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Correlated multiple testing is widely performed in genetic
research, particularly in multilocus analyses of complex
diseases. Failure to control appropriately for the effect of
multiple testing will either result in a flood of false-positive
claims or in true hits being overlooked. Cheverud proposed
the idea of adjusting correlated tests as if they were
independent, according to an ‘effective number’ (Meff) of
independent tests. However, our experience has indicated
that Cheverud’s estimate of the Meff is overly large and will
lead to excessively conservative results. We propose a more
accurate estimate of the Meff, and design Meff-based
procedures to control the experiment-wise significant level

and the false discovery rate. In an evaluation, based on both
real and simulated data, the Meff-based procedures were
able to control the error rate accurately and consequently
resulted in a power increase, especially in multilocus
analyses. The results confirm that the Meff is a useful
concept in the error-rate control of correlated tests. With its
efficiency and accuracy, the Meff method provides an
alternative to computationally intensive methods such as
the permutation test.
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Introduction

Complex diseases such as diabetes, schizophrenia and
cancer lay a heavy burden on public health, with
frequencies over 1%. As they are caused by interactions
among genes, an increasing number of studies (Hoh et al,
2001; Nelson et al, 2001; Ritchie et al, 2001; Cordell and
Clayton, 2002) have employed multilocus methods to
detect the causative genes. Despite the abundance of
such studies, only 16–30% of the reports of significant
associations have been consistently replicated (Page et al,
2003). One reason for the low replication rate is the
failure in controlling for the effect of multiple testing
(Lander and Kruglyak, 1995).

Multilocus methods search loci in combinations, which
inevitably tests a great number of hypotheses simulta-
neously: a k-locus analysis of n loci would have Cn

k

locus-combinations to inspect. In addition to Cn
k being a

large and cumbersome number, the tests are correlated
with each other. For example, locus-combination AB is
obviously correlated with combination BC for they share
a mutual locus B. Even when loci are completely
independent, their combinations are still correlated.
These characteristics complicate the control of the error
rate in multilocus analyses. Appropriate adjustment for
multiple testing is very important to prevent a flood of
false-positive claims and to prevent true associations
being overlooked.

A traditional criterion for multiple testing is the
experiment-wise significant level (EWSL, ae), which is
the probability that one or more hypotheses would be
falsely rejected. To control the EWSL, the corresponding
point-wise significant level (PWSL, ap), which is the
probability that an individual hypothesis would be
falsely rejected, should be calculated appropriately.
For independent tests, the Bonferroni (or Sidak) correc-
tion provides a simple and accurate control: ap¼
1�(1�ae)1/MEae/M, where M is the number of tests.
However, this adjustment is overly conservative for
correlated tests. Lander and Botstein (1989) and Lander
and Kruglyak (1995) offered analytical adjustments for
correlated tests in single-locus analyses, but it is hard to
apply them to multilocus analyses.

In practice, most researchers have therefore employed
resampling-based methods to control the EWSL of
correlated tests. Hoh et al (2001) and Ritchie et al (2001)
used the permutation test; Nelson et al (2001) used
the cross-validation test. Although resampling-based
methods are accurate, they demand intensive compu-
tation, which constrains them to cases with a limited
number of tests. Taking the permutation test as an
example, Churchill and Doerge (1994) recommended
at least 1000 shuffles to estimate a 0.05 EWSL and at
least 10 000 shuffles to estimate a 0.01 EWSL.

An alternative criterion for multiple testing is the false
discovery rate (FDR) (Benjamini and Hochberg, 1995),
which is the expected proportion of falsely rejected
hypotheses among all those rejected. When all hypoth-
eses are true, the FDR is equal to the EWSL, but
otherwise it is smaller. For independent tests, Benjamini
and Hochberg (1995) and Benjamini and Liu (1999)
proposed a step-up procedure and a step-down proce-
dure to control the FDR. For correlated tests, Benjamini

Received 24 January 2005; accepted 21 June 2005; published online
3 August 2005

Correspondence: L Ji, The Ministry of Education (MOE) Key Laboratory
of Bioinformatics, Department of Automation, Tsinghua University,
Beijing 100084, People’s Republic of China.
E-mail: zc-sa@mail.tsinghua.edu.cn

Heredity (2005) 95, 221–227
& 2005 Nature Publishing Group All rights reserved 0018-067X/05 $30.00

www.nature.com/hdy



and Yekutieli (2001) proposed a simple but highly
conservative procedure. Storey (2002) and Storey and
Tibshirani (2003) proposed a variation of the FDR: the
positive false discovery rate (pFDR), which is the
conditional FDR given that at least one hypothesis is
rejected. These authors gave direct estimates of the pFDR
for independent tests, and suggested resampling-based
methods such as the permutation test for correlated tests.
Correlation among tests is still a problem for FDR
methods.

