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In many empirical studies, it has been observed that genome
scans yield biased estimates of heritability, as well as genetic
effects. It is widely accepted that quantitative trait locus
(QTL) mapping is a model selection procedure, and that the
overestimation of genetic effects is the result of using the
same data for model selection as estimation of parameters.
There are two key steps in QTL modeling, each of which
biases the estimation of genetic effects. First, test proce-
dures are employed to select the regions of the genome for
which there is significant evidence for the presence of QTL.
Second, and most important for this demonstration, esti-
mates of the genetic effects are reported only at the locations
for which the evidence is maximal. We demonstrate that
even when we know there is just one QTL present (ignoring

the testing bias), and we use interval mapping to estimate its
location and effect, the estimator of the effect will be biased.
As evidence, we present results of simulations investigating
the relative importance of the two sources of bias and the
dependence of bias of heritability estimators on the true QTL
heritability, sample size, and the length of the investigated
part of the genome. Moreover, we present results of
simulations demonstrating the skewness of the distribution
of estimators of QTL locations and the resulting bias in
estimation of location. We use computer simulations to
investigate the dependence of this bias on the true QTL
location, heritability, and the sample size.
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Introduction

Interval mapping (Thoday, 1961; Lander and Botstein,
1989) is a well-known method for identifying and
locating quantitative trait loci (QTL). Extended (Zeng,
1993, 1994) to include, and conditional on, additional
regions of the genomes, interval mapping has been
expanded to composite interval mapping, and both are
currently enjoying a renewed popularity as statistical
tools for identifying genomic regions associated with
quantitative data (eg gene expression QTL or eQTL).
Where QTL mapping was once an end point for
experimentation, it is now a jumping-off point for
exciting genomic applications (Jansen and Nap, 2001;
Doerge, 2002; Wayne and McIntyre, 2002; Schadt et al,
2003). Since QTL are genomic regions associated with
variation of a quantitative trait, it is useful to estimate
effects of QTL and heritability, as well as their genetic
map location for the purpose of narrowing in on
important components involved in the genetic architec-
ture of many experimental populations (Mackay, 2001).

In practice, it has been observed that the estimators of
effects for QTL estimated via interval mapping, and its
extensions (Zeng, 1993, 1994), can be severely inflated
(see Beavis, 1994, 1998; Utz et al, 2000; Allison et al, 2002,

and references given there). It is already known that the
bias in the estimation of QTL effects arises naturally
from the fact that standard QTL mapping can be
interpreted as a model selection procedure and that it
uses the same data to choose the best model and estimate
its parameters (Utz et al, 2000; Broman, 2001; Göring et al,
2001; Ball, 2001; Allison et al, 2002). There are two main
steps in the model selection process each of which adds
to the bias of the estimators of genetic effects. First, in
performing the genome scan, all QTL are identified when
the corresponding test statistic (log-odds score or like-
lihood-ratio test) exceeds a certain threshold. The bias
resulting from using the same data for testing and
estimation has been very well investigated (Broman,
2001; Göring et al, 2001; Allison et al, 2002; Xu, 2003). The
second, and more subtle point, in QTL mapping relies on
choosing the locations for which the evidence of a QTL is
maximal, and then reporting only the estimates of the
genetic effects obtained for these optimal locations. In
QTL mapping, while many test statistics are significant,
only the location that provides the largest test statistic
value along with the estimated QTL effect(s) for that
location is reported. Although Broman (2001) and
Allison et al (2002) suggest that this latter step is also a
source of the bias, they do not discuss this issue in detail.

In this work, we explore the second source of bias.
Namely, we demonstrate via interval mapping that even
when one QTL is assumed present (ie ignoring the
testing step), model selection is still performed and the
resulting estimator of the genetic effect is biased.
Furthermore, the relative importance of the two sources
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of bias is investigated with respect to the dependence of
bias of heritability estimators on true QTL heritability,
sample size, and the length of the genome that is tested.
We also demonstrate that the distribution of estimators
for QTL location is skewed toward the middle of the
chromosome under investigation, which in turn results
in the bias of QTL location.

