters b and Ve in model (3)
can be achieved using the EM algorithm (Dempster et al.,
1977). It is easier to deal with the log-likelihood function,
as shown below

ln L ¼
Xn
j¼1

ln fðYjÞ ð4Þ

The ML estimates of the unknown parameters can be
found via the EM algorithm

b̂ ¼
Xn
j¼1

EðXT
j XjÞ

2
4

3
5
�1 Xn

j¼1

EðXT
j YjÞ

2
4

3
5 ð5Þ

and

V̂e ¼
1

n

Xn
j¼1

E ðYj � Xj b̂ÞTðYj � Xj b̂Þ
h i

ð6Þ

The estimates in the above two formulae are the
corresponding expectations of the missing variables.
The final step is to obtain these expectations.

The prior probabilities of genotypes for the major gene
depend on the type of population. For instance,
p1j ¼ 0:25; p2j ¼ 0:5; p3j ¼ 0:25 for an F2 population and
p1j ¼ 0:5; p2j ¼ 0:5; p3j ¼ 0 for a backcross population
BC1 ¼ F1�P1 . According to Bayes’ theorem, the posterior
probability for each of the major genotypes p�lj is

p�lj ¼
pljflj

P3
l¼1

pljflj

ð7Þ
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The posterior probabilities can be used to calculate the
expectations in Equations (5) and (6), as shown below

EðXT
j XjÞ ¼

P3
l¼1

p�ljH
T
l Hl

EðXT
j YjÞ ¼

P3
l¼1

p�ljH
T
l Yj

E½ðYj � Xj b̂ÞTðYj � Xj b̂Þ
 ¼
P3
l¼1

p�lj½ðYj �Hl b̂ÞTðYj �Hl b̂Þ


8>>>>>>><
>>>>>>>:

ð8Þ
The iteration process of the EM algorithm is summarized
as follows

(1) Choose initial values of the parameters b(0) and Ve
(0).

(2) E-step: Calculate the posterior probabilities for all the
possible genotypes for the jth individual using
Equation (7) and the expectations using Equation (8).

(3) M-step: Calculate the estimates of parameters b(1)

and Ve
(1) using Equations (5) and (6). The results are

then used to update the initial values.
(4) Repeat the E-step and the M-step until the iterations

converge.

The proportions of the three major gene genotypes in a
segregating population at the tth iteration are calculated
using

p
ðtÞ
l ¼ ð1=nÞ

Xn
j¼1

p
�ðtÞ
lj ð9Þ

Tests of major genes
For the sake of demonstration, here we restrict our
discussion to bivariate segregation analysis in an F2
population. Five hypotheses regarding the general and
restricted models are considered.

H1: No major gene is segregating in the population,
that is, b11 ¼ b12 ¼ b21 ¼ b22 ¼ 0 . The parameters to be
estimated are b ¼ ðb01 b02Þ and

Ve ¼
s21 s12
s21 s22

� �

The ML estimates of the parameters under this
hypothesis are

b̂ ¼ ð1=nÞ
Xn
j¼1

Yj and V̂e ¼ ð1=nÞ
Xn
j¼1

ðYj � b̂ÞTðYj � b̂Þ

Define the log-likelihood function evaluated at the
solutions as

ln L1 ¼
Xn
j¼1

ln fðYjÞ

where fðYjÞ ¼ ð2pÞ�1V̂
�1=2

e exp½�ð1=2ÞðYj � b̂Þb̂
�1

e ðYj � b̂ÞT
.
H2: There is a major gene segregating in the popula-

tion. The model under this hypothesis is the same as
model (1). The ML estimates of parameters b and Ve are
obtained by applying Equations (5) and (6). The log-
likelihood function under this hypothesis is given in
Equation (4) and denoted by lnL2 here.

