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It is important that breeders have the means to assess
genetic scoring data for segregation distortion because of its
probable effect on the design of efficient breeding strategies.
Scoring data is usually assessed for segregation distortion by
separate nonindependent w2 tests at each locus in a set of
marker loci. This analysis gives the loci most affected by
selection if it exists, but it cannot give a statistically correct test
for the presence or absence of selection in a linkage group as
a whole. I have used a combined test based on the statistic,
which is the most significant P-value from the above tests,
called the single locus test. I have also derived mathematically
a new combined statistical test, the overall test, for segrega-

tion distortion that requires genetic scoring data for a single
linkage group. This test also takes genetic linkage into
account. Using a range of marker densities and population
sizes, simulations were carried out, to compare the power of
these two statistical tests to detect the effect of selection at
one or two loci. The single locus test was always found to be
more powerful than the overall test, but the single locus test
required a more complicated P-value correction. For the single
locus test, approximate correction factors for the P-values are
given for a range of marker densities and genetic lengths.
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Introduction

Backcross or doubled haploid populations descended
from a single F1 genotype are commonly generated in
plant breeding programmes and plant genetics experi-
ments. There is evidence that selection can occur during
these experiments, for example, selection occurring on
the gametes. This has often been reported particularly
during the process of culturing male gametes and
anthers to produce double haploid plantlets (Cloutier
et al, 1995; Foisset et al, 1997; Haitham et al, 2002; Knox
and Ellis, 2002; Lu et al, 2002). Differential selection will
manifest itself in segregation distortion that is departures
from the expected 1:1 ratio of allele pairs in the progeny
of the F1 individual at heterozygous loci. Whether or
not selection happens is likely to be important in the
interpretation of the results of such experiments and the
design of breeding programmes. Appropriate data are
frequently generated from some of the many types of
highly reproducible and relatively inexpensive molecu-
lar marker systems (Botstein et al, 1980; McCouch et al,
1988; Williams et al, 1990; Vos et al, 1995) that are capable
of providing information on the parental origin of alleles
at a closely spaced set of marker loci.

A related issue is to identify markers for which it is
hard to score the presence of one or both of the parental
alleles (whether this is suspected by the experimenter at
the time or not) that could lead to falsely distorted
segregation ratios; these unreliable observations should

be removed from the data at an early stage because they
can artificially increase the length of genetic maps (Knox
and Ellis, 2002) that are used in gene cloning and gene
introgression. A related issue is when a marker locus is
masked by another copy of the locus with the same
alleles but at a different location on the genetic
map. There is much evidence (Frisch et al, 2004) that
duplicated segments of chromosomes are common in
eukaryotes, particularly in plants. If a molecular marker
is based on a part of a duplicated sequence this can result
in a duplicate pair of marker loci. As the bands for the
markers cannot be distinguished, the result is, in the
initial phase of genetic map construction, a single ‘ghost
marker’ instead of the pair of loci that will show
segregation distortion that is related to recombination
between the duplicate loci.

The usual way in which segregation distortion is
assessed for marker data is by chi-square tests on a locus
by locus basis, (Haitham et al, 2002; Lu et al, 2002; Ruiz and
Asins, 2003). The w2 test is a convenient large sample
approximation of the exact binomial test with P¼ 0.5. In
this test, the P-value to be associated with an observation
of the number of individuals with one of the alleles is
twice the sum of the probabilities in the binomial
distribution from the observed value to the tail of the
distribution (Brunk, 1975). Although this analysis can give
an indication of the loci most affected by selection if it
exists, and the direction in which selection is acting, it
cannot give a statistically correct overall test for the
presence or absence of selection in a single linkage group
because the many separate statistical tests have not been
combined into a single overall statistical test. One simple
way to do this is to carry out the w2 test separately at each
locus as above to assess the significance of departures from
the expected 1:1 ratio of allele frequencies, and record the
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smallest P-value obtained as the test statistic. I shall refer to
this as the single locus test. By simulating scoring data
based on probability models of recombination, without
selection, and specified marker placement on the genetic
map, I have empirically determined the relationship
between the smallest P-value for the single locus tests
and the effective P-value with which it should be
associated in the test for the presence of segregation
distortion over the whole linkage group. This will allow an
approximate correction to be made to the single locus test.