Although we explain the phenomenon of biased QTL
effects and location via interval mapping, it is well
known for cases involving multiple QTL that the
estimators provided by simple interval mapping can
still be biased because the effects of the other QTL are
neglected (ie employing a single QTL model). To address
this problem improved methods, like composite interval
mapping (CIM) (Zeng, 1993, 1994), multiple QTL
mapping (MQM) (Jansen, 1993), or multiple interval
mapping (MIM) (Kao et al, 1999), have been developed.
These methods search the entire genome and report
QTL effects at the locations where the test statistics are
largest and exceed a given threshold. The model
selection process that is incorporated in these more
advanced methods (eg CIM, MQM, MIM) is the same as
that used for traditional interval mapping; therefore, the
resulting estimators of QTL effects and heritability will
also suffer from the bias issue that is the focus of this
research.

Methods

Explanation of bias of heritability estimates resulting from

model selection
Consider a backcross population where Xi denotes the
QTL genotype for the ith individual, and allow it to take
on two values (Kao et al, 1999): Xi ¼ 1

2 if the ith individual
is homozygous at a QTL and Xi ¼ �1

2 if it is hetero-
zygous. We assume that the relationship between the
quantitative trait value Yi and a QTL genotype Xi is
described by a normal regression model

Yi ¼ mþ aXi þ xi ð1Þ
where m and a are the overall mean and QTL effect
parameters, respectively, and xi is the error term
(environmental noise), which is normally distributed
with mean 0 and variance s2.

Interval mapping is based on an estimated genetic
map and the assumption that a putative QTL is at a
particular location. Each incremental location is flanked
by a pair of markers that are related to each other via an a
priori estimated recombination value r. The probability of
recombination between a QTL and a left flanking marker
is denoted by r1, and when the proposed location of the
QTL changes incrementally across the interval, say left to
right, the range of r1 is restricted to 0pr1pr. After fixing
the QTL at a specific location in the interval (which
corresponds to fixing r1), the known flanking marker
genotypes are used to assign conditional probabilities
to the two possible QTL genotypes. We denote
these probabilities (Lander and Botstein, 1989) by
pi ¼ PðXi ¼ 1

2Þ and 1� pi ¼ PðXi ¼ �1
2Þ. Because Xi can

take on two values, the distribution of the trait values
in a backcross population is not normal; instead, it is a
mixture of two normal distributions with means mþ 1

2a,
and m� 1

2a, respectively (Doerge et al, 1997). The density

of this distribution is given by

fiðyÞ ¼ pi
1ffiffiffiffiffiffi
2p

p
s
exp �ðy � m� 0:5aÞ2

2s2

 !

þ ð1� piÞ
1ffiffiffiffiffiffi
2p

p
s
exp �ðy � mþ 0:5aÞ2

2s2

 ! ð2Þ

There are no closed-form calculations for the maximum-
likelihood estimators of parameters m, a, and s2 relative
to r1; therefore, the likelihood

Lðm; a; s2Þ ¼
Yn

i¼1

fiðYiÞ ð3Þ

may be maximized by employing the EM algorithm
(Dempster et al, 1977). For an application of the EM
algorithm to interval mapping, see Jansen and Stam
(1994) and Kao and Zeng (1997). The maximization
procedure is repeated at each increment through the
interval, and then over a dense grid of locations, or
marker intervals, covering the genome. At each location,
the likelihood of the fitted model is recorded, and the
location that maximizes the likelihood function is
regularly used as a point estimator of QTL location with
the corresponding estimate a taken as the point estimate
for the QTL effect. Therefore, interval mapping can be
viewed as a process that selects from statistical models
corresponding to different QTL locations. Since the
likelihood of a given model depends on the estimate of
heritability (see Appendix A1), the model selection
process chooses models with the highest heritability
estimates, thus leading to overestimation of this quantity.
We demonstrate the overestimation of heritability in

more detail by considering a situation where the markers
are densely spaced and no model evaluations within
the interval are performed. Essentially, the interval
mapping process, in this extreme situation, reduces to a
regression over markers and chooses the marker that
results in the highest coefficient of determination R2 (ie
explains the most phenotypic variation) as a candidate
location for a QTL. To understand this, assume that a
QTL is located at the first marker (M1) such that the
quantitative trait data are distributed according to the
normal regression model

