
Optimal sampling strategy for estimation of spatial
genetic structure in tree populations

S Cavers1, B Degen2, H Caron3, MR Lemes4, R Margis5,6, F Salgueiro6 and AJ Lowe7
1Centre for Ecology and Hydrology-Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, Scotland, UK; 2BFH Institut fuer
Forstgenetik und Forstpflanzenzuechtung, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany; 3Institut National de la Recherche
Agronomique, UMR BIOGECO, 69 Route d’Arcachon, 33612 Cestas Cedex, France; 4Instituto Nacional de Pesquisas da Amazonia,
Laboratorio de Genetica e Biologia Reprodutiva de Plantas (LabGen) Avenida Andre Araujo 2936, 69083-000 Manaus, AM, Brazil;
5Universidade Federal do Rio de Janeiro, LGMV – Laboratorio de Genetica Molecular Vegetal, CCS – Ilha do Fundao, Instituto de
Biologia, CEP 21944-270 Rio de Janeiro, Brasil; 6Departamiento de Bioquı́mica, Rua Ramiro Barcelos 9800, Universidade Federal do Rio
Grande do Sul, Porto Alegre, RS, Brasil; 7School of Life Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4170,
Australia

Fine-scale spatial genetic structure (SGS) in natural tree
populations is largely a result of restricted pollen and seed
dispersal. Understanding the link between limitations to
dispersal in gene vectors and SGS is of key interest to
biologists and the availability of highly variable molecular
markers has facilitated fine-scale analysis of populations.
However, estimation of SGS may depend strongly on the
type of genetic marker and sampling strategy (of both loci
and individuals). To explore sampling limits, we created a
model population with simulated distributions of dominant
and codominant alleles, resulting from natural regeneration
with restricted gene flow. SGS estimates from subsamples
(simulating collection and analysis with amplified fragment
length polymorphism (AFLP) and microsatellite markers)
were correlated with the ‘real’ estimate (from the full model
population). For both marker types, sampling ranges were

evident, with lower limits below which estimation was poorly
correlated and upper limits above which sampling became
inefficient. Lower limits (correlation of 0.9) were 100
individuals, 10 loci for microsatellites and 150 individuals,
100 loci for AFLPs. Upper limits were 200 individuals, five
loci for microsatellites and 200 individuals, 100 loci for
AFLPs. The limits indicated by simulation were compared
with data sets from real species. Instances where sampling
effort had been either insufficient or inefficient were
identified. The model results should form practical bound-
aries for studies aiming to detect SGS. However, greater
sample sizes will be required in cases where SGS is weaker
than for our simulated population, for example, in species
with effective pollen/seed dispersal mechanisms.
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Introduction

Plant species develop strong genetic structure, that is
nonrandom distribution of genotypes (Vekemans and
Hardy, 2004), at a variety of spatial scales due to their
sedentary nature (Silvertown, 2001). In certain circum-
stances, for example, colonisation of new habitat, spatial
genetic structure (SGS) may develop very quickly (o10
generations) and be highly persistent (Epperson, 1990)
although patterns may be dynamic, changing with
population age as phenomena such as dispersal indepen-
dent selection, self-thinning and succession begin to act
(Hamrick et al, 1992, 1993; Epperson, 1993; Epperson and
Alvarez-Buylla, 1997; Chung et al, 1998; Jensen et al, 2003).

The strength and spatial magnitude of population
structuring may influence and be influenced by a variety
of factors, including historical processes (vicariance,
dispersal) and selection (Epperson and Li, 1996, 1997).