There are other methods to construct a combined test
for the case when the separate statistical tests are carried
out on n independent datasets and the aim is to test the
null hypothesis which states that the null hypothesis
holds for each of the datasets. Under this composite
null hypothesis, the joint distribution of all the P-values
is uniform on the hypercube [0.1]n. To construct a
combined test of the null hypothesis, a suitable rejection
region in this space must be specified. If the combined
test is such that it rejects the composite null hypothesis if
and only if any of the n individual tests reject the null
hypothesis (each with the same probability a), then the
combined test rejects the null hypothesis with probability
1�(1�a)n. This probability is the corrected a value for the
combined test. However, such methods of constructing
combined tests are not applicable here because the tests
for the different loci are not independent because a small
recombination fraction between one locus and the next
limits the amount by which their respective segregation
ratios differ. To address this problem, a novel statistical
test of segregation distortion for genetic scoring data for
a single linkage group that takes both multiple testing
and genetic linkage into account was derived. As this
test takes segregation distortion into account at all the
marker loci chosen for the analysis simultaneously, I
shall call it the overall test. This procedure allows for any
pattern of missing data. It was derived mathematically in
an attempt to avoid the need for an empirical correction
derived from computer simulations. Simulations were,
however, carried out for both these tests to compare their
power (ie the probability that the test will detect a true
selection effect), with selection at one or two loci, using a
range of marker densities. The results described here will
allow users of these tests to (i) decide which test to use
based the power to detect selection effects and ease of
use, for example, whether a correction to the nominal P-
value is required, (ii) decide what marker set to use, and
(iii) correct the nominal P-value obtained, if necessary.

Many investigators have considered the problem of
testing for segregation distortion based on fitting models
describing selection (ie viability) at loci whose distance
from the nearest marker(s) in the genetic map are
included in parameters to be fitted. Much of this work
has been recently reviewed (Luo et al, 2005). In their
paper that extends earlier work, the formulation of the
selection model for F2 data also includes the two degrees
of freedom (eg selection coefficient and degree of
dominance) to describe selection at a single locus and
the concept of liability that allows for an environmental
variable. As the authors demonstrate, the ‘covariate’ can
allow removal of some of the residual error and therefore
increase the power to detect selection effects.

However, the approach that I am using in this work
applies to backcross data (but could be extended to other
mating designs) and amounts to restricting the search for

models in parameter space such that selection loci are
coincident with any of the marker loci. Advantages of
this approach are that it is relatively easy to implement,
runs quickly, and it could be used to screen large
amounts of data before any further analysis of segrega-
tion distortion is applied. It is appropriate for marker
maps that are dense, because then it is less likely to be
worth the effort (and would be a waste of time if the
confidence interval for the selection locus was compar-
able with the marker spacing) to use an interval mapping
strategy to map the selection locus between markers.

Methods

Testing the statistical tests using simulated populations of

chromatids
Before any statistical test is applied to experimental data,
it is necessary to check (1) that by applying the test
repeatedly to data that are randomly generated under
the assumptions of the null hypothesis, a uniform
distribution of P-values is obtained, and (2) that there
is a high probability that the P-value obtained from such
simulated data under the alternative hypothesis is less
than a given level say 0.05. This probability is known as
the power of the statistical test because it is the
probability that the test will reject the null hypothesis
when it is false, where the procedure is to reject the null
hypothesis if and only if the P-value obtained is less than
the previously agreed value known as the level of the
test. Ideally for a statistical test, the power should be
as large as possible over a wide range of alternative
hypotheses.
Using computer simulation, it is possible to check