H3: There is a mixture of three multivariate normal
distributions with a common covariance matrix. The
model under this hypothesis is similar to the single-gene

model except that the proportions of the three normal
distributions pl (l¼ 1, 2, 3) are not fixed. The ML
estimates of the corresponding parameters at conver-

gence are denoted by b̂; V̂e and p̂l ðl ¼ 1; 2; 3Þ; respec-
tively. Denote the log-likelihood value at convergence by
ln L3 ¼

Pn
j¼1 ln fðYjÞ, where fðYjÞ ¼

P3
l¼1 p̂lflj:

H4: The major gene regulates the first trait only, that is,
b21¼ b22¼ 0, the parameters to be estimated are
b01; b02; b11; b12 and Ve. Under this model, the log-
likelihood function evaluated at the solutions is denoted
by ln L4.
H5: The major gene regulates the second trait only.

Here the model is restricted to b11¼ b12¼ 0, with the
parameters to be estimated being b01; b02; b21; b22 and Ve.
The log-likelihood function evaluated at the model
solutions is denoted by ln L5:
The likelihood-ratio test (LRT) is employed to compare

the hierarchical models based on the hypotheses stated
above, that is, to evaluate whether a reduced model gives
essentially the same fit as the general model.
The LRT statistic for testing the existence of a major

gene is given by

LR1 ¼ �2ðln L1 � ln L2Þ
The test statistic asymptotically follows a chi-square
distribution with 2k degrees of freedom.
The LRT statistic that tests whether the pattern of

distribution is consistent with a single-gene model is
calculated based on hypothesis H2 and its reference
hypothesis H3. Therefore, hypothesis H2 is nested within
the general model under H3 with the additional
constraints p1j ¼ 0:25; p2j ¼ 0:5; p3j ¼ 0:25. The test sta-
tistic will be

LR2 ¼ �2ðln L2 � ln L3Þ
Once a major gene is detected using LR2, we can

determine whether it has pleiotropic effects on both
traits. The test is then equivalent to the tests for trait-
specific effects. Rejection of both trait-specific hypo-
theses indicates the presence of pleiotropic effects.
The LRT statistics are therefore calculated as
LR3 ¼ �2ðln L4 � ln L2Þ and LR4 ¼ �2ðln L5 � ln L2Þ.
The test statistics LR2, LR3 and LR4 each will follow

approximately a chi-square distribution with two de-
grees of freedom under the corresponding null hypoth-
eses, since there are two additional free parameters being
fit under the general model. Once a single-gene model is
rejected, we need to consider more complex models
containing several major genes, which will not be
discussed in this paper.

Pleiotropy versus close linkage
Both pleiotropy and linkage can contribute to the genetic
correlation of different traits. Rejecting the last two
hypotheses in the previous section does not distinguish
whether the significant effect is due to one shared major
gene or to multiple, closely linked genes, each with a
major effect on a single trait. Further separation of these
two possibilities may be intrinsically important in
practical breeding or other genetic studies. To this end,
MSA can be extended to consider the linkage model. In
this study we confine our consideration to the hypothesis
of two traits regulated respectively by two genes without
pleiotropies. Let r denote the recombination fraction
between the two linked genes. Clearly, r¼ 0 infers that
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there is only one major gene, which points to a
pleiotropic model, and r¼ 0.5 can be interpreted as two
unlinked genes, indicating a non-linkage model.

The density of phenotypic values under the close
linkage model (r takes value between 0 and 0.5) is
analogous to that in Equation (2), except that the mixture
now has nine components, since recombination results in
nine possible joint genotypes for two genes in an F2
mating design. Accordingly, the likelihood function
should be reconstructed. The ML estimates of the
parameters, including the additional unknown r, can be
obtained by following the EM procedure described
above, but with some modifications:

In the initial step, a starting value also has to be
manually assigned to r, denoted by r(0).

In E-step, the posterior probabilities of nine genotypes
are calculated according to Bayes’ theorem, where the
priors depend on the recombination fraction between
two genes;

In M-step, r can be estimated by the ML method based
on a multinomial distribution model, the estimate of
which is then taken as the initial value of the next sweep.

