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Allele frequencies have long been studied by biologists
interested in evolution and speciation. More recently, with the
application of molecular markers in human DNA profiling we
have also seen the need for reliable population allele
frequency estimates for making probabilistic inferences.
There is now interest in applying the same DNA profiling
technology to identification of plant varieties. HortResearch
maintains a large germplasm of horticultural plant species. It
is becoming evident that accurate identification of these
accessions through DNA fingerprinting is essential for
effective utilisation and maintenance of this germplasm.
Microsatellites are the markers of choice for this fingerprint-
ing. However, such markers do not reveal the dosage of
alleles in a polyploid. Polyploidy is common amongst
horticultural plants. Estimating allele frequencies in a poly-
ploid population is, therefore, complicated because of some

marker genotypes being phenotypically indistinguishable.
For example, in a tetraploid, with four alleles at a locus
showing polysomic inheritance, although 35 genotypes are
possible, these will fall into only 15 marker phenotypic classes.
Furthermore ‘null’ individuals are rarely detected in polyploids.
Furthermore, some polyploids can be cryptic exhibiting
disomy, instead of the polysomic inheritance. We will discuss
the implications of these factors and present an EM-type
algorithm for estimating allele frequencies of a polyploid
population under certain patterns of inheritance. The method
will be demonstrated on simulated data. We also discuss the
nature of some of the additional problems that may be
encountered with estimating allele frequencies in polyploids
for which other solutions still need to be developed.
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Introduction

Allele frequency data have been used in the past for
analysis of phylogeny and population structure of
species and of distinct populations of the same species.
In more recent years the scope of such studies has
increased several fold by the use of polymorphic
molecular markers. Markers, such as microsatellites,
with their high degree of polymorphism and codominant
inheritance provide more information, often sufficient to
distinguish individuals within a population. The theory
underlying application of DNA profiling-based evidence
in forensic science for resolving parentage disputes and
alleged suspects of crime is well documented (Evett and
Weir, 1998). More recently there has been interest in
applying the same DNA technology for identification
of plant varieties (Mihalov et al, 2000; Henry, 2001).
Irrespective of the application, the use of DNA profiling
to identify individuals requires reliable estimates of allele
frequencies at the selected marker loci. Generally, allele
frequency estimates are obtained from existing data-
bases. Failure to use estimates of high precision can lead
to the calculation of incorrect profile probabilities and
hence unreliable probabilistic conclusions.

In diploids, the frequencies of codominant alleles can
be obtained by simply counting different genotypes in
the sample. There is no need to make any assumptions
about the population such as random mating. When
dominance is present, however, either explicitly or due to
the presence of ‘null’ alleles, certain genotypes may be
indistinguishable. Then, genotype frequencies cannot be
directly translated to allele frequencies. In such cases
allele frequencies can only be estimated iteratively by
using a Newton–Raphson or EM-type algorithm, after
making adequate assumptions about the population.
Often this involves the assumption that the population is
at Hardy–Weinberg equilibrium (Weir, 1996). One would
expect the same techniques to be applicable to poly-
ploids, which have more than two alleles per individual.
We will see in the following section that polyploidy, in
fact, poses some challenging problems.
Polyploids are common among plant species. For

example, one of the horticultural plants of interest to
us, kiwifruit, can be a diploid, tetraploid, hexaploid or
octaploid, depending on the species or even the selection
within a species (Ferguson et al, 1996). According to Otto
and Whitton (2000), polyploidy has been one of the more
predominant modes of speciation in plants. Polyploids
are broadly classified as either allopolyploids that
contain more than two distinct genomes, or autopoly-
ploids, which have multiples of the same genome.
Allopolyploids with their homologous pairs of chromo-
somes form bivalents during meiosis, just like any
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diploid. Following pairing, segregation at a locus in the
first division of meiosis can be either reductional or
equational (Mather, 1935). Equational separation at a
locus is due to crossover between the locus and the
centromere, which would result in chromosome pairs
with heteroallelic chromatids. In contrast, the separation
is said to be reductional when such an event is absent.
Irrespective of the type of separation at a locus, the
homologous chromosome movement to opposite poles
is always disjunctional in the case of bivalents. This type
of inheritance often seen in allopolyploids is referred
to as disomy.

The autopolyploid segregation is much more complex
(Mather, 1936). Both homologous and/or homeologous
chromosomes can pair to produce various configurations
during meiosis, including multivalents. The type of
inheritance that follows multivalent formation is referred
to as polysomy. As in the case of disomy, crossovers can
happen between the locus and spindle attachment
leading to equational separation at the locus. However,
in a multivalent configuration, any two chromosomes of
a locus separating equationally can either be attached to
the same spindle or do a different one. Consequently, the
resulting separation of chromosomes can be either
disjunctional or nondisjunctional. Nondisjunctional se-
paration can produce gametes with duplicate copies of
the same allele, even though the parental alleles were all
distinct. This process is called the ‘double reduction’
(Mather, 1935). Double reduction depends on the
occurrence of three events in sequence: equational
separation, genetical nondisjunction, and finally the
resulting heteroallelic chromosomes lining up with the
same allele facing the same direction in anaphase II of
meiosis. Hence, the segregation pattern in autopoly-
ploids differs from allopolyploids, in that it is likely to
vary depending on the locus. In particular, when a
marker locus is further away from the centromere, more
crossovers can occur resulting in double reduction
gametes and consequently a higher proportion of
homozygote individuals in progeny.