assumption (1), and if it holds, to make an empirical
estimate of the power of the test against any given
alternative hypothesis by examining the distribution of
P-values in this case. To do this, the P-values are
recorded, and afterwards sorted into increasing order
to plot their cumulative probability distribution. This
cumulative probability is an estimate of the probability
that a given P-value or less will be observed, so the
plot is a graph of the power of the test against the level
of the test.
Furthermore it is possible to make an empirical

observation of the relationship between the power and
the level a of the test, for any given alternative
hypothesis, after correcting for any departure of the
distribution of P-values under the null hypothesis from
the uniform distribution. In this method, the P-value
obtained is treated like any other test statistic. This
method uses the empirical distributions of P-values
under both the alternative and null hypotheses. For each
P-value generated under the alternative hypothesis, the
proportion of the P-values generated under the null
hypothesis that are smaller than this value (ie the
cumulative probability) gives the empirical corrected
P-value to be associated with it. Therefore, to give the
corrected plot, the two lists of P-values for the alternative
and null hypotheses are sorted into increasing order
to give p1,ypN and q1,yqN, respectively. Then the
power, y¼ i/N is plotted against the level, x¼ 1/N
(position of pi in {q1,yqN}) for points that differ in x or
y by at least some small number d.
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This corrected power function is the relationship
between the empirically determined power of the
statistical test (probability that the test statistic is less
than a specified value under the alternative hypothesis)
and the empirically determined a value (probability that
the test statistic is less than the same specified value
under the null hypothesis).

For simulating the scoring data, chromatids (deter-
mined by the parental origin of the zero end of the
chromatid, the number and positions of crossovers) from
an F1 individual were simulated according to the random
model (Haldane, 1919), which was the same model used
in the derivation of the overall test. In this model, the
number of crossovers is determined by the Poisson
distribution with mean equal to the genetic length of the
chromatid in Morgans, and the crossover positions are
uniformly and independently distributed on the model
chromatid.

For simulating a population showing segregation
distortion, such randomly generated chromatids were
subjected to a selection process that consisted of a
possible culling. If the chromatid was culled, a new
chromatid was randomly generated in the same way to
take its place and was subjected to the same selection
process, and the procedure was repeated until a
chromatid survived. The selection process consisted of
one or two stages. At each stage, the chromatid was
culled with a fixed probability if its genotype at a specific
locus was ‘þ ’.

This procedure was repeated until the population had
been generated. The simulated scoring data was gener-
ated from each population of randomly generated
chromatids using the specified marker positions and
assuming that no scoring errors occur. The statistical test
for the presence of segregation distortion was applied to
each such set of simulated scoring data, and the whole
process was repeated to generate the P-values from
N such populations. Using repeated sets of simulations,
it was found that (for Figures 1, 2 and 3) sets of

N¼ 10 000 simulated populations with d¼ 0.002 gave
adequate reproducibility and resolution in the resulting
graphs, but for Figure 4 the values N¼ 105 and d¼ 10�4

were used.
The two statistical tests were compared for a range

of different situations using (1) the corrected power
function and (2) the empirically determined P-value as
a function of the nominal P-value, both determined as
outlined above.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

20, chi-square
50, chi-square
100, chi-square
200, chi-square
20, overall
50, overall
100, overall
200, overall