The test of pleiotropy versus linkage is implemented
by choosing the most suitable model among the three
candidates, namely, the linkage model in which r is
estimated, the complete pleiotropic model (r is con-
strained to 0, i.e., one major gene model) and the non-
linkage model (r is constrained to 0.5). Here we propose
to use the Bayesian information criterion (BIC) that does
not assume nesting of models as the selection criteria
(Schwarz, 1978). The model with the smallest BIC will be
chosen. The BIC is defined as follows

BIC ¼� 2 ln ðmaximum likelihoodÞ
� ðnumber of independent parametersÞ
� ln ðnumber of observationsÞ

Data analysis
Simulation A: The main purpose of this simulation was
to explore the statistical properties of MSA under
varying conditions and compare them with those of
conventional single-trait analysis. To do so, we simulated
three correlated traits under the F2 mating design. Three
levels of h2 were simulated for the major gene: 30, 50 and
70%, each under two different sample sizes (n): 200 and
300. (See Table 2 for a complete list of the scenarios.) Two
hundred replicated simulations were conducted for each
of the six scenarios. Under each scenario, two simulation
designs were considered. In the first, the three traits were
assumed to be affected by a single gene. The additive
effects of the gene on the three traits were 0.5, 1.0 and

�0.5, respectively, whereas the dominance effects were
set to be 1.0, 0.5 and 1.0, respectively. The residual
correlation coefficients were �0.5, 0 and 0.5 between
traits 1 and 2, 1 and 3, and 2 and 3. The residual
variances of the traits were chosen based on the
heritabilities and genetic variances of the major gene.
The residual covariance was determined by the
corresponding residual correlation coefficient and the
residual variance. The population means for the three
traits were set to be b01¼10, b02¼ 20 and b03¼ 15. In the
second design, a major gene was assumed to control the
second trait only (no pleiotropic effect on the other
traits). In this case, the phenotypic correlation was solely
due to the shared environmental influences. Such a
model is represented by b11 ¼ b21 ¼ b13 ¼ b23 ¼ 0 where
the phenotypic variances of the first and third traits are
completely due to the residual variances. The values of
the residual variances and covariances are given in
Table 1. For comparison, each data set was analyzed with
univariate, bivariate and trivariate segregation methods.
The following criteria were used to evaluate the
methods:

(1) statistical power for major gene detection, deter-
mined by the proportion of the 200 replicates in
which the major gene was detected;

(2) precision and accuracy of the estimated effects of the
major gene and the estimated residual variances and
covariances.

The empirical statistical powers from seven segrega-
tion methods are summarized in Table 2, from which we
can draw the following conclusions. First, as would be
expected, statistical power is enhanced with increased
assample size and heritability , although it is more
sensitive to changes in the latter. Second, MSA has a
substantially higher power than univariate analysis in
design I. Even in the case with the strictest conditions,
the power of the trivariate segregation method reached
100%, compared with around 10% in conventional
single-trait analyses. Powers are also significantly im-
proved in the bivariate cases. The joint analysis of traits 1
and 3, however, tended to produce relatively lower
power, an effect that may be caused by the non-
correlated residual variances of the two traits. Third,
MSA can improve power even in univariate cases where
traits have no shared major gene. It can be seen that in
design II, under the first two treatments powers can be
improved by up to around twofold with bivariate
analyses, and up to fourfold with trivariate analyses.
This result further demonstrates the effectiveness of both
genetic and shared environmental correlations between
traits as aids to the detection of major genes.

Table 1 Residual variances and covariances of traits under different simulation designs and heritabilities