While bivalent pairing and multivalent pairing are the
two extremes, a number of polyploids represent inter-
mediate stages displaying a combination of both pairing
behaviours. There are several recent papers on this
subject, both from a cytogenetic and a mathematical
modelling point of view (Sybenga, 1994, 1995, 1996, 1999;
Jackson and Jackson, 1996). The evidence suggests that
these situations should be characterised by a general
polyploid inheritance model with no complete prefer-
ence to homologous or homeologous paring (Wu et al,
2001). The degree of homologous over homeologous
paring is often described by the ‘preferential pairing
factor’, which may be measured from multivalent
frequencies (Sybenga, 1994).

The presence of more than two alleles in an individual
and the complexity of inheritance pattern, described
above, pose several problems when estimating allele
frequencies in polyploids. Firstly, in polyploids even
with codominant markers, the dosage of alleles cannot be
deduced with certainty for some marker phenotypes,
since current technology does not allow for estimating
allele dosage from observed band intensities. As an
example, for a tetraploid with four distinct codominant
alleles showing polysomic inheritance 35 genotypes are
possible but these fall under only 15 marker phenotypes.

Of these marker phenotypes, genotypes can be deduced
fully only in case of monoallele and quadriallele classes.
Consequently, polypoid allele frequencies cannot be
calculated directly. As second complication arises if
‘null’ alleles are truly present in a population. Their
presence may not be obvious: unlike the case of diploids,
null individuals extremely will be rare, even when the
null allele frequency is moderately high.

Allele frequencies are generally estimated with sample
data of unrelated individuals from a population. In such
instances, the use of an EM type algorithm for estimating
allele frequencies in the case of dominance is well
established. Broman (2001) describes methods for esti-
mating allele frequencies with data on sibships. When
estimating allele frequencies it is often necessary to
describe and assume a population structure. Ronfort et al
(1998) has re-examined the population structure para-
meters commonly used in diploid species for tetrasomic
inheritance in autotetraploids. Construction of linkage
maps in autotetraploids has been studied by Hackett and
Luo (2003). Luo et al (2004) have presented a theoretical
basis for linkage analysis in autotetraploids. Although
inheritance patterns in polyploids are covered well in the
literature, there is very little or no information about
methods for estimating their allele frequencies. We
believe the topic is not only of interest to molecular
biologist and plant breeders who wish to use DNA
fingerprinting for characterisation of cultivars, but to the
plant ecologist who could be studying populations from
an evolutionary point of view.

Our motivation for this study comes from HortRe-
search’s interest in managing and utilizing its collections
of horticultural plant species to best advantage, particu-
larly those of apple and kiwifruit. Many horticultural
species, including kiwifruit, blueberry and citrus are
polyploids. It is becoming evident that accurate
identification of these germplasm accessions through
DNA fingerprinting is essential. Furthermore, if DNA
profiling is to be used for identification of newly
developed varieties, we need to estimate allele frequen-
cies reliably from existing allele databases. We develop
an allele frequency estimation method for a general,
but even-numbered ploidy level and mating under
polysomic or disomic inheritance. The theoretical
framework is based on a polyploid population in which
a fixed fraction of individuals in any generation are
selfing and others are mating at random. We assume that
the population has reached equilibrium genotype
frequencies after a number of generations of mating.
We consider the simple case where with polysomy the
inheritance is only by random chromosome segregation.
Under these circumstances we derive equations that
describe allele frequencies of the population. We present
an EM-based algorithm for estimating allele frequencies
from sample data. A programme to implement the
algorithm is written in SAS/IMLs (SAS, 2001). We
demonstrate and verify the method on simulated
datasets.

The problem description

Table 1 shows the number of genotypes and phenotypes
expected for an autotetraploid with u codominant alleles
per locus. In an autotetraploid up to four alleles (i, j, k
and l) are present in any one individual. Autotetraploids
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would most likely form tetravalents during meiosis, and
if random chromosome segregation occurs six different
gametes would be formed, in equal proportions: ij, ik, il,
jk, jl, kl. These combine randomly to give four possible
phenotypic classes: mono, bi-, tri- and quadriallelic. Of
these, there is one-to-one agreement between the
phenotype and the genotype only in case of mono and
quadriallelic classes. The biallelic class, for example
could be a simplex (iiij or ijjj) or a duplex (iijj), and in
the triallelelic class any of the three alleles could be
the paired one, ie iijk, ijjk and ijkk. Therefore, in
an autotetraploid the four phenotypic classes in fact
arise from eight different genotypic classes. Of course
the actual number of phenotypes and genotypes will
depend on u, the number of alleles per locus (Table 1).
Even with u¼ 4, the number of phenotypes expected
is less than half the number of genotypes (15 against
35, Table 1).