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

s=5cM
d=50cM

s=10cM
d=50cM

s=20cM
d=40cM

s=50cM
d=50cM

s=5cM
d=2.5cM

s=10cM
d=5cM

s=20cM
d=10cM

s=50cM
d=25cM

a b c d

e f g h

Figure 1 Comparison of the power between the single locus and overall tests for segregation distortion. The power (y) is plotted against the
level (x) (often denoted by a) of the test using simulated data from 10 000 populations of chromatids assayed with equally spaced markers
that include the endpoints. The random model of a 1M chromosome is assumed with 50% survival of one allele at different loci. The
population sizes are indicated in the legend. The marker spacing s and the genetic distance d from one end of the chromosome to the locus of
selection are indicated in the figures.
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Figure 2 The probability distribution of P-values in the range 0–0.1
from the overall test of segregation distortion using 10 000 randomly
generated populations of chromosomes with genetic length 1M
satisfying the randommodel with no selection. The 11 markers were
placed at 10 cM intervals. The legend shows the population sizes.
For several population sizes, sets of 10 000 populations were
repeatedly generated and analysed to give an indication of the
reproducibility of the curves. The curves rapidly approximate to the
line y¼ x (particularly for the larger population sizes) for larger P-
values, consistent with the behaviour of a correctly constructed
statistical test under the null hypothesis.
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Derivation of the statistical tests

In these derivations, the scorings will be designated as
‘þ ’ and ‘�’ according to the parent of the F1 individual
that donated the allele to the F1 individual.

The single locus test
The probability distribution of the number of individuals
scored as ‘þ ’, nþ , under the null hypothesis of no
segregation distortion, is binomial with P¼ 0.5 and so has
mean n/2 and variance n/4, where n is the number of
successfully scored individuals. Approximating this by the
Normal distribution with the samemean and variance gives
that ðnþ � n=2Þ=

ffiffiffiffiffiffiffiffi
n=4

p
has a standard Normal distribution

or equivalently that its square ðnþ � n=2Þ2=ðn=4Þ has a w2
distribution with one degree of freedom. The P-value is
obtained from this for each locus in the set, and the most
significant (smallest) value is recorded as the result.
Calculation of the covariance between the proportions of

individuals scored as þ at two linked loci in a backcross
population assuming that there is no segregation distortion.
Suppose that m1 and m2 are two marker loci with a

recombination probability r between them and let s1 and
s2 be the corresponding scorings at those loci for an
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Figure 3 The probability distribution of P-values from the single
locus test of segregation distortion using 10 000 randomly generated
populations of 100 chromosome pairs with genetic length 1.0 (M)
satisfying the random model and no selection. The markers were
placed at both ends of the model chromosome and at equal intervals
between them, with their spacing shown in the legend.
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Figure 4 Approximate correction factors for the single locus test of segregation distortion for simulated populations of 100 random model
chromosomes with a range of genetic lengths (L), assayed with equally spaced markers that include the endpoints. The most significant
P-value found from the single-locus chi-square tests of segregation distortion should be multiplied by this factor, regardless of the population
size, to get an approximate corrected overall P-value for the statistical test for segregation distortion.
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individual. Suppose also that out of N individuals in the
whole population, n1 have scoring data at locus m1 but
not at m2, and n1 have scoring data at locus m2 but not at
m1, and n have data at both loci, and the remainder have
no data at either locus. In any set of individuals S, the
number in the subset of S that have a specified scoring
will be denoted by the symbol for the number of
individuals in S, with a superscript specifying the
scoring. For example, n1þ is the number of individuals
that have scoring at locus m1 but not at m2 and have
the scoring ‘þ ’. P will denote probability. Then
P(s1¼ ‘þ ’)¼P(s1¼ ‘�’)¼ 0.5 and likewise for s2. Also
the probability that s2¼ ‘þ ’, given that s1¼ ‘þ ’ which is
denoted by P(s1¼ ‘þ ’|s1¼ ‘þ ’) is 1�r and is the
probability that there is no recombination between s1
and s2. Similarly, P(s2¼ ‘þ ’|s1¼ ‘�’)¼ r. If the two-locus
genotypes are designated by s1s2 that is þ þ , þ�, �þ ,
or �� then P(þ þ )¼P(��)¼ (1�r)/2 and P(þ�)¼
P(�þ )¼ r/2 and since the n individuals are indepen-
dent, the joint frequency distribution of (nþ þ , nþ�, n�þ ,
n��) has a multinomial form and hence the covariance of
the frequencies of two different outcomes is minus n
times the product of their separate probabilities for
example, Covðnþþ; nþ�Þ ¼ Covðnþþ; n�þÞ ¼ �nð1�r