Yi ¼ mþ aZ1i þ xi ð4Þ
where Z1i is the genotype of the ith individual at first
marker M1 and xiBN(0, s2). If the position of the QTL is
known, then the problem of estimating the genetic effect
a and heritability h2 (proportion of the phenotypic
variance explained by the QTL) reduces to a standard
regression problem. Following Utz et al (2000), we use an
asymptotically unbiased estimator of heritability

ĥ21 ¼ R2
1 �

1� R2
1

n � 2
¼ ðn � 1ÞR2

1 � 1

n � 2
ð5Þ

where R2 is the coefficient of determination for the
model with the genotype of the first marker M1 as the
predictor variable, and n is the sample size. Extending
this idea, let ĥi

2 denote the estimator of heritability if
the ith marker is taken as a predictor variable. If we
continue in this manner by selecting a model not within
an interval, but rather only at the markers, k markers
are considered and the marker yielding the highest R2 is
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chosen. The corresponding estimator of the heritability
is equal to

ĥ2 ¼ max
1pipk

ĥ2i Xĥ21 ð6Þ

For each marker i, the distribution of ĥi
2 is continuous on

the support [�(1/(n�2),1]. When k41, the probability
that ĥ24ĥ12 is larger than zero (proof of this is included in
Appendix A1). Therefore, the distribution of the herit-
ability estimate ĥ2, when compared to the distribution of
the approximately unbiased estimator ĥ12, is shifted in the
direction of larger values. There is a relatively large
probability that ĥ24ĥ12 when the true heritability is small.
In other words, there is a greater chance that we will
realize an estimated QTL effect larger than the correct
one at the proper location in the genome. It is important
to note that the conditional distribution of the estimator
of heritability, conditioned on the event that we select the
proper QTL location, is also shifted to the right (ie larger

values) with respect to the distribution of ĥ12. This is
because we select the correct QTL location only when the
estimated heritability corresponding to the true model
is large enough to outperform estimated heritabilities
corresponding to other investigated locations, which
may be large just by random chance. The impact of this is
that the small values for the heritability estimates are
effectively removed from the resulting conditional
distribution (see Figure 1d). Further ramifications of this
overestimation are carried through to the estimator of
the QTL effect, âi, when viewed as a function of the
coefficient of determination,

â2i ¼ R2
i

s2Y
s2Zi

ð7Þ

where s2Zi
and sY

2 are the estimators of variance for Zi (the
genotype of putative QTL) and Y (the quantitative trait),
respectively. Therefore, the estimators of the magnitude
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Figure 1 Histograms of the estimators of the QTL effect under three different estimation procedures. Results based on 500 replicates
consisting of 200 individuals from backcross population. Trait data are generated according to model (1) with parameters m¼ 0, a¼ 0.4588,
and s¼ 1, and the QTL is located 52.5 cM from the top end of chromosome 1. Panel (d) reports the results for replicates where the estimated
QTL location was within 10 cM of the true value. ‘X’ marks the true value of QTL effect.
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of QTL effects (their absolute values) reported from
interval mapping are also positively biased. In this work,
we demonstrate the bias of QTL effects assuming that the
search is performed only at marker positions. When the
genetic map is sparse and the search is performed at
intermarker positions, the number of points at which the
models are fitted is larger than the number of markers,
and the problem of bias of QTL effects may be even
greater.