As noted earlier the segregation in an allotetraploid
will resemble that of a diploid and we expect the
genotypic and phenotypic classes in progeny to be
different from that of an autotetraploid. For an indivi-
dual carrying four alleles (i, j, k and l ) there is now
preferential pairing such that say, i|j and k|l. We will
refer to the two ‘pseudoloci’ of the homologous pairs of
chromosomes at the same locus as homeologous loci. An
allotetraploid will, therefore, form only four different
gametes: ik, il, jk and jl. These pair at random to form
four progeny genotype classes: ijkl, iikl, ijkk, iikk. It is
noted that if alleles at the two homeologous loci are
nonoverlapping, a monoallelic genotypic class will not
be possible. Furthermore, if we know which alleles
belong to which homeologous locus, the genotypes can
be distinguished fully by their phenotypes. However,
often this is not the case and several combinations of
the allelic distribution need to be tested against the
observed frequencies of phenotypes to make any reliable
conclusions. Also, the presence of ‘null’ alleles would
make the problem more complicated even with disomic
inheritance.

The presence of a null (unidentifiable) allele will make
more genotypes hidden. For example, for the autotetra-
ploid case if one of the four alleles is a null we would still
expect 35 genotypes, but only eight phenotypes (Table 1).
Null individuals will be rarer in polyploids than
diploids. As an example, if the null allele is present at
20% in an autotetraploid population, assuming random
chromosome segregation the null individuals are ex-
pected to occur at 0.16%, that is, less than 2 in 1000. In a
diploid with the same allele frequency, it is expected at

4%. Thus at higher ploidy levels even with large samples
absence of null individuals is not good evidence of the
absence of a null allele. Consequently, the null allele
should be always included in any estimator of allele
frequencies in polyploids.
Statistically, the estimation of allele frequencies in

polyploids is one of incomplete data. We will need to
make certain assumptions about the genetic structure of
a population in order to proceed. The usual assumption
in the case of diploids is that the population is random
mating and is at Hardy–Weinberg equilibrium. Since we
are primarily interested in plant species, selfing needs to
be considered as a possibility. Many plants reproduce by
a mixture of random mating and selfing. With random
mating Hardy–Weinberg proportions are attained after a
single generation. In contrast, each generation of selfing
will increase the number of homozygotes at the expense
of heterozygotes. In a mixed mating population the two
opposing effects of outcrossing and selfing will reach
equilibrium asymptotically. Obviously, with more self-
ing, the number of generations required to reach these
equilibrium genotype frequencies is greater. One ap-
proach to derive the outcome of mixed mating is to
consider the population as a mixture of two populations,
that is, one mating by random and the other only by
selfing. This is equivalent to saying that each plant
reproduces a fraction, s, of time by selfing and the
remainder of time by random mating.
Throughout this paper we will use the following

notation: m¼polyploidy level, that is, number of alleles
per individual per locus; u¼number of different alleles
per locus in the population excluding the null; pi¼ fre-
quency of ith allele; Pijkl¼ frequency of ijklth genotype in
a given generation; Rijkl¼ frequency of ijklth genotype
following random mating only; s¼ selfing fraction per
generation.
We seek to develop an estimator of allele frequency for

a general (but even numbered) polyploid population,
which has mixed mating and where the inheritance
pattern is either polysomic or disomic.

The polyploid inheritance model

We will first develop a theoretical model that describe
allele frequencies in a tetraploid population and later
show how it could be generalised to any even numbered
ploidy level. We make the following assumptions
about the population: (1) inheritance is either by
polysomy or disomy and not by a mixture of both; (2)
only random chromosome segregation occur in meiosis,

Table 1 Phenotypic and genotypic classes of an autotetraploid with u number of codominant alleles per locus

Phenotypic class Genotype Number of genotypes Number of classes

u¼ 4 u¼ 3+null

Genotype Phenotype Phenotype

Monoallele iiii u 4 4 4
Biallele iiij u(u–1) 12 6 3
Biallele iijj u(u–1)/2 6
Triallele iijk u(u–1)(u–2)/2 12 4 1
Quadriallele ijkl u(u–1)(u–2)(u–3)/24 1 1 0

Total 35 15 8
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that is, no crossovers; (3) a mixed mating system, that is,
individuals mate by selfing by a fixed fraction, s, in each
generation and the remaining mating is random; (4)
unidentified alleles are present and classified together as
‘null’; (5) there is no selective advantage for any
genotype, which implies allele frequencies remain un-
changed between parents and their progeny; (6) the
population is at equilibrium.