2 Þðr2Þ
and Covðnþ�; n�þÞ ¼ �nðr2Þ

2. Also Covðnþþ; nþþÞ ¼
VarðnþþÞ ¼ nð1�r

2 Þð1þr
2 Þ (¼ npq where p is the probability

of þ þ and q is 1�p). Hence the covariance between
the proportions of þ scorings at the two loci for the
n completely scored individuals is

Cov
nþþ þ nþ�

n
;
nþþ þ n�þ

n

� �

¼ 1

n2
Covðnþþ þ nþ�; nþþ þ n�þÞ

¼ 1

n2
n

4
ð1� rÞð1þ rÞ � n

2
ðr� r2Þ � nr2

4

� �

¼ 1

n

1

4
� 1

2
r

� �
ð1Þ

This formula applies to two loci for which the
recombination fraction between them is r, there is no
selection leading to segregation distortion, and the loci
are scored (without errors) with no missing data points
for n individuals. This result can be extended to the
situation where there are missing data points with n, n1,
n2 and N all fixed. Then the required covariance is

Cov
ðnþþ þ nþ�Þ þ nþ1

nþ n1
;
ðnþþ þ n�þÞ þ nþ2

nþ n2

� �

¼ 1

ðnþ n1Þðnþ n2Þ
�½Covðnþþ þ nþ�; nþþ þ n�þÞ

þ Covðnþ1 ; nþþ þ n�þÞ þ Covðnþþ þ nþ�; nþ2 Þ
þ Covðnþ1 ; nþ2 Þ�

ð2Þ
The last 3 terms are zero, because in each of these cases the
two arguments of the covariance refer to disjoint sets of
individuals. Using equations (1) and (2) can be written as

Covðproportionþ on locus 1; proportionþ on locus 2Þ

¼ 1

ðnþ n1Þðnþ n2Þ
n

1

4
� 1

2
r

� �

ð3Þ

The derivation of the overall test also needs the
following procedure:

From a set of m observed values, the procedure to test
the hypothesis that specifies mean values for each of
these observations, assuming that the observations come
from a multivariate Normal distribution with a known
variance-covariance matrix.

Given an m-dimensional vector x0 of observations, and
an m-dimensional multivariate Normal distribution
Nðm;SÞ with unknown mean m and known variance-
covariance matrix S, which is the assumed probability
distribution from which the observation x0 came, I want
to derive a statistic to test for deviations from the null
hypothesis m¼ m0. Under this hypothesis, the probability
density for x is

fðxÞ ¼ 1

ð2pÞm=2jSj1=2
exp � 1

2
ðx� m0Þ0S�1ðx� m0Þ

� �
ð4Þ

If the new vector variable y is introduced by

y ¼ S�1=2ðx� m0Þ then its transpose is y0 ¼
ðx� m0Þ0S�1=2, and qyj=qxi ¼ ðS�1=2Þji, so the Jacobian of

the transformation is J ¼ jS�1=2j and the probability
density of y, gðyÞ, is given by

gðyÞ ¼ J�1f ¼ 1

ð2pÞm=2
exp � 1

2
y0y

� �

¼ 1

ð2pÞm=2
exp

�
� 1

2
Sy2i

�
:

This is the probability density for m independent
standardised Normal random variables, that is, y1, y2
y ym are independent Normal random variables with
mean zero and variance 1. Hence, the test statistic should
be based on the distance from the transformed point
y
0
¼ S�1=2ðx0 � m0Þ to the mean in y space, which is zero.

The square of this distance is

y0
0
y
0
¼ðx0 � m

0
Þ0S�1ðx0 � m

0
Þ

¼
Xm
i¼1

Xm
j¼1

ðx0i � m0iÞS�1
ij ðx0j � m0jÞ

ð5Þ

which has a w2 distribution with m degrees of freedom.

The overall test for segregation distortion
This test is based on the following approximations:

(1) the proportions of þ scoring, xi, whose variance-
covariance matrix can be computed as above, are
regarded as continuous variables.