Simulations

We investigate the bias in the estimators of QTL
heritability and QTL location via a simulation study.
Marker and QTL data (genotypes) were simulated on
up to 15 chromosomes each of length 225 cM for a
sample size that ranged from 100 to 500. The experi-
mental system is a backcross design, and the markers
are located every 15 cM. In experiments demonstra-
ting the bias of heritability, a single QTL was fixed
at 52.5 cM from the left (top) end of chromosome 1.
For the purpose of illustrating the bias of location, we
used different QTL locations spanning the whole of
chromosome 1. For each combination of sample size and
length of the investigated portion of the genome,
thresholds for the likelihood ratio statistic to detect the
presence of QTL at the significance level a¼ 0.05 were
simulated using 1000 replicates from the null distribu-
tion with no QTL.

Results

For the first investigation, marker and QTL information
were simulated on 10 chromosomes for 200 backcross
individuals. The trait data were simulated according to
model (1) with m¼ 0, a¼ 0.4588, and s¼ 1 (h2¼ 0.05). A
total of 500 replicate data sets were used to investigate
the estimators for the QTL effect and heritability at the
known (52.5 cM from the top end of chromosome 1) QTL
location, and when the search was performed on all 10
chromosomes. To estimate heritability, we first estimated
the genetic effect a and the coefficient of determination R2

(7), replacing the estimator of the variance for Zi (the
genotype of putative QTL) by the true value (14). We then
calculated an estimate of heritability according to
equation (5). Our simulations strongly suggest that the
bias of the resulting estimator at a proper QTL location is
negligible; thus, the reported bias resulting from interval
mapping is related only to the model selection process
and testing.

Figure 1a illustrates that when the QTL location is
known, the estimator of the QTL effect is approximately
unbiased with a mean 0.4567 (true value 0.4588) and the
corresponding mean heritability 0.0513 (true value 0.05).
When the QTL location is assumed unknown, and the
adjacent intervals searched using interval mapping, a
histogram (Figure 1b) of the QTL effects illustrates no
values near zero. This reflects that the estimated QTL
effects achieve considerably large values randomly
throughout the genome. Since the true QTL effect was
relatively small, the probability that the estimated
heritability will have a maximum at a location away
from the true location is quite high. As illustrated
(Figure 1b), it is also possible that the estimator of the
QTL effect can be negative. Such a phenomenon usually
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Figure 2 Dependence of the bias of heritability estimates on true
heritability, sample size, and the number of the investigated
chromosomes. Panels (a) and (b) show the results of the search
over ten 225 cM chromosomes. Panels (a) and (c), the sample size
n¼ 200. In panels (b) and (c) heritability value h2¼ 0.05.
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occurs when the estimated location is not near (unlinked)
the true location, but as seen in Figure 1a this can also
occur at the true location. Finally, when each location
was tested for a QTL, and attention restricted to only
significant replicates (of the 500), the distribution of the
estimator of QTL effect is seen to move further away
from zero (Figure 1c). In this situation, the value of the
heritability estimate and the absolute value of the QTL
effect estimate were always larger than 0.0612 (0.05 true
value) and 0.4865 (0.4588 true value), respectively,
indicating significant upward bias. Note that the thresh-
old for the heritability estimate for significant replicates
can be easily predicted by using the relationship between
the heritability estimate and the likelihood ratio statistic
(see Appendix A1). Furthermore (Figure 1d), when we
conditioned on the event that the QTL was precisely
located, the distribution of the estimate of the QTL effect
is also shifted in the direction of large values. This is due
to the fact that we picked the proper location only when
the corresponding heritability estimate was large enough

to exceed the heritability estimates at other locations,
thus effectively eliminating small values from the
resulting distribution. For this simulation, the mean of
the corresponding QTL effect estimates was 0.5647 (true
value 0.4588).