In 2001, Cheverud proposed a new idea to adjust
correlated tests as though they were independent accord-
ing to an effective number (Meff) of independent tests. He
also gave an estimation of the Meff for single-locus
analyses. In Nyholt (2004)’s evaluation, the Meff method
approximated the permutation test accurately, and was
more than 100 times faster. It is highly desirable to apply
this method to control the EWSL and FDR in multilocus
analyses. However, our experience suggests that Chever-
ud’s (2001) estimate of Meff is overly large, especially when
there are a substantial number of moderately correlated
tests. This situation is, unfortunately, typical of multilocus
analyses, leading to overly conservative results.

In this study, we propose a more accurate estimate of
Meff, and design Meff-based procedures to control the
EWSL and FDR. An assessment based on both real and
simulated data shows that the procedures can control the
error rate accurately in multilocus analyses.

Approach

The Meff method
When loci are in linkage disequilibrium (LD), hypothesis
tests in single-locus analyses are not independent.
Cheverud (2001) proposed the method below to adjust
the correlated tests:

Step 1: Calculate the correlation matrix for the loci.
Step 2: Estimate the effective number (Meff) of inde-

pendent tests from the eigenvalues of the correlation
matrix with Equation (1), where M is the number of tests
(equal to the number of loci in single-locus analyses) and
li (i¼ 1,y, M) are the eigenvalues

Meff ¼ 1 þ ðM� 1Þ
�

1 � Vl

M

�

Vl ¼
PM
i¼1

ðli � 1Þ2=ðM� 1Þ

8>>><
>>>:

ð1Þ

Step 3: Adjust the test criteria as though there were Meff

independent tests with the Sidak (1967) correction below

ap ¼ 1 � ð1 � aeÞ1=Meff ð2Þ

Step 4: Test the association between genotypes and
phenotypes locus by locus. If the p-value of any test is
lower than ap, the nonassociation hypothesis is rejected.

A new Meff equation
The key step of the Meff method is Step 2, estimating
the Meff from the eigenvalues. As Cheverud (2001)
explained, Equation (1) considers two extreme situations.
When the tests are completely independent, the eigen-

values are all equal to 1 and Equation (1) gives Meff¼M.
When the tests are completely identical, the first
eigenvalue is M, while all the others are zero, and
Equation (1) gives Meff¼ 1. Although Equation (1) gives
correct estimates at the two extremes, it overestimates the
Meff in other situations. If the M tests are composed of
c (1pcpM) copies of M/c independent tests, the eigen-
values are Sequence (3)

c; c; . . . ; c;
zfflfflfflfflfflffl}|fflfflfflfflfflffl{M=c

0; 0; . . . ; 0
zfflfflfflfflfflffl}|fflfflfflfflfflffl{ðc�1ÞM=c

ð3Þ

According to Equation (1), Meff¼Mþ 1–c, but actually
there are only M/c independent tests. The ratio r is

r ¼ Mþ 1 � c

M=c
¼ cðMþ 1 � cÞ

M
X1; 1pcpM ð4Þ

In multilocus analyses, M is large and c is moderate, so r
tends to be considerably larger than 1.

Intuitively, c identical tests will result in an eigenvalue
li¼ c, while a test partially correlated with others will
result in an eigenvalue 0olio1. Thus, an eigenvalue can
be decomposed into two parts: the integral part and the
nonintegral part. The integral part represents identical
tests that should be counted as one in the Meff. The
nonintegral part represents a partially correlated test
that should be counted as a fractional number between 0
and 1. From this intuitive consideration, we propose
Equation (5) to estimate the Meff:

Meff ¼
PM
i¼1

fðjlijÞ

fðxÞ ¼ IðxX1Þ þ ðx� xb cÞ; xX0

8<
: ð5Þ

where I(xX1) is the indicator function, which gives 1
when xX1 and gives 0 otherwise, and xb c is the floor
function, which gives the largest integer less than or
equal to x. Thus, completely correlated tests will be
counted as I(xX1) and partially correlated tests will be
counted as x� xb c. Equation (5) gives the right Meff for
integral eigenvalue Sequence (6), where t is the true
number of independent tests and c1, c2,y, ct are integers

c1; c2; . . . ; ct
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{t

; 0; 0; . . . ; 0
zfflfflfflfflfflffl}|fflfflfflfflfflffl{M�t

ð6Þ

Multilocus analyses
By regarding locus-combinations as ‘generalized loci’
(GLs), we can apply the Meff method to multilocus
analyses. For example, if two loci have g1 and g2

genotypes, respectively, their combination can be regarded
as a new ‘locus’ with g1g2 genotypes. Consequently, the
calculation of the correlation coefficients in Step 1 needs
adaptation. As GLs are multinomial variables, neither the
Pearson correlation (used by Cheverud, 2001) nor the
LD measure (used by Nyholt, 2004) is suitable.

Similar to the Pearson correlation for numerical
variables, the correlation for multinomial variables can
be defined as in Equation (7a), but the variance (Var) and
the covariance (Cov) should be measured differently. Let
X1 and X2 denote two GLs, that is, two multinomial
variables. Their variance and covariance can be mea-
sured with the entropy and mutual information (Cover
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and Thomas, 1991), respectively, as in Equation (7b)
and (7c).

CorðX1;X2Þ ¼
CovðX1;X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðX1ÞVarðX2Þ
p ð7aÞ

VarðXiÞ ¼ E½� log PðXiÞ
; i ¼ 1; 2 ð7bÞ

CovðX1;X2Þ ¼ E log
PðX1X2Þ

PðX1ÞPðX2Þ

� �
ð7cÞ

where P(Xi) is the probability function of Xi and E[x] is
the expectation of a random variable x.

Besides its compatibility with both single- and multi-
locus analysis, this correlation coefficient has a property:

CorðAB;BCÞ ¼ VarðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðABÞVarðBCÞ

p
VarðABÞ ¼ VarðAÞ þ VarðBÞ
VarðBCÞ ¼ VarðBÞ þ VarðCÞ

ð8Þ

where A, B and C are independent loci or GLs.

An Meff-based FDR procedure
Let R denote the number of rejected hypotheses and V
the number of those falsely rejected. Benjamini and
Hochberg (1995) defined the FDR as

FDR ¼ E
V

R
IðR40Þ

� �

where I(R40) is the indicator function, which gives 1
when R40 and gives 0 otherwise. The FDR is equal to
the EWSL when all null hypotheses are true and is
smaller otherwise. They also proposed the following
step-up procedure to control the FDR for independent
tests. Let p(1)p?pp(M) be the ordered p-values of M
independent hypotheses H(1),y, H(M). To control the
FDR at level q (usually 5%), hypotheses H(1),y, H(k)

should be rejected, where

k ¼ max
1pipM

i : pðiÞp
i

M
q

� �

The ordered p-values are compared with an arithmetic
sequence from q/M to q. The start of the sequence, q/M,
ensures that the FDR is equal to the EWSL when all the

hypotheses are true. The end of the sequence, q, ensures
that the FDR is controlled at q when all the hypotheses
are rejected. To involve the effect of correlation, we can
replace the start q/M with q/Meff, keep the end as q, and
consequently replace the step q/M with (q�q/Meff)/
(M�1). The Meff-based step-up procedure is to reject
H(1),y, H(k), where

k ¼ max
1pipM

i : pðiÞp
q

Meff
þ i� 1

M� 1
q� q

Meff

� �� �

Performance

Single-locus analyses
The Meff method has previously been applied to two
single-locus analyses. Cheverud (2001) applied it to the
LG/J and SM/J mouse data (Cheverud et al, 2001), and
Nyholt (2004) applied it to the angiotensin-I-converting
enzyme (ACE) gene data (Keavney et al, 1998). In these
analyses, Cheverud (2001) and Nyholt (2004) derived two
eigenvalue sequences from the two data sets, respectively.
In this study, we calculated different Meff’s with both
Equations (1) and (5) from the two eigenvalue sequences,
and compared the results. As shown in Table 1, the two
equations gave similar Meff’s, so they should have similar
performance on the two data sets. Setting ae¼ 5% for the
Keavney data set, Nyholt (2004) obtained ap¼ 0.015 from
a permutation test with 50 000 shuffles, and obtained
ap¼ 0.011 with the Meff¼ 4.59 from Equation (1). Using
Meff¼ 4.01 from Equation (5), we obtained ap¼ 0.013, a
value closer to the permutation test’s 0.015 than the value
of 0.011 obtained from Equation (1).