(2) the joint distribution of the xi in the null hypothesis is
approximated by the multivariate Normal distri-
bution with the same variance-covariance matrix
and means (which are all 0.5). The parameters in
this distribution are then regarded as known
exactly but in fact the variance-covariance matrix is
only estimated; this is because the recombination
fractions used to estimate the covariance of xs
between different loci, are themselves estimates
based on the calculation of map distances, which
also have error.

The calculation procedure was as follows for each
set of simulated scoring data representing a linkage
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group:

(1) To avoid a singular variance-covariance matrix, each
pair of loci was checked for recombination, and if
none was found, one of the pair of loci was deleted
after any scoring information it carried had been
transferred to the other locus.

(2) For each of the m distinct loci in the linkage group,
the fraction x of þ scorings was computed. These
values constitute the vector x0 ¼ fx1; x2 . . . xmg in
equation (5).

(3) Estimates of the recombination fraction r between
each pair of loci in the linkage group were obtained,
using the map distances between them computed
using the Haldane mapping function and summing
the genetic distances between adjacent loci. For the
purpose of the simulation tests, it was necessary to
avoid chance infinite values of map distances by
arbitrarily assigning the large map distance 2M to
recombination fractions r that exceeded 0.5.

(4) From the recombination fractions, the corresponding
covariances between pairs of members of x0 were
estimated from equation (3). The variance of each
member of x0 is p(1�p)/n that is 1/(4n) where P¼ 0.5
and n is the number of individuals without missing
data at that locus. In this way the complete expected
variance-covariance matrix was constructed.

(5) The inverse of the variance-covariance matrix was
calculated.

(6) The right-hand side of equation (5) was calculated
where m0i¼ 0.5 and x0 was as above; this expression
has a w2 distribution with m degrees of freedom from
which the P-value can be computed by standard
methods.

Results

The single locus test and overall test for testing for the
presence of segregation distortion due to selection were
compared by simulation for a range of different situa-
tions to determine

(1) which statistical test is more powerful for detecting
selection effects,

(2) under which conditions the power is greatest for the
same level, and

(3) whether either of the tests requires the correction
to ensure that the level of the test is correct (for
example, a test performed at the nominal level
0.05 may in fact be a test performed at level 0.01),
and if so,

(4) whether there is a simple procedure for making the
correction.

If very few errors can be tolerated (probability a) when
the no-selection case (null hypothesis) is true, it is often
not possible to make a decision in favour of the
alternative hypothesis when this is true (the probability
of this is the power), but conversely if relatively frequent
errors in the identification of the no-selection case are
acceptable, a greater frequency of decisions in favour of
the alternative hypothesis can be made with the same
data. Thus the power of a test always increases with a. In
fact, the power of a test always increases from 0 to 1 as a
increases from 0 to 1.

The greatest interest is in the behaviour of the power
for small values of a. The graphs (Figure 1) of power
against a for the single locus test are stepped because
there are only a discrete set of possible P-values. This set
of values is the same for every locus and they correspond
to the segregation ratios n/2:n/2, n/2�1:n/2þ 1,
n/2�2:n/2þ 2 etc. where n is the population size. This
effect is not seen in the overall test because the segregation
ratios at all loci are taken into account simultaneously.
The initial investigations were carried out with

chromosomes 1 Morgan in length using the random
model for chiasma distributions and with marker loci
equally spaced such that one marker locus was at each
end of the chromosome. The marker spacings were 5, 10,
20 and 50 cM and the population sizes were 20, 50, 100
and 200. One stage selection with 50% survival of the ‘þ ’
allele at single loci was used (Figure 1), with loci of
selection (1) at marker loci nearest the centre of the
chromosome where the tests should be the most power-
ful or (2) midway between markers at an end of the
chromosome where the tests should be the least power-
ful. This was verified for markers spaced at 50 cM
(data not shown). As expected, the power of both tests
always increased with population size and the power
was greater for case (1) (Figure 1a–d) than for case (2)
(Figure 1e–h).