At a population scale, interspecific differences in the
partitioning of variation are due largely to life form and
breeding system, and several syntheses (Hamrick et al,
1992; Degen et al, 2001a; Vekemans and Hardy, 2004;
Ward et al, 2005) have identified generalisable trends. For
example, selfing species generally maintain strong
genetic structure, while among outcrossing species,
animal-mediated pollen and gravity-mediated seed
dispersal mechanisms create stronger patterns. However,
in general, at the population level, despite the potential
influence of highly localised factors such as spatial
variation in the distribution of species and selection for
microhabitat variation (Levin and Kerster, 1974; Epper-
son, 1993; Doligez et al, 1998; Degen et al, 2001a), SGS is
predominantly a consequence of limited seed and pollen
dispersal (Epperson and Li, 1997; Doligez et al, 1998;
Degen et al, 2001a; Epperson, 2004; Vekemans and Hardy,
2004).
Conservation of forest genetic resources and the

development of forest management plans that account
for intraspecific genetic diversity are of significant
contemporary interest, as part of global efforts to
preserve biodiversity and ensure environmental sustain-
ability (Lowe et al, 2005; UN, 2000; Kanashiro et al, 2002).
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Natural forests that come under management for
production, sustainable or otherwise, are likely to
experience considerable disruption of SGS (Young and
Merriam, 1994; Degen et al, 2001a; Lowe et al, 2003). It
should be a key aim for management plans to tailor
extraction such that this disturbance is minimised and
that remnant genetic structure is sufficient to promote
regeneration and maintenance of genetic diversity (Lowe
et al, 2005). To advance these efforts, several recent
studies have taken advantage of new, highly variable
genetic markers to conduct detailed analysis of tree
populations and explore the link between limitations to
seed and pollen dispersal and patterns of spatial genetic
variation observed on the ground (Doligez and Joly, 1997;
Geburek et al, 1998; Strieff et al, 1998; Degen et al, 2001a;
Cottrell et al, 2003; Latouche-Halle et al, 2003).

Most commonly, analysis of SGS is approached using
spatial autocorrelation methods (Sokal and Oden, 1978),
comparing patterns of genetic variation with geographi-
cal distribution. In contrast to population genetic
estimators (FST and related statistics), which require
averaging across populations or hierarchical levels,
spatial autocorrelation uses data from all pairs of
individual locations across the sample surface and
therefore accesses much more of the available informa-
tion at the population scale (Epperson and Li, 1997). In
addition, spatial autocorrelation makes no assumptions
about the spatial scale of structuring in populations
(Epperson, 1989; Heywood, 1991; Chung et al, 1998).

Multilocus measures using genetic distances have
been shown to be very sensitive in detecting SGS
(Smouse and Peakall, 1999). However, the statistical
power of the technique depends on actual population
structure, size of sample, and aspects of the scale,
orientation and distribution of locations across the
population surface (Kremer et al, 2005; Epperson and
Li, 1996). In other words, the pattern and magnitude of
sampling relative to the population are critical. In
addition, for population genetic questions, the selection
of molecular marker is also of great importance. In this
analysis we aim to determine, for a dominant (amplified
fragment length polymorphism, AFLP) and a codomi-
nant (microsatellite) marker, an optimal sampling strat-
egy, that is numbers of markers and individuals to be
sampled, for reliable estimation of SGS. We use a
simulated population based on actual field data, to
determine, for a variety of sampling strategies and for
dominant and codominant markers, limits for mean-
ingful estimation of SGS and use these limits to explore
and criticise some recent data sets.

Methods

The model Eco-Gene (Degen et al, 1996; Degen and
Roubik, 2004) was used to generate two artificial data
sets (dominant and codominant) from field data. Using
diameter distribution and density data for the neotropi-
cal tree species, Symphonia globulifera, at a permanent
sample plot at Paracou, French Guiana (Figure 1), a
population of 1900 trees in a 1200m� 1200m area
(144 ha) was simulated. Initial codominant (microsatel-
lite) and dominant (AFLP) data sets were created by
distributing genotypes across this population. Each tree
was given an artificial genotype of (a) 100 microsatellite
loci and (b) 100 AFLP loci. Microsatellite genotypes were

generated based on actual allele frequencies of three
tropical tree species (Symphonia globulifera, Dicorynia
guianensis and Sextonia rubra; Degen et al, 2001a). For
the AFLP data set we created 100 loci with two alleles (1
and 2). The frequency of allele 1 was evenly distributed
over the 100 loci from 5 to 95% (5% intervals). Initially,
for both data sets, genotypes were in Hardy–Weinberg
proportions and there was no SGS.