H2 (%) Design I Design II

Residual variance Residual covariance Residual variance Residual covariance

Trait 1 Trait 2 Trait 3 1–2 1–3 2–3 Trait 1 Trait 2 Trait 3 1–2 1–3 2–3

30 0.875 1.3125 0.875 �0.5358 0 0.5358 1.3125 1.3125 1.3125 �0.6563 0 0.6563
50 0.375 0.5625 0.375 �0.2296 0 0.2296 0.5625 0.5625 0.5625 �0.2813 0 0.2813
70 0.1607 0.2411 0.1607 �0.0984 0 0.0984 0.2411 0.2411 0.2411 �0.1205 0 0.1205
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Figure 1 shows the means and standard deviations
(s.d.) of the estimated parameters from the MSAs and
the univariate analysis under the two simulation
designs. The results showed the expected trend: higher
heritability and larger sample size tend to produce
more accurate and precise estimates. In the first simula-
tion design, the multivariate methods significantly
improved the performance of segregation analysis by
showing that all estimates are close to the true values. We
can also see that the trivariate method produced much
more precise results than the other two methods
(indicated by the short s.d. bars). However, the bivariate
method showed no apparent advantage in terms of
precision. In the second design (with no shared gene),
all three multivariate methods yielded better results
than the single-trait method, with the exception of
the bivariate analysis of traits 1 and 3 (M-13), which
would be expected since there is neither a genetic nor
an environmental correlation between the two traits in
that case.

Simulation B: In this simulation, we focused on the
testing of close linkage and pleiotropy. Two major genes
were assumed to control two traits independently, with
the recombination fraction between the genes (r) varying
under six levels from 0 to 0.5. The heritability for each
major gene was simulated under two levels: 50 and 70%.
The sample size was set at 300. The genetic effects of
genes, residual correlations between traits and other
parameters were set to be the same as those of the first
two traits in simulation A.

We have therefore created 12 different simulation
scenarios. Each dataset generated was then analyzed
using the procedure described above. The resulting
frequencies of acceptance of the candidate models over
100 replicates are presented in Table 3, where the
complete pleiotropic model is referred to as Model I,
the linkage model as Model II and the non-linkage/
independent model as Model III. We see from the table
that the method has extremely high power to accept the
true model under two extreme scenarios, when r equals 0
and 0.5, which means that instances of one shared major
gene and two unlinked genes can be detected without

difficulty. But when r¼ 0.4, the frequency of identifica-
tion of Model II is much lower, even under the high
heritability of 70%. This is understandable since the
simulated two genes are very loosely linked, making it
difficult to distinguish between Models II and III with
only phenotypic information. This particular result is not
important, however, since we are usually more interested
in separating close linkage from pleiotropy, rather than
loose linkage from non-linkage. It is encouraging to find
that our method has satisfactory powers to detect Model
II under scenarios where r equals 0.1, 0.2 and 0.3. The
powers are equal or very close to 100% when h2¼ 70%.
In cases with low heritability, a clear trend emerged in
which shorter distances between genes resulted in
greater frequencies of acceptance of the false model of
pleiotropy. Simulations indicate that a paradoxical result
could be obtained when the recombination fraction is
smaller than 0.1. To test genes with shorter distances,
sample size can be increased or information incorporated
from sources beyond phenotypes. Means and standard
deviations of the estimates of r and the genetic effects
obtained from the true model are also given in Table 3.
All estimates seem to be close to the true values and have
good precisions except the cases when r¼ 0.4, where the
estimates of recombination fraction are relatively biased.
In general, the scenarios with high heritabilities pro-
duced greater accuracy and precision.

Example of real data analysis
We used real data collected from a rice experiment to
illustrate the proposed MSA method for major gene
detection. An F2 population of 597 plants was derived
from a cross between Duonieai and Zhonghua 11. Two
agronomic traits were examined: plant height and tiller
number. The joint frequency distributions of the two
traits are given in Table 4, clearly showing a degree of
correlation. The data were fitted into the multivariate
model. The results of hypothesis testing are listed in
Table 5, from which we can see that:

(1) the LR value for testing the presence of a major gene
is significant at 1% level, rejecting H1;

Table 2 Statistical powers of major gene detection under different designs of the simulation experiments using seven different methods

Treatment
no.