The overall test
The power of this test increased with increasing distance
between markers for the case (1) above (Figure 1a–d), but
for case (2) the test had optimum power for a marker
spacing near 20 cM (Figure 1g). For case (1) the effect of
increasing the marker spacing from 0.05M (Figure 1a) to
0.5M (Figure 1d) was roughly equivalent to doubling the
population size and the corresponding comparison in
case (2) revealed little difference. Also, the power of the
test for markers spaced at 0.05M in case (1) (Figure 1a)
was almost the same as the power of the test for markers
spaced at 0.5M in case (2) (Figure 1h), so for markers
spaced at 0.5M the effect of moving the locus of selection
from the marker locus at 0.5M (Figure 1d) to midway
between marker loci (0.25M) (Figure 1h) was to
effectively halve the population size. A similar effect
was observed to a lesser degree for a marker spacing of
0.2M, and for closer marker spacings, there was almost
no difference between the results for both cases.

The single locus test
For this test a different picture emerges. The power of the
test depends very little on the marker spacing for case (1)
above (Figure 1a–d), but it increases with decreasing
marker spacing in case (2) (Figure 1e–h) because the
locus of selection then becomes closer to a marker locus.
But as before, there is a noticeable reduction in power for
case (2) compared with case (1) particularly for marker
spacings 20 cM and greater.

Comparison of power between the two tests
For both cases when the locus of selection was at a
marker locus near the centre of a chromosome or
midway between marker loci towards the end of a
chromosome, and for populations o50, the power of
both tests was low. For both cases, for populations of 50
and above, and for markers spaced at less than 50 cM the
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single locus test was more powerful than the overall test,
with this difference becoming greater as the marker
spacing decreased. This effect was more clearly seen as
the population size increased. However, at 50 cM spacing
for both cases the power of the two tests were extremely
close (with the single locus test having a slightly greater
power) when the convex envelope of the set of ‘risk
points’ (Dudewicz and Mishra, 1988) that make up
stepped graphs for the single locus test are compared with
the corresponding graphs for the overall test.

The two tests were compared for power for chromo-
somes of lengths 0.2, 0.6, 1.0, 1.4 and 1.8M, with markers
spaced at 0.1M, using populations of 100 and selection
with a survival probability of 0.5 for the ‘þ ’ allele at one
end of the chromosome (data not shown). In all cases the
single locus test had greater power, but the tests had very
similar power for 0.2M, and as the length of the
chromosome increased, the difference in power between
the tests increased.

The two tests were also compared for power for the
situation in which there were two loci of selection, each
with a survival probability of 1=

ffiffiffi
2

p
for the ‘þ ’ allele at

the ends of the chromosome (data not shown). The
chromosome had lengths of 0.6, 1.0, 1.4 and 1.8M, and
populations of 100 were used. The single locus test had
greater power in all these cases, but in this case the tests
converged in power as the length of the chromosome
increased.

Corrections to the level of the tests
For the overall test extensive corrections to the P-values
reported by the test are required for small population
sizes and closely spaced markers (Figure 2). For example,
from Figure 2 you can read off the empirical probability
that under the null hypothesis the P-value obtained from
the test will be less than, for example, 0.05 corresponding
to a rejection of the null hypothesis.

However, these are the conditions where overall test is
least powerful. For chromosomes 1M in length, and for
marker spacings in the range 0.05–0.5M, and if x, which
denotes the population size multiplied by the marker
spacing in Morgans, has the value 10, then a test
performed at a nominal a level of 0.05 was in fact a test
performed at aE0.04. If x was smaller than 10, more of a
correction was needed, but if x was larger than 10 the
correction required was very small indicating that the
approximations made in the overall test are accurate
under these conditions.