Polysomic inheritance
Ignoring nulls for the moment, let the parent allele
frequency vector be p ¼ ðp0; p1; pi . . . puÞ. With polysomic
inheritance, the expected genotype frequencies in pro-
geny after a generation of random mating should follow
a multinomial distribution,

Prðm1 . . .muÞ ¼ Cðm; m1 . . .muÞpm1

1 . . . pmu
u ð1Þ

Following (1), for a tetraploid the expected frequencies of
marker genotype classes in progeny after random mating
are: monoallele Riiii ¼ p4i ; biallele (simplex) Riiij ¼ 4p3i pj;
biallele (duplex) Riijj ¼ 6p2i p2

j ; triallele Riijk ¼ 12p2
i pjpk and

quadriallele Rijkl ¼ 24pipjpkpl:
Now we take the situation where the mating is only

by selfing. To deal with selfing we need to follow
through each parent genotype rather than the allele
frequencies of the parent population. With polysomic
inheritance a selfing tetraploid forms up to six different
gametes and these combine in pairs at random. Hence,
the progeny resulting from selfing of each parent
genotype class are:

iiii !iiii

iiij !ðð3ii þ 3ijÞ=6Þ2 ¼ ð9iiii þ 18iiij þ 9iijjÞ=36
iijj !ððii þ 4ij þ jjÞ=6Þ2

¼ðiiii þ 8iiij þ 18iijj þ 8ijjj þ jjjjÞ=36
iijk !ððii þ 2ij þ 2ik þ jkÞ=6Þ2

¼ðiiii þ 4iijj þ 4iikk þ jjkk

þ 4iiij þ 4iiik þ 10iijk þ 4ijjk þ 4ijkkÞ=36
ijkl !ððij þ ik þ il þ jk þ jl þ klÞ=6Þ2

¼ðiijj þ iikk þ iill þ jjkk þ jjll þ kkll

þ 2ð12with 1 pairÞ þ 6ijklÞ=36

ð2Þ

By collecting terms of each progeny genotype from the
right hand side of (2) we can write out the new genotype
frequencies after one generation of selfing as:

PijklðselfÞ ¼½6Pijkl�=36

PiijkðselfÞ ¼ 10Piijk þ 4Pijjk þ 4Pijkk þ 2
X

Pijkl

h i.
36

PiijjðselfÞ ¼ 18Piijj þ 4
X

Piijk þ 4
X

Pijjk þ
X

Pijkk

h

þ
XX

Pijkl

i.
36

PiiijðselfÞ ¼½18Piiij þ 8Piijj þ 4
X

Piijk�=36

PiiiiðselfÞ ¼Piiiiþ 9
X

Piiijþ
X

Piijjþ
XX

Piijk

h i.
36

ð3Þ
where the sums are over all subscripts not in the variable
on the left. It is a simple case now to extend this to a
population that is mixed mating by taking a proportion s
of individuals mating by selfing and the remaining (1–s)

mating at random. Again, for the case of a tetraploid
showing polysomic inheritance we get:

P0
ijkl ¼ð1	 sÞRijkl þ s½6Pijkl�=36

P0
iijk ¼ð1	 sÞRiijk þ s

h
10Piijk þ 4Pijjk þ 4Pijkk

þ2
X

Pijkl

i.
36

P0
iijj ¼ð1	 sÞRiijj þ s

h
18Piijj þ 4

X
Piijk þ 4

X
Pijjk

þ
X

Pijkk þ
XX

Pijkl

i.
36

P0
iiij ¼ð1	 sÞRiiij þ s 18Piiij þ 8Piijj þ 4

X
Piijk

h i.
36

P0
iiii ¼ð1	 sÞRiiii þ s Piiii þ 9

X
Piiij þ

X
Piijj

hh

þ
XX

Piijk

i.
36

i

ð4Þ
where P0

y and Py are respectively genotype frequencies
in the new progeny and the parent generation, and Ry

are genotype frequencies generated by random mating of
parents as given by (1). Note that Ry is a function of
parental allele frequencies.

With mixed mating genotype frequencies will come to
equilibrium only gradually. At the steady-state genotype
frequencies in the new generation equal the frequencies
in the old, so these equations can be solved for Py in
terms of Ry A tidier approach, however, is to write the
set of Equation (4) in matrix form as,

P0 ¼ ð1	 sÞRþ sAT P ð5Þ
where A is a ng
ng matrix we call the ‘selfing matrix’,
with ng being the number of genotypes. Each element
of the selfing matrix is the proportion of the genotype
represented by column formed by selfing of the genotype
indicated by the row. Note that for a given set of alleles,
and hence the genotypes, the selfing matrix is known in
advance. At equilibrium the two vectors P0 and P are
equal, hence (5) can be rearranged to give:

E½P� ¼ ð1	 sÞðI	 sATÞ	1R ð6Þ
where E[P] is now the vector of expected equilibrium
genotype frequencies.