Multilocus analyses
To compare the performance of Equations (1) and (5) in
multilocus analyses, we used four sub-data sets extracted
from a schizophrenia data set (Xu et al, 2004). The
schizophrenia data set concerns 12 genes of the
dopamine pathway, COMT (7), ALDH3 (11), ADH (14),
TYR (1), TPO (2), MAO (3), DAO (2), AOX1 (2), DDC (4),
HDG (1), DBH (2) and GSTZ1 (1), with 83 cases and
108 controls. (The integers in the parentheses are the
numbers of SNPs genotyped for each gene.) To investi-
gate the performance on correlated loci, we extracted the
SNPs of gene COMT, ALDH3 and ADH as three sub-data
sets COMT, ALDH3 and ADH, respectively. The three
genes were reported as potential effective SNPs by Xu

Table 1 Comparison between Equations (1) and (5) on two eigenvalue sequences

Eigenvalue sequence Permutation Equation (1) Equation (5)

Meff ap Meff ap Meff ap

Cheverud
3.63, 1.79, 1.13, 0.47, Not given by Cheverud 6.73 0.76% 5.99 0.85%
0.37, 0.25, 0.18, 0.17

Nyholt
7.84, 1.60, 0.24, 0.21, 3.39 1.5% 4.59 1.1% 4.01 1.3%
0.08, 0.03, 0.01, 0, 0, 0 (50 000 shuffles)

Cheverud (2001)’s eigenvalue sequence was derived from the LG/J and SM/J mouse data (Cheverud et al, 2001) with the Pearson correlation.
Nyholt (2004)’s sequence was derived from the ACE gene data (Keavney et al, 1998) with the LD measure. The EWSL was set at ae¼ 5%.
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et al (2004), and they have enough SNPs (more than five)
to ensure the multiplicity of tests in the analyses. To
investigate the performance on independent loci, we
selected one SNP per gene as the fourth sub-data set and
called it DOP (short for dopamine). For each data set, we
performed single-, two- and three-locus analyses.

We used the permutation test as the golden standard to
evaluate the performance. In each permutation shuffle, we
applied the Meff method to control the EWSL (ae). As a
result, we obtained a decision of whether or not to reject
the nonassociation hypothesis. After repeating this proce-
dure 3000 times, we counted the proportion of rejection
(Pr). Ideally, Pr should be equal to the preset ae. The
association between a GL and the phenotype was tested
with a combination of the w2 test and the Fisher’s exact test
(When Cochran (1954)’s condition was satisfied, the
association was tested with the w2 test. When the condition
was not satisfied, it was tested with the Fisher’s exact test.
Cochran’s condition: in a contingency table, every cell has
an expected value no less than 1, and 80% of the cells have
expected values of no less than 5. This algorithm was
implemented in ACM algorithm 643 (Clarkson et al, 1993).)

Figure 1 shows the comparison between Pr and ae. In
single-locus analyses, both Equations (1) and (5) con-
trolled Pr at ae. In two- and three-locus analyses, the
Meff’s obtained from Equation (1) were much greater

than those obtained from the permutation test (see
Table 2), and consequently the Pr of Equation (1) was
much lower than ae. In contrast, the Pr of Equation (5)
approximated ae fairly well in most cases.

Effects on FDR
We performed two-locus analyses on simulated case–
control data to evaluate the effects of the Meff on the FDR.
The simulated data contains 10 genomic regions with
five observed biallelic SNPs in each region. All SNPs are
in the Hardy–Weinberg equilibrium and the minor
alleles have the same frequency. SNPs in different
regions are in linkage equilibrium, and SNPs in the
same region are in LD with r2¼ 0.8 (Hill and Robertson,
1968) between two successive SNPs. The disease is
caused by the epistatic interaction of two unobserved
loci, which hide in the first region and the second region,
respectively. The LD (r2) between a causative loci and its
nearest marker SNP is 0.8. As neither of the causative loci
has a marginal effect, a two-locus analysis is necessary to
detect the epistatic interaction. Consequently, there are
C50

2 ¼ 1225 SNP pairs to inspect, and only the 25 pairs
composed of the loci from the first and second regions
are associated with the disease. The data were simulated
from the six epistasis models in Table 3 (Ritchie et al,

Figure 1 Proportion of rejection vs EWSL. The EWSL (ae) was set at different levels, and then the proportion of rejection (Pr) was estimated
with a permutation test with 3000 shuffles. Ideally, Pr should be equal to ae. The dashed lines are the result of the Meff from Equation (1), and
the solid lines are the result of the Meff from Equation (5). All correlation matrices were calculated with Equation (7).
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2003). For each model, 10 000 data sets were generated
with 200 cases and 200 controls in each of them.