The dependence of bias of heritability estimators on
true QTL heritability, sample size and the length of the
investigated part of the genome was explored and is
illustrated in Figures 2a–c. Figures 2a and b illustrate that
the bias of heritability estimators diminishes over
increasing true QTL heritability and the sample size.
This can be explained by the fact that both the accuracy
of estimating QTL location and the power to detect QTL
increase when heritability and sample size increase. For
very small heritabilities, the bias resulting from the joint
estimation of location and genetic effect is comparable
with the bias resulting from testing; however, for larger
heritabilities, the bias introduced by the testing proce-
dure is almost three times larger than the bias resulting
from the choice of optimal location. Figure 2c demon-
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Figure 3 Histograms of the estimators of QTL location resulting from the search over a 225 cM chromosome. Panels (a)–(c) are based on all
500 replicates. Panel (d) is based on 187 significant replicates. Heritability is h2¼ 0.03 and the sample size is 200. Means of estimators of QTL
location in panels (a)–(d) are marked by ‘O’, and are equal to 55.9, 111.7, 174.8, and 31.6, respectively. True values of QTL location are marked
by ‘X’ (22.5, 112.5, 202.5, 22.5, respectively).
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strates the dependence of bias of heritability estimators
on the number of investigated chromosomes. The value
0 on the x-axis (ie 0 chromosomes) corresponds to
estimating the heritability at the true QTL location. As
shown in Figure 2c, the bias of QTL heritability increases
when the length of the investigated part of the genome
increases (ie number of chromosomes). An increase of
bias due to the choice of optimal location results from the
fact that the probability of obtaining a large heritability
estimate in a position different from QTL location
increases when we increase the search area. Additionally,
the threshold values for the likelihood ratio test statistic
that are used to detect the presence of QTL increase as
the investigated portion of the genome increases. This
results in a decrease of power, as well as an increase in
bias due to testing (see Appendix A1 for the relationship
between the likelihood ratio statistic and the heritability
estimate).

Figures 3 and 4 demonstrate the bias involved in
estimating QTL location. When the QTL heritability is
low, there is a relatively large chance of making an error
in the QTL location. Furthermore, if the QTL is located
close to one end of the chromosome, then the number of
tested positions (and the margin of error) in the direction
toward the other end of the chromosome is much larger
(Figure 3). Figure 3 is based on simulations with a
fixed heritability value h2¼ 0.03 and sample size 200.
Figures 3a–c present histograms of the estimators of
QTL location resulting from interval mapping over a
225 cM chromosome based on 500 replicates. Figure 3d
illustrates the histogram of the estimator of QTL
location based on only significant replicates. As seen in
Figure 3b, when the QTL is located in the middle of the
chromosome, the distribution of the QTL location
estimates is symmetric and a bias in QTL location is
not observed. However, when the QTL is close to
one end of the chromosome (Figure 3a and c), the
distribution of estimators of QTL location is skewed
toward the opposing end of the chromosome, and
therefore the means of these estimators are shifted in
this direction. This effect (Figure 3d) is also observed
when we restrict attention to only those replicates that
produce significant results. Finally, Figure 3 demon-
strates that the bias in QTL location is directly related to a
very low accuracy of locating QTL with small herit-
ability. The standard deviation of estimators of QTL
location that are reported in Figure 3 is approximately
equal to 50 cM when testing is not employed and 30 cM
when we use testing and restrict the attention to only
significant replicates.

Figure 4 demonstrates the dependence of bias of
QTL location on true location, QTL heritability, and
sample size. The bias resulting from the estimation
procedure is computed as the difference between the
mean of location estimators over all 500 replicates and
the true location. To compute the bias resulting from
using both estimation and testing, we used only
significant replicates. As demonstrated in Figure 4a, the
absolute value of the bias of location is equal to 0 if the
QTL is in the middle of the chromosome and increases
symmetrically with increasing distance from the center
of the chromosome. Furthermore, the bias of the
estimators of QTL locations obtained for only significant
replicates is much lower than in the case when we do not
use testing (Figure 4). However, even when we apply

testing, and the sample size and heritability are small, the
bias at locations close to the end of the chromosome can
reach 15 cM.
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Figure 4 Dependence of the bias of location estimators on true
location, heritability, and sample size. The QTL search is performed
over a 225 cM chromosome. In panels (a) and (b), the sample size is
200. In panels (a) and (c), the heritability is 0.03, and in panels (b)
and (c) the true QTL location is equal to 22.5 cM.
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Discussion