Disomic inheritance
We have seen that disomic differs from polysomic
inheritance simply in the way the alleles at a given
locus are selected to form gametes. In the case of an
allotetraploid – instead of random selection from a set of
four chromosomes, the set is now divided into two
‘homeologous loci’ with two chromosomes in each, and
one chromosome is chosen from each locus to form
gametes. For a hexaploid, there would be three home-
ologous loci each containing two chromosomes etc. Here
we refer to many ‘loci’ within one ‘location’, but the
mathematics should be identical to the case of diploid
inheritance, that is, observing nonconnected loci show-
ing diploid inheritance together in multiples (two-at-a-
time in case of a tetraploid). Here, we consider only the
case of ‘disjoint’ or ‘nonoverlapping’ allele sets. There is
also the possibility that allele sets are ‘overlapping’, that
is, one or more alleles are common across different pairs.

As with polysomic inheritance, consider the case of a
tetraploid. We use the same notation but restricting i and
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j as subscripts for the first homeologous locus, k and l as
subscripts for the second. The corresponding frequency
vector for the first and second loci is: p¼ (p0, p1, piy pu1)
and q¼ (q0, q1, qky qu2). First ignoring the nulls, with
random mating the resulting genotype class frequencies
will be given by:

Riikk ¼p2i q2k ; Riikl ¼ 2p2i qkql; Rijkk ¼ 2pipjq
2
k ; and

Rijkl ¼4pipjqkql

ð7Þ

Given the disjoint assumption, monoallelic individuals
are only possible if one of the two loci contains a null
allele.

As before, we now consider the genotype frequencies
following selfing. Once again, for simplicity we initially
ignore the nulls, so there are only four genotypic classes,
all individually observable. Selfing leads to the following
in the next generation:

ijkl ! ð0:25ii þ 0:5ij þ 0:25jjÞð0:25kk þ 0:5kl þ 0:25llÞ
iikl ! iið0:25kk þ 0:5kl þ 0:25llÞ
ijkk ! ð0:25ii þ 0:5ij þ 0:25jjÞkk

iikk ! iikk

ð8Þ
Hence, with selfing the genotypes frequencies in the new
progeny generation will be,

PijklðselfÞ ¼Pijkl=4

PiiklðselfÞ ¼
X

Pijkl=8þ Piikl=2

PijkkðselfÞ ¼
X

Pijkl=8þ Pijkk=2

PiikkðselfÞ ¼
XX

Pijkl=16þ
X

Piikl=4þ
X

Pijkk=4

þ Piikk

ð9Þ

Putting the proportion s of selfing from (9) together with
the proportion (1–s) of random mating from (7) we get a
set of equations similar to that of (4). Now assuming
steady state, so the genotypic proportions in the new
generation (P0

y) are the same as in the old (Py), we can
solve the equations to give Py as functions of the allele
frequencies. As with the polysomic case, putting it in
matrix form yields the same form of expression for E[P].

Effect of null alleles
We note that the situation for a null allele is the same as
that for a recessive marker allele. Hence, any solution
we come up for the null can equally be applied to
dominant/recessive markers. We will investigate the
effect of null alleles on observed phenotype frequencies
by taking as an example the disomic case with m¼ 4, and
with nonoverlapping alleles. We note that in the absence
of null alleles, only the bi-, tri- and quadriallele
phenotypic classes are possible (7). If a null allele
is present at each homeologous locus, in addition to
the above, five new genotypic classes are possible:
P
ðPÞ
0 ¼ Piikk with i¼ 0 and k¼ 0 are the phenotypic null

individuals (note: PðPÞ
: denote the phenotypic frequency);

monoallelic at the first locus, P
ðPÞ
i ¼ Piikk þ Pijkk with

j¼ 0 and k¼ 0; monoallelic at the second locus,
P
ðPÞ
k ¼ Piikk þ Piikl with i¼ 0 and l¼ 0; biallelic with both

alleles from the first locus, P
ðPÞ
ij ¼ Pijkk with k¼ 0; biallelic

with both alleles from the second locus, P
ðPÞ
kl ¼ Piikl with

i¼ 0. Furthermore, the usual bi- and triallelic phenotypic
classes (7) will now include genotypes containing null
alleles, such that P