Heritability
(h2) (%)

Sample
size (n)

Design Method

Univariate Bivariate Trivariate

S-1 S-2 S-3 M-12 M-13 M-23 M-123

1 30 200 I 10.5 13.0 10.0 100 34.0 75.5 100
II 1.5 11.5 2.5 22.0 3.0 22.5 46.0

2 30 300 I 12.5 18.0 14.5 100 43.0 95.5 100
II 3.0 14.5 1.5 27.0 4.0 27.5 59.0

3 50 200 I 61.5 63.0 53.0 100 98.5 100 100
II 3.0 58.5 3.5 79.0 3.5 80.0 98.5

4 50 300 I 78.0 81.0 77.5 100 100 100 100
II 2.5 82.0 2.0 94.5 4.0 96.0 100

5 70 200 I 100 100 100 100 100 100 100
II 2.5 100 4.5 100 3.0 100 100

6 70 300 I 100 100 100 100 100 100 100
II 2.5 100 2.0 100 5.0 100 100

M-123 indicates trivariate segregation analysis for three traits; M-12, M13 and M-23 denote bivariate analyses with each pair of traits; S-1, S-2
and S-3 are three single-trait analyses.
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(2) the LR value for testing the presence of a single major
gene influencing the variation of the traits is not
significant, and thus we accept H2;

(3) both H4 and H5 are rejected by the LR tests.

The test results provide evidence showing the ex-
istence of a single major gene with pleiotropic effects on
both traits. The additive and dominance effects of the
major gene on plant height are �21.3 and 40.6 cm,
respectively, indicating overdominance. For tiller num-
ber, the additive and dominance effects are 22.7 and
�25.3, respectively, near complete dominance. Estimates
of the genetic correlation coefficient and residual
correlation coefficient between the two traits are �0.97

and �0.28, respectively. The high genetic correlation
coefficient between the two traits further demonstrates
the pleiotropic mechanism of the major gene. Figure 2
depicts the joint distribution of the two traits when the
parameters are estimated under the H2 hypothesis, that
is, when the constraint (p1j ¼ 0:25; p2j ¼ 0:5; p3j ¼ 0:25) is
enforced. Although the effect was significant these
results did not exclude the possibility of close linkage,
where two independent genes determine different traits.
We therefore performed the proposed procedures to test
pleiotropy versus linkage. The results from fitting the
three possible models are presented in Table 6. The
pleiotropic model was chosen as the most suitable model
because it had the smallest BIC, further supporting the
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Figure 1 Comparison of the means and standard deviations (s.d.) of estimated genetic parameters from the trivariate (M-123), bivariate (M-
12; M-13; M-23) and univariate methods (S-1; S-2; S-3) under different scenarios of the simulation experiment. (a) and (b) are for the first and
second designs of simulation, respectively. The vertical bars indicate7s.d.
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hypothesis that plant height and tiller number in rice are
under the control of one major gene. Our analysis
therefore suggests that future molecular mapping of
genes influencing these two traits or other functional
analyses will have a high probability of success if
conducted using the same population.

Discussion

Segregation analysis of phenotypic data is designed for
preliminary screening of genes, and, while it provides
estimates of heritability and related parameters, it
furnishes no information on the exact locations of genes.
It does supply evidence of genetic effects that would
warrant gene mapping, whereas raditional statistical

programs and sparse genetic markers are not sufficient to
tackle a trait with no major gene effects. However, the
conventional method of segregation analysis usually has

Table 3 Frequencies of acceptance of the three candidate models over 100 replicates and the estimated genetic effects obtained from the true
model in simulation B

Heritability
(h2)

Recombination
fraction (r)

Testing model and accepted
frequency (in parentheses)

Calculated r a1 d1 a2 d2

True value

True model False models 0.5 1.0 1.0 0.5

Estimate

50% 0 I (99) II (1) III (0) 0.5370.11 0.9570.19 0.9770.12 0.5670.23
0.1 II (77) I (23) III (0) 0.1170.02 0.5370.11 0.9470.24 0.9870.17 0.5670.32
0.2 II (94) I (6) III (0) 0.2070.04 0.5570.14 0.9170.27 0.9870.15 0.5770.26
0.3 II (88) I (5) III (7) 0.2970.04 0.5570.15 0.9070.26 0.9970.18 0.5470.28
0.4 II (26) I (2) III (72) 0.3470.03 0.5070.12 0.9570.24 1.0670.09 0.3770.12
0.5 III (97) I (2) II (1) 0.5270.11 0.9670.24 0.9970.15 0.5270.22