Interval mapping (Lander and Botstein, 1989) is a
popular statistical method for locating QTL. However,
as demonstrated by our simulations, the estimators of
QTL locations and heritability resulting from this
procedure can be severely biased. We explain this
phenomenon by observing that inherent in the interval
mapping framework lies the issue of a constantly
changing model that ultimately affects the accuracy of
the parameter estimates. To further exacerbate this
problem, a direct consequence of both increased genome
size and marker number is an increase in the number of
models considered. Therefore, as the genome and/or
marker number increases, the number of models
increases, and hence the effect of bias on the estimators
resulting from interval mapping increases.

The search for a solution to remedy the bias problem
in QTL mapping is ongoing (Utz et al, 2000; Ball, 2001;
Allison et al, 2002). We have great hope that this
problem can be solved by developing appropriate
Bayesian methods. The advantages of Bayesian ap-
proaches are that they give the investigator the chance
to employ expert, prior knowledge to the problem
at hand, keep track of many possible models, and
quantify the uncertainty related to the model choice
by reporting posterior probabilities. The quantities of
interest (ie parameters) can then be estimated by
computing the mean or the mode of the related posterior
distribution (for the tutorial on Bayesian model
averaging, see Hoeting et al, 1999). Because Bayesian
methods avoid concentrating on only one model, their
results do not suffer from the biased estimates of QTL
effects that are addressed in this work. This is not to say
that we expect Bayesian methods to provide a solution to
the bias of location of weak QTL which do not result
from the model selection procedure. With this issue
aside, it is important to realize the impact that the prior
distributions have on the outcome of Bayesian methods
(Clyde, 1999). By comparison to standard, classical
estimates, Bayesian estimators are shrunken in the
direction specified by the prior distribution, which in
itself is a different form of bias that can be severe if the
prior is selected inappropriately. Although Bayesian
methods are becoming more mainstream in the QTL
mapping community (Satagopan et al, 1996; Uimari and
Hoeschele, 1997; Stephens and Fisch, 1998; Yi and Xu,
2000; Sen and Churchill, 2001; Vogl and Xu, 2002; Yi and
Xu, 2002; Yi et al, 2003a; Xu, 2003; Kilpikari and Silanpää,
2003; Yi et al, 2003b; Bogdan et al, 2004; Jannink and
Fernando, 2004; van de Ven, 2004; Zhang et al, 2005;
Hayashi and Awata, 2005), we feel that there is a need for
a more systematic investigation of the influence that the
choice of priors has on the resulting estimates. Our hope
is that work toward solving the bias problem will
continue, but our larger hope is that readers will be
aware that bias exists in the estimators rendered from
QTL mapping methodologies and will view their results
with a cautious eye.
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Appendix A1

Relationship between the likelihood ratio statistic and the

heritability estimate
Consider the likelihood ratio statistic to detect a QTL at a
marker position

LRT ¼ 2 ln
Lðm̂; â; ŝ2Þ
Lð�Y; 0; ŝ20Þ

where L is the likelihood given by equation (3),
�Y ¼ ð1=nÞ

Pn
i¼1 Yi and ŝ20 ¼ ð1=nÞ

Pn
i¼1 ðYi � �YÞ2. Simple

calculations yield LRT¼n ln(SST/SSE), where SST
and SSE are the total sum of squares and the sum of
residuals from regression of the trait data on marker
genotypes. Thus, LRT¼n ln 1/(1�R2), which results in

R2¼ 1�exp(�LRT/n), and the heritability estimate

ĥ2 ¼ ðn � 1Þð1� expð�LRT=nÞÞ � 1

n � 2
ðA:1Þ

This representation can be used to compute the
threshold for a heritability estimate to detect the presence
of QTL. For example, in our first simulation, the
simulated threshold value for the likelihood ratio test
statistic at the significance level a¼ 0.05 was equal to
13.45, and the corresponding heritability estimate given
by equation (A.1), h2¼ 0.0603. These computations, based
on a regression on markers, agree well with the minimal
value of the heritability estimate for significant replicates
resulting from interval mapping, which in our experi-
ment was equal to 0.0612.