For the single locus test, the empirical correction for the
P-value is greatest when the marker spacing is least, and
the length of the chromosome is greatest, but it appears
to be almost independent of the population size.
Unfortunately the correction factor does depend on the
marker spacing even if the total number of markers is
kept fixed and the chromosome length varies. Also there
is only an approximate linear correction that can be
applied to the P-value given by the test, because there is
considerable curvature in the cumulative probability
distribution of P-values for the single locus test after
‘smoothing out’ the steps. This is shown, for example, for
a population of 100 (Figure 3). Despite this, correction
factors equal to the corrected P-value (ie cumulative
probability) divided by the nominal P-value were
obtained as a function of the nominal P-value for

different marker spacings and genetic lengths of the
chromosome (Figure 4) to allow approximate corrections
to be carried out.

Discussion

Two statistical tests for segregation distortion used to
detect selection in plant breeding were described and
studied by simulation. The first is the commonly used
single locus test that simply assesses each locus separately
for segregation distortion from the expected 1:1 segrega-
tion ratio and reports the most significant P-value, and
the second, the overall test, is a test that was derived
mathematically in an attempt to take information from
all the loci of a chromosome into account simultaneously
and to correct for the fact that the loci are genetically
linked that is the tests based on individual loci are not
independent.

In all the cases studied, after the correction for the
empirical level of the test had been performed, the single
locus test was found to be more powerful than the overall
test that is it had a greater probability of detecting
selection. For both tests there is an unavoidable loss of
power when the locus of selection is between markers.
Another advantage of the single locus test over the overall
test, apart from its simplicity and that the marker data do
not have to be put into genetic map order, is that it is
appropriate for detecting systematic scoring errors (SSE)
that affect individual loci and do not affect adjacent loci
as a result of linkage. If the most distorted locus is
removed from the data which is then re-analysed, then
loss of segregation distortion would suggest that an SSE
was responsible, otherwise selection is indicated. How-
ever the overall test might be less likely to be able to make
this distinction because a single highly distorted locus
could have a similar effect to several less strongly
distorted loci.

However, as expected, the corrections required for the
single locus test (the correction factors given here are valid
only for single chromosomes) were more extensive than
those required for the overall test, especially for the larger
population sizes where the overall test is quite accurate.
This is probably because the derivation of the overall test
took into account sampling errors due to a finite
population size and the correlation between the segrega-
tion ratios of linked markers, although the population
was considered to be large enough for the validity of the
multivariate Normal approximation. The results suggest
that if the overall test is to be used, the test should be used
with markers as nearly evenly spaced as possible and
spaced such that the marker spacing in Morgans multi-
plied by the population size is larger than about 10.
Failing to do this will probably result in considerable
errors and loss of power, which can only be accurately
assessed by doing simulations.

Because the derivation of the overall test is essentially
independent of the mapping function used, if this test is
to be used with scoring data that do not appear to follow
the random model for the frequency distribution of
crossovers among chromatids (as is usually the case) it is
probably better to replace the Haldane mapping function
by the Kosambi, 1944 mapping function that takes into
account some of the effects of the non-random distribu-
tion of chiasmata (interference) on the calculation of
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genetic map distances. This change will have very little
effect if the markers are closely spaced.

A possible advantage of the overall test is that its
derivation can be easily extended to a test for segregation
distortion for the genome as a whole. This can be shown
by extending the analysis here to apply to a whole
dataset in which the recombination frequency between
different linkage groups is expected to be 0.5 and hence
the covariance is expected to be zero for pairs of loci in
different linkage groups. This analysis implies that the
matrix S and hence its inverse S�1 are in block diagonal
form if loci from each linkage group are together. Hence
the combined w2 statistic is the sum of the w2 statistics
calculated as described here for each linkage group
separately and total number of degrees of freedom is
equal to the total number of distinct loci. The procedure
should be to calculate the combined w2 statistic, to test the
hypothesis of no segregation distortion unless there is
another reason to look at a particular linkage group or
locus. Only if it is significant should the w2 tests for
individual linkage groups or loci be carried out.
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