70% 0 I (100) II (0) III (0) 0.5170.06 0.9870.10 1.0070.08 0.5170.14
0.1 II (100) I (0) III (0) 0.1070.02 0.5170.06 0.9870.11 0.9970.09 0.5370.17
0.2 II (100) I (0) III (0) 0.2070.03 0.5270.06 0.9670.14 0.9870.09 0.5570.18
0.3 II (98) I (0) III (2) 0.3070.03 0.5270.07 0.9770.14 0.9770.10 0.5570.18
0.4 II (59) I (0) III (41) 0.3770.02 0.5170.07 0.9770.13 0.9870.10 0.5370.19
0.5 III (98) I (0) II (2) 0.5270.07 0.9470.16 0.9970.09 0.5270.14

Table 4 Correlated frequencies of plant height and number of tillers of F2 population derived from rice cross Duonieai�Zhonghua 11

Plant height (cm) Number of tillers Total

0B12 12B24 24B36 36B48 48B60 60B72 72B84 84B96 96B108

168B152 5 4 9
152B136 22 10 1 33
136B120 56 15 71
120B104 95 88 2 185
104B88 59 58 4 121
88B72 9 9 7 25
72B56 4 6 38 18 8 11 1 2 88
56B40 1 10 17 12 4 10 2 56
40B24 3 2 1 3 9
Total 246 188 21 48 38 20 17 12 7 597

Table 5 Test results of various genetic hypotheses in rice data
analysis

Null hypothesis LRT statistic

H1 418.25**
H2 1.04ns

H4 839.39**
H5 418.26**

** and ns indicate significance at 1% level and nonsignificance,
respectively.
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Figure 2 Bivariate Gaussian distribution of plant height and tiller
number under the model based on H2.
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insufficient power, especially in cases with low herit-
ability and complex inheritance modes. In this study, we
have shown that MSA has advantages not offered by
single-trait segregation analysis. Results of the simula-
tions demonstrate that if a major gene has a pleiotropic
effect on both traits, MSA can have significantly higher
power than univariate segregation analysis, with sub-
stantial improvements in the precision and accuracy of
parameter estimation. The gain in power was also
observed when the major gene has sole regulation of
one trait, suggesting that shared environmental correla-
tion between traits can effectively aid the detection of
genes with large effects. We have demonstrated that even
without marker information, MSA can effectively test for
pleiotropy versus close linkage. The results will facilitate
our understanding of the genetic architecture underlying
trait complexes, as well as providing valuable guidance
for practical breeding, where breaking unfavorable gene
linkages is an important goal.

Substantial work has been done on joint mapping for
multiple quantitative traits. Jiang and Zeng (1995)
carried out seminal work in extending composite
interval mapping to a multivariate method. Xu et al.
(2005) made the procedure applicable to multiple
discrete traits. Methods have also been developed to
handle longitudinal data by fitting them to a particular
growth trajectory (Wu et al., 2004; Yang et al., 2006). The
proposed method presented in this paper is similar to
multivariate QTL mapping, although there are further
limitations that need to be considered in segregation
analysis. In MSA, the genotypes of putative loci cannot
be inferred from flanking markers and, clearly, no
marker effects can be fitted into the model for genetic
background control. A noteworthy difference between
the method proposed by Jiang and Zeng (1995) and ours
is the means of testing pleiotropy and close linkage. Jiang
and Zeng used an optimized two-step strategy in which
separate mappings of different traits were initially
performed. This was followed by a two-dimensional
search for maximum likelihood under the linkage model.
The tests of hypotheses were then concentrated in the
region near the peak indicated by the separate mappings.
This strategy cannot be used in segregation analysis
because of the difficulty of controlling the positions of
genes. We tackled this problem by introducing an
unknown variable r to measure the distance between
genes. Pleiotropy and linkage were tested by comparing
three models in which r is set at 0, 0.5 and unknown,
respectively. The success of this strategy has been
demonstrated by our simulations.