The probability that the heritability estimate will obtain its

maximum at the wrong marker is larger than zero

Proposition 1 Let the QTL be located at marker 1, and let
marker 2 be located at any other position in the genome. Let ĥ1

2

and ĥ2
2, be estimators of heritability resulting from fitting a

simple regression model (4) with predictor variables specified
by genotypes of markers 1 and 2, respectively. If the sample size
nX3, then

Pðh2
24h21Þ40

(ie probability that the maximum of heritability estimates
will be obtained at the wrong marker is larger than zero).

Proof Let Z1¼ (Z11,Z12,y,Z1n) and Z2¼ (Z21,Z22,y,Z2n)
be the genotypes at markers 1 and 2, respectively. Consider
the Z1i as i.i.d. random variables with P(Z1i¼ 1/2)¼
P(Z1i¼�1/2)¼ 1/2. Assume that the same holds for Z2i.
Denote the probability of recombination between mar-
kers 1 and 2 as cA(0,1/2]. Therefore, P(Z2i¼ 1/2|Z1i¼
1/2)¼P(Z2i¼�1/2|Z1i¼�1/2)¼ (1�c) and P(Z2i¼
�1/2|Z1i¼1/2)¼P(Z2i¼1/2|Z1i¼�1/2)¼ c, i¼ 1,y,n.
Letting 1¼ (1, 1,y, 1)ARn, (c, c,y, c) is written as c instead
of c1.
Let A be the event that {Z1aconst, Z2aconst, Z1aZ2

and Z1a�Z2}. It is easy to check that P(A)40. Denote
the standard inner product in Rn as /,S (ie /y, zS
¼
P

i¼ 1
n yizi), and let | �| denote the Euclidean norm in Rn

(ie jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 y2i

q
). The square of the sample correlation

coefficient between vectors y and z is given by

r2ðy; zÞ ¼ hy � �y; z � �zi2

jy � �yj2jz � �zj2

It is straightforward to verify that on A the vector Z2�Z̄2

is linearly independent of Z1�Z̄1 (ie cannot be repre-
sented as k(Z1�Z̄1), where kAR).
Let xBN(0, s2In�n) be independent of Z1 and Z2.

According to model (4), we define the vector of trait
values as Y¼ mþ aZ1þ x. Let R¼|x| and X¼ (1/|x|)x,
so that x¼RX. Observe that X is uniformly distributed
on the unit sphere, R2/s2 is w2 distributed with n degrees
of freedom, and that X and R are independent. It holds

r2ðY;Z2Þ
r2ðY;Z1Þ

¼ ðða=RÞhZ1; Z2 � �Z2i þ hX; Z2 � �Z2iÞ2jZ1 � �Z1j2

ðða=RÞjZ1 � �Z1j2 þ hX; Z1 � �Z1iÞ2jZ2 � �Z2j2
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Since Z1�Z̄2 and Z2�Z̄2 are linearly independent (a.s.)
on A, there exists X0 on the unit sphere in Rn such
that /X0, Z2�Z̄2Sa0 and /X0, Z1�Z̄1S¼ 0. There-
fore, r2(Y,Z2)/r2(Y,Z1) can be arbitrarily large,
provided R is large and X is in a sufficiently small
neighborhood of X0. Since the distribution of x is

multivariate normal and independent of Z1 and Z2, the
probability of such event is larger than zero and it
immediately holds that

Pðh224h21Þ ¼ P
r2ðY;Z2Þ
r2ðY;Z1Þ

41

� �
40 &
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