Both Benjamini and Hochberg (1995)’s direct step-up
procedure and the new Meff-based step-up procedure
were applied to control the FDR. Although Benjamini
and Yekutieli (2001) designed an FDR procedure for
correlated multiple testing, we did not employ it because
it is much more conservative than the direct step-up
procedure. The Meff was estimated with Equation (5). As
shown in Figure 2, the Meff-based step-up procedure
controlled the FDR more accurately than the direct
method, and was considerably more powerful.

Discussion and conclusion

In 2001, Cheverud proposed the idea of adjusting
correlated tests as if they were independent according
to the effective number (Meff) of independent tests.
Piepho (2001) has also proposed a quick method for
computing approximate threshold levels that control the
genome-wise type I error rate of tests for quantitative
trait locus detection in interval mapping and composite
interval mapping. In the multilocus analyses presented
in this paper, our extended concept of Meff succeeded in
controlling both the EWSL and the FDR. This result

Table 2 Comparison between Equations (1) and (5) on the schizophrenia data

Analyses Permutation Equation (1) Equation (5)

Meff ap (%) Meff ap (%) Meff ap (%)

COMT
Single locus 7.01 0.729 6.84 0.747 7.00 0.730
Single, Pearson* 7.01 0.729 6.17 0.828 6.00 0.851
Two locus 10.71 0.478 16.86 0.304 11.09 0.461
Three locus 10.77 0.475 22.17 0.231 12.27 0.417

ALDH3
Single locus 8.47 0.603 10.53 0.486 10.01 0.511
Single, Pearson* 8.47 0.603 9.95 0.514 9.00 0.568
Two locus 20.28 0.253 44.28 0.116 18.19 0.282
Three locus 25.48 0.201 111.80 0.0459 27.87 0.184

ADH
Single locus 10.45 0.490 13.43 0.381 12.05 0.425
Single, Pearson* 10.45 0.490 12.36 0.414 10.00 0.512
Two locus 31.77 0.162 76.42 0.0671 21.78 0.235
Three locus 45.9 0.114 264.97 0.0195 49.77 0.103

DOP
Single locus 13.01 0.394 11.99 0.427 12.02 0.426
Single, Pearson* 13.01 0.394 11.87 0.431 12.00 0.427
Two locus 35.01 0.146 59.63 0.0856 19.42 0.264
Three locus 48.32 0.106 179.40 0.0286 47.12 0.109

Theoretically, the Meff of Equation (5) should be an integer. However, we obtained real numbers because of the computational errors in the
calculation of eigenvalues. In the four analyses marked by asterisks (*), the correlation matrices were calculated with the Pearson correlation.
In all the other analyses, the correlation matrices were calculated with Equation (7). The EWSL was set at ae¼ 5%.