Dissection of the genetic architecture underlying the
correlations among traits is an important goal of
evolutionary biology. Genetic correlations can strongly
affect the evolutionary trajectory of complex trait
structures because natural selection of one trait could

cause an evolutionary change in a correlated neutral
character or alter the response to selection in a correlated
trait that is under direct selection (Conner, 2002). In other
words, pleiotropic connections between traits might
cause compromises among adaptations of different traits
and make them evolve in correlated patterns. However,
correlations do not always put constraints on the joint
evolution of the traits. A positive genetic correlation
could facilitate adaptive evolution, given that positive
directional selection occurs in all traits (Boake, 1994).
Certain combinations of traits rarely occur randomly:
they may be selected for their coordinated function or
have a common genetic basis such as pleiotropy
(Mclellan, 2005). Trait integration produced by a shared
genetic basis is usually independent of the environment,
whereas integration caused by functional association
may vary across environments (Young and Badyaev,
2006). However, it cannot be concluded that traits evolve
independently if only residual correlation is detected in a
single experiment. There is a need for more experiments
conducted in similar macro-environments (i.e., with the
same regional or climatic conditions) to eliminate
the possibility of functional integration. Understanding
the genetic basis of correlations not only allows us to
draw inferences about the influence of past selection on
traits, but also enables us to make predictions about the
hypothetical patterns of future selection. Moreover,
knowledge of integration among traits is valuable in
the recognition of species and the determination of
relationships among taxa.

In this study, a method of detecting major genes and
testing for pleiotropy versus linkage was demonstrated,
based on cases with three traits and two traits,
respectively. In real data analysis, more traits are
recorded, and several factors may constrain the number
of traits included in MSA. As this number increases so
will the number of the generated hypotheses, which
might become unmanageable in terms of interpretation
and computational time. In addition, there is a need for
more intermediate models in the test of pleiotropy versus
linkage, for example, where one or more genes has
pleiotropic effects on some traits but not others. Finally,
the number of traits should be limited by the sample size
to avoid increasing the parameters and thereby losing
power. Similar issues have been raised and discussed in
other studies (Schmitz et al., 1998; Knott and Haley, 2000).
Investigators need to design multivariate analyses with
care, choosing a reasonable subset of traits based on
theoretical sense and intuitive knowledge of the relation-
ships among traits. An alternative way of approaching
multiple traits is to use dimension reduction strategies
such as the principal component analysis (Korol et al.,
1995; Mangin et al., 1998), where the data are transformed
into fewer variables, called ‘super traits’, which account
for the majority of the variation in the entire set of traits.
After transformation, existing single-trait methods can be
used directly. However, the results of super-trait analyses
are often difficult to interpret in a biological setting
(Hackett etal., 2001; Xu et al., 2005).

In summary, the present study has successfully
demonstrated a powerful multivariate approach for
major gene detection. As it was designed principally to
test the applicability of the new multivariate strategy, the
model was based on two traits controlled by a single
major gene. This work can readily be extended to more

Table 6 Results of fitting the three possible models in the rice data
analysis

Testing model BIC a1 d1 a2 d2

Pleiotropic model (Model I) 5062.79 �21.34 40.56 22.69 �25.35
Linkage model (Model II) 5066.44 �21.36 40.55 22.70 �25.34
Unlinked model (Model III) 5361.29 �20.78 38.68 24.07 �24.07
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major genes and to polygenic effects to increase its
biological relevance. Further research is needed to
develop more sophisticated models that use phenotypic
information from multiple generations. Finally, MSA is
not restricted to multiple traits. It can be used to perform
repeated measurements of the same trait or analyses of
longitudinal traits. The high statistical power of the MSA
approach opens up a new opportunity to unravel the
genetic architecture of multiple quantitative traits.
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