ðPÞ
ikl ¼ Piikl þ Pi0kl; P

ðPÞ
ik ¼ Piikk þ Pi0kkþ

Piik0 þ Pi0k0; etc.
In general, when finding which alleles belong to which

homeologous locus we may need to consider all possible
combinations of alleles at each locus. Hopefully, all
except one combination can be excluded based on
observed individual phenotypes. It is more likely that a
few combinations are all possible and a final decision
needs to be made based on maximum likelihood of
observed individual frequencies given the fitted para-
meters of allele frequencies. In the estimation method,
which will be described in the next section, we have
assumed that allele distribution across homeologous loci
are known a priori. In the case of polysomy this is not
necessary since all alleles belong to the same locus.
So, including nulls the theory is exactly the same but

for the observation process, and the fact that there is now
one more allele (uþ 1) in case of polysomy, and one more
allele at each homeologous locus (u1þ1, u2þ 1) for
disomy. The observation process can be factored in when
a set of genotypes are mapped on to the corresponding
set of phenotypes. Computationally, the process involves
converting the genotypic frequency vector P to the
phenotypic one, P(P). We do this by a conversion matrix,
C with dimensions equal to the numbers of phenotypes
by genotypes, np
 ng such that,

PðPÞ ¼ CP ð10Þ
The challenge is now to computationally generate the
C matrix for the general case of m ploidy level and any
possible number of alleles per locus including the null.

Estimation

Given the observed allelic phenotypes of individuals
making up a sample, the objective here is to estimate
allele frequencies that maximise the likelihood of the
observed outcome. As a result of some marker genotypes
are indistinguishable, the estimation problem is one of
incomplete data. The Expectation Maximisation (EM)
algorithm (Dempster et al, 1977) is an iterative procedure
that can lead to maximum likelihood estimation (MLE)
of model parameters in situations where observed data
are considered to be incomplete. Each iteration consists
of an expectation step followed by a maximisation step,
and iterations continue until convergence, that is,
successive parameter values are very close to each other
and further iterations show no significant improvement.
For within population analyses, the multinomial dis-
tribution is used as a basis for likelihood estimation of
allele frequencies (Weir, 1996). If the observed multi-
nomial counts, Ni(i¼ 1,y,np) of phenotypes depend in
general on a set of parameters, fj (j¼ 1,y, n), so that the
expected frequencies are functions of fj’s, Qi (f1,y,fn),
the likelihood is written as:

Lðf1; . . . ;fvÞ ¼
ð
P

NiÞ!Qnp

i¼1 Ni!

Ynp

i¼1

Qiðf1; . . . ;fvÞ½ �Ni

ln Lðf1; . . . ;fvÞ ¼ Constantþ
Xnp

i¼1

Ni lnðQiÞ
ð11Þ
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When the parameter vector, f, is equivalent to the allele
frequency vector, p it can be shown that MLE of p is just
the frequencies found using the estimated genotype
frequencies (Weir, 1996). An alternative estimation
method is to use a Bayesian approach (Weir, 1996) where
a prior distribution is assumed for the parameters, which
are the allele frequencies. When there are only two
alleles, sampling can be assumed to be binomial and the
beta distribution, which is the conjugate to binomial, is
the most appropriate prior. Where several alleles are
involved and the sampling distribution is multinomial,
the Dirichlet prior, which is the conjugate for multi-
nomial can be used. The likelihood is the probability for
sample data conditional on the parameters. Given the
prior and the likelihood of sample data, a posterior
distribution could be calculated.

We take the MLE approach, and use the EM algorithm
for estimating the allele frequency parameter vector. In
our situation, the EM algorithm consists of the following
steps:

(1) assign initial values to the allele frequency vector, p
(2) E-step:

(a) use the value of current vector p(0) with known
values of s and the matrix A to calculate
expected genotype frequencies using (6), that
is, E[P]¼ (1	s)(I	sAT)	1R

(b) now use the E[P] and the observed phenotypic
frequency vector, P(PObs) to provide the esti-
mated genotype frequency vector, P̂ . Compu-
tationally, these steps can be described as
follows:

Xð1Þ ¼ ðCT:�E½P�ÞT

Xð2Þ ¼ Xð1Þ�U
Xð3Þ ¼ Xð1Þ: � ðXð2Þ:^ð	1ÞÞ

P̂ ¼ Xð3ÞT � PðPObsÞ

ð12Þ

where C is the conversion matrix as defined in
Equation (10), and U is a unit vector of
dimension ng. Note the symbols ‘*’ and ‘^’
are, respectively, the matrix multiplication and
the exponentiation operator, and the same
preceded by a ‘.’ are the corresponding
elementwise operators;

(3) M-step: use P̂ to count and calculate the new allele
frequency vector, pð1Þ ¼ GTP̂=m; where G is a
ng
 (uþ 1) matrix for which elements within each
row given by 0 or 1 indicate absence or presence of
each allele, and m the ploidy level.

(4) repeat the process until convergence, that isPu
i¼1 ½jp

ðtÞ
i 	 p

ðtþ1Þ
i j=ðpðtÞ

i þ p
ðtþ1Þ
i Þ�oc, where pi

(t) is the
ith element of the frequency vector in tth iteration and
c the tolerance value which is set to 10	8 in our case.