Table 3 Epistasis models of disease

Model 1 Model 2 Model 3

BB Bb Bb BB Bb bb BB Bb bb

AA 0 1 0 0 0 2 8 7 5
Aa 1 0 1 0 1 0 10 0 10
aa 0 1 0 2 0 0 3 10 4

P(A)¼P(B)¼ 0.5 P(A)¼P(B)¼ 0.5 P(A)¼P(B)¼ 0.25

Model 4 Model 5 Model 6

BB Bb Bb BB Bb bb BB Bb bb

AA 0 1 9 7 5 2 9 0.1 2
Aa 4 1 8 5 9 1 8 7 0.5
aa 7 9 3 2 1 3 0.3 0.7 2

P(A)¼P(B)¼ 0.25 P(A)¼P(B)¼ 0.1 P(A)¼P(B)¼ 0.1

The table describes the epistasis models used by Ritchie et al (2003), where P(A) and P(B) are the minor allele frequencies, and the 3� 3 tables
are the relative penetrances. These models have little or no marginal effects at each locus. The real penetrances can be calculated by using the
population penetrance. The population penetrance was set at 1% in the simulation study because this is the penetrance of complex diseases
(Hoh and Ott, 2003).
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supports the use of Meff in error-rate control of correlated
multiple testing. As a data-driven algorithm based on a
correlation matrix, the Meff method can be applied to a
wide range of problems. Nowadays, dense and linked
markers are widely used in genetic study, and it is hard
to model their genetic behavior precisely, especially in
multilocus analyses. The diversity of populations also
prohibits models obtained from one population from
being applied to another. Avoiding the error of an
imprecise model, the data-driven Meff method is suitable
for different situations. In addition to the data-driven
property, the Meff can be calculated for various types of
data by generalizing the definition of correlation coeffi-
cient. With Equation (7), it can be applied to categorical
data. With the Pearson correlation, it can be applied to
numerical data such as microarray data. With King and
Chinchilli (2001)’s generalized correlation coefficient, it
can be applied to a mixture of numerical and categorical
data.

Cheverud (2001) proposed Equation (1) to estimate the
Meff. As he explained, Equation (1) considers two
extreme situations: hypothesis tests are completely
independent or they are completely identical. However,
Equation (4) shows that Equation (1) tends to over-
estimate the Meff when there are a large number of
moderately correlated tests. Unfortunately, in multilocus
analyses, this situation is usually encountered, and
Equation (1) will lead to conservative reports. In this
paper, we propose Equation (5) to estimate the Meff more
accurately. It considers a more general situation than the
two extremes Equation (1) concerns, where tests are
composed of copies of independent tests. Therefore, it
outperforms Equation (1) in multilocus analyses. Figure 1
clearly shows that both Equations (1) and (5) perform
excellently in single-locus analyses, but only the latter is
effective in multilocus analyses. The higher performance
of Equation (5) over Equation (1) is not because it better
fits the correlation coefficient defined by Equation (7). As

Equation (4) has shown, no matter what correlation
coefficient is employed to calculate the correlation matrix,
Equation (1) will overestimate the Meff for eigenvalue
Sequence (3), while Equation (5) will give an appropriate
estimate. We also used the Pearson correlation in single-
locus analyses, but as shown in Table 2, its performance
was similar to that of Equation (7).

If n tests need adjustment, the computation complexity
of a permutation test is O(stn), where s is the number of
shuffles and t is the time needed to test a hypothesis. The
computation cost for the Meff method concentrates on
eigenvalues’ calculation whose complexity is O(mn3),
where m is the time needed to multiply two real
numbers. Theoretically, when n is large, the permutation
test is more efficient than the Meff method. However,
because m is tiny in comparison with st, the Meff method
is much faster than the permutation test until n is very
large. The largest n we encountered in this study was
1225 in Section Effects on FDR. It took about 10 000 s to
repeat the calculation of the 1225 p-values 10 000 times,
and took about 3 s to solve the eigenvalues with the
numeric package Lapack. (The computation time was
measured on a 2.8 GHz Pentium with Linux 2.6.10.)
When there are about 1000 tests, the Meff method is at
least 1000 times faster than the permutation test. This
would meet the need of a genome scan with about 1000
SNPs per chromosome. As SNPs in different chromo-
somes are in linkage equilibrium, the correlation matrix
of a single-locus analysis is diagonally blocked. We can
calculate the Meff for each chromosome individually and
then sum them up as the Meff for the scan.

Freed from the heavy computation burden, statisti-
cians can realize many sophisticated multilocus methods.
For example, we can split a classification tree’s nodes
according to the EWSL or the FDR rather than the PWSL.
In a tree’s growth procedure, a node splits when the
p-value of the optimal variable exceeds a threshold. The
more the variables are, the easier it is for the optimal

Figure 2 Comparison between the direct step-up procedure and the Meff -based step-up procedure. The FDR and power were estimated from
10 000 data sets, each with 200 cases and 200 controls. Ideally, the empirical FDR should be equal to q, which is the FDR level expected to be
controlled at.
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variable to exceed the threshold, and the more easily
the tree overfits. Zhang and Bonney (2000) considered
this problem in splitting, but they arbitrarily set the
PWSLo0.001 as the threshold. With the Meff method,
the threshold can be estimated efficiently. If the threshold
is calculated with the permutation test, the computation
will be very demanding because every node needs
thousands of shuffles.

Multiple testing is not only important in data analysis
but also in experiment design. Neglecting the issue
would lead to an underpowered design, while over-
emphasizing it would waste resources. Owing to the
expense of genetic experiments, it is highly desirable
to apply the Meff method to experiment designs. By
calculating the Meff from a pilot study, we can estimate
the appropriate PWSL and the sample size for an
experiment involving multiple testing.
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