We have written a computer programme in SAS/IMLs

that can estimate allele frequencies from sample pheno-
typic data from a population, which shows polysomic
inheritance. It would be possible to extend it to the
disomic case. The system information, assumed to be
known is, the ploidy (m, but even numbered), number of
alleles (u), and the selfing fraction (s). The SAS
programme was written as a series of subroutines and
functions. Here we do not attempt to give details of
computations, but only name some of these subroutines/

functions with their specific functionalities: GENLIST,
sets up the list of genotypes; PHENLIST, sets up the
phenotypic array; INDEXG, returns the index value of a
genotype from the genotypic array; INDEXP, returns
same from the phenotypic array; RANMUL, sets up
multipliers for genotype frequencies under random
mating; SELFMAT, sets up the selfing matrix, A;
CONVMAT, sets up the conversion matrix, C; GPROBS,
computes the expected equilibrium genotype frequencies
given the selfing fraction and allele frequencies; SIM-
SAMPLE, simulates a random sample from the idealised
population; EXPECTATION and MAXIMISATION, com-
pute expectation and maximisation of the EM algorithm,
respectively.

Simulation study

We performed several simulation experiments to verify
our estimation method. We generated simulated data of
varying sample size n from an infinite population with
ploidy level m, having a locus containing a number u of
distinct alleles (plus the null) with a frequency vector
p¼ (p0, p1, piy pu), and mating by a mixture of selfing (s)
and random mating (1	s). Note the first element of the
allele frequency vector represents the ‘null’ allele. It was
assumed that inheritance was by polysomy and the
population had reached equilibrium genotype frequen-
cies. In the first set of simulations, we set: u¼ 4, s¼ 0.5,
p¼ (0.2, 0.1, 0.2, 0.3, 0.2), but varied the sample size
n¼ 50, 100 or 500. For each sample size we generated
1000 simulations and estimated allele frequencies for
each simulated sample by applying the proposed
method. The mean of estimated allele frequency vectors,
p̂ over the 1000 simulated samples and its S.E. are shown
in Table 2. Clearly, the estimation method has performed
extremely well with no significant bias at any of the
sample sizes used. The estimated SE of the estimator,
except that of the null allele, p̂0 closely agreed with SE
expected for a completely random mating population,
that is, p(1	p)/(2n). Compared with alleles 2 and 4
which have the same frequency as the null allele (p¼ 0.2),
it is apparent that the null was estimated at a much
lower precision (Table 2). This would be expected
because, in contrast to others, the null allele is observed
phenotypically only if null individuals are present in the
sample. The median number of iterations for conver-
gence was B40.

We also tested the method for situations where allele
frequencies were more unequal, for example
p¼ (0.2, 0.02, 0.05, 0.08, 0.65), Table 2. These results also
indicate the method performed consistently well, except
for an apparent slight downward bias on the null allele
frequency with small sample sizes. For the null allele
when allele frequencies were more unequal the precision
was lower (Table 2). The median number of iterations for
convergence for this set of samples was B80.

In order to be confident that the method works well
with other ploidy levels we conducted the above
simulation experiment with the same parameter values,
p¼ (0.2, 0.1, 0.2, 0.3, 0.2), but for a hexaploid (m¼ 6),
(Table 2). The number of iterations for convergence was
close to double that required for the tetraploid. We also
verified the estimation method for a range of selfing
fractions (Table 3). The estimated frequencies agreed
very closely with the actual.
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Discussion

Even with codominant alleles, estimation of allele
frequencies in polyploids is complicated because a high
proportion of genotypes are indistinguishable. An
estimation method for the general case of any even
ploidy level with either polysomic or disomic inheritance
has been presented here. When tested against simu-
lated data, the estimation algorithm written in
SAS/IMLs provided quick convergence and unbiased
estimates under different ploidy levels and varying
sample sizes, giving a method for easily estimating
allele frequencies. However, with real data, the reliability
of the estimator would depend very much on the validity

of the assumptions made in deriving our inheritance
model.
A key assumption that might be violated in a real

population is that of genotype frequency equilibrium.
This assumption may be quite reasonable in population
studies in ecology where mating within and between
individuals in the population has gone on for many
generations. However, horticultural and agricultural
germplasm collections are seldom single populations
that have reached such equilibria. We hope to investigate
further the effect of lack of genotype frequency equili-
brium on our allele frequency estimator. The inheritance
model proposed assumed either disomic or polysomic
inheritance. As noted earlier, in reality, inheritance
patterns in polyploids can be much more complex.
While polysomy and disomy are the two extremes, many
polyploids actually exhibit a combination of both types.
However, it may be argued that a given marker located
on a certain chromosome would consistently behave one
way or the other. Our model also assumed that there
were no crossovers between the centromere and marker
locus. When a marker locus is distant from the
centromere crossovers can happen which in the case of
polysomic inheritance can lead to double-reduction
gametes. It would be possible to accommodate this in
the model by taking double reduction as the joint
probability of four independent events happening in
sequence: formation of polyvalents, q; formation of
equational heteroallelic chromosomes due to a crossover
between locus and centromere, e; nondisjunction in
Anaphase I, a; and finally correct orientation in Metaphase
II, that is, the two sister chromatids moving to the same
pole in Anaphase II, probability¼ 1

2: For an autotetraploid,
assuming the probability of quadrivalent formation q¼ 1
we get the Pr{double reduction}, a¼ ea/2. If chromosomes
pair randomly when moving to the same pole at Anaphase
I, then a ¼ 1

3 for a tetraploid. The probability e will depend
on the crossover frequency, which in turn depends on the
physical distance between the locus and the centromere.
In the extreme case of free recombination, e ¼ 6

7; that is,
random chromatid segregation (Mather, 1936) with 1

7
reductional and 6

7 equational separation. This implies that
in a typical case of an autotetraploid, one could expect
the double reduction events to occur at a frequency of 1

7:
This is an aspect we plan to incorporate into our estimation
procedure in the future.
In this paper, we have assumed that the proportion of

selfing (s) is known, or can be estimated from knowledge
of the mating system. In cases where the proportion of
selfing is unknown, the EM algorithm outlined above can
be extended to incorporate the estimation of s as well,
albeit with some reduction in the precision of the allele
frequency estimates. An estimator for s can be obtained
by rearranging (5) to give

P	 R ¼ sðATP	 RÞ

A least-squares estimator of s is therefore

ŝ ¼ ðP	 RÞTðATP	 RÞ
ðATP	 RÞTðATP	 RÞ

At the same point in each iteration of the EM algorithm
where new genotype frequencies are estimated using (6),
this equation can be used to obtain new estimates of the
proportion of selfing (s). It is worth noting that with the

Table 2 Mean allele frequency vector, p̂, and standard errors
(in parentheses) estimated on simulated data of varying sample
sizes from equilibrium populations of different ploidy level and of
values of p

Sample size p̂

p̂0 p̂1 p̂2 p̂3 p̂4

p¼ (0.2, 0.1, 0.2, 0.3, 0.2) Tetraploid, m¼ 4
500 0.198 0.100 0.201 0.301 0.200

(0.020) (0.008) (0.013) (0.015) (0.012)
100 0.190 0.102 0.202 0.303 0.203

(0.048) (0.018) (0.028) (0.035) (0.027)
50 0.186 0.103 0.204 0.305 0.202

(0.067) (0.028) (0.040) (0.050) (0.040)

p¼ (0.2, 0.1, 0.2, 0.3, 0.2) Hexaploid, m¼ 6
500 0.199 0.100 0.200 0.301 0.201

(0.020) (0.007) (0.011) (0.016) (0.011)
100 0.192 0.100 0.201 0.304 0.203

(0.055) (0.016) (0.027) (0.036) (0.026)
50 0.184 0.102 0.204 0.307 0.203

(0.076) (0.024) (0.038) (0.053) (0.037)

p¼ (0.2, 0.02, 0.05, 0.08, 0.65) Tetraploid, m¼ 4
500 0.196 0.020 0.050 0.080 0.654

(0.030) (0.004) (0.006) (0.007) (0.030)
100 0.181 0.020 0.051 0.081 0.667

(0.073) (0.008) (0.013) (0.017) (0.072)
50 0.172 0.020 0.051 0.081 0.676

(0.104) (0.012) (0.019) (0.024) (0.103)

The selfing fraction is set to, s¼ 0.5. In all, 1000 simulated samples
were drawn from each population and sample size.

Table 3 Mean allele frequency vector, p̂, and standard errors
(in parentheses) estimated on simulated data of sample size n¼ 100
from equilibrium populations of different selfing fractions

Selfing fraction, s p̂

p̂0 p̂1 p̂2 p̂3 p̂4

p¼ (0.2, 0.1, 0.2, 0.3, 0.2) Tetraploid, m¼ 4
0.2 0.194 0.101 0.202 0.302 0.201

(0.039) (0.017) (0.025) (0.032) (0.025)
0.4 0.195 0.100 0.201 0.303 0.200

(0.043) (0.018) (0.025) (0.033) (0.026)
0.6 0.190 0.101 0.203 0.306 0.200

(0.052) (0.019) (0.029) (0.037) (0.029)
0.8 0.194 0.101 0.203 0.302 0.199

(0.053) (0.021) (0.031) (0.039) (0.031)

In all, 1000 simulated samples were drawn from each population
and sample size.

Allele frequencies in polyploids
HN De Silva et al

333

Heredity



selfing estimated using the least-squares approach, the
estimates of allele frequency obtained will no longer in
general be maximum likelihood.
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