Eco-Gene was then used to simulate the SGS that
would develop in this population after 1000 years given
limited pollen and seed dispersal (for details of model
functions see ftp://ghd.dnsalias.net/degen/software.
html). Pollen and seed dispersal curves were based on
data for relatively abundant tropical tree species, as
measured at an experimental plot at Paracou, French
Guiana (Figure 2). The SGS of this population at the end
of the simulations was used as the ‘real’ SGS for
comparison in subsequent analyses. Using the same
input data sets, four repetitions of the 1000 year run were
carried out, allowing between-repetition comparison of
the pattern of SGS established at the end of the
simulation. For each repetition, mean pairwise genetic
distance was calculated for trees distributed in 10
distance classes of 50m each (50–500m, Figure 3a, b). A
distance-based approach was selected for the analysis of
SGS as it can be applied to both dominant and
codominant multilocus data, with the qualities/limita-
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Figure 1 Diameter distribution of Symphonia globulifera in 144 ha of
forest, from the experimental trial Paracou, French Guiana.
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Figure 2 Simulated limited pollen and seed dispersal.
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tions of the marker type taken into account through
selection of appropriate distance measures. For the
microsatellite data sets, genetic distance was estimated
using Gregorius’ distance, DG (Gregorius, 1978):

DGði; jÞ ¼
1

2

Xn

k¼1

pik � pjk
�� ��

where i and j represent two populations, n is the number
of alleles or haplotypes, pik is the relative frequency of the
kth allele or haplotype.

For AFLP data sets, allele 1 was assumed to be
dominant over allele 2, hence the genotypes 11 and 12
were transformed to 1 and the genotype 22 to 0, creating
a binary matrix of 1 and 0. Genetic distance was then
estimated using Tanimoto’s distance, Dij (Degen et al,
2001b):

Dij ¼ 1�
vij

vij þ yi þ yj

where vij represents the number of loci scored as 1 in
both individuals i and j, yi and yj are the numbers of loci
that score 1 in only individual i or j, respectively.

Using the simulated population to determine ‘real’
SGS, a series of sampling strategies (ie variations of
the numbers of individuals and loci used) were then
tested for both codominant and dominant data sets. For
the tests, the program SGS v1.0c (Degen et al, 2001b;
ftp://ghd.dnsalias.net/degen/software.html) was used
to analyse spatial autocorrelation in the data sets. Again,

mean pairwise genetic distances for microsatellite and
AFLP data sets were computed using Gregorius’ and
Tanimoto’s distances, respectively. For each marker type,
random samples of 50, 100, 150 and 200 individuals were
drawn from the simulated population. At each sample
size, a series of data sets were generated with increasing
numbers of loci and used to estimate SGS (1, 5, 10, 20, 50,
100 loci). In each case, the estimated SGS, as determined
from the sampled data set, was correlated with the ‘real’
SGS as determined for the full simulated population
(Figure 4a, b). Each sampling strategy (number of
individuals, number of loci) was repeated 100 times
and a mean correlation coefficient calculated.
For both codominant and dominant data, the simu-

lated results were used to make recommendations on the
minimum sample size and number of loci necessary for
meaningful determination of SGS. For a number of data
sets drawn from published and new studies (Table 1), the
relationship between the number of individuals sampled
and number of loci used in the simulated data were
explored using a resampling approach. SGS was ana-
lysed in subsamples of loci or individuals and disto-
grams for each subsample were correlated with that for
the full data set. Each subsampling was repeated 100
times and mean correlation reported. While such
resampling of data sets inevitably introduces error, the
trends revealed are informative and permit an evaluation
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Figure 3 Distogram of the spatial genetic structure at (a, top) 100
microsatellite loci for four repetitions after 1000 simulated years; (b,
bottom) 100 AFLP loci for four repetitions after 1000 simulated
years.
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Figure 4 Mean correlation between ‘real’ distogram and the
distogram drawn from series of subsamples for (a, top) micro-
satellites (number of sampled loci¼ 1, 5, 10, 20, 50, 100; number of
sampled individuals¼ 50, 100, 150, 200), and (b, bottom) AFLPs
(number of sampled loci¼ 1, 5, 10, 20, 50, 100; number of sampled
individuals¼ 50, 100, 150, 200).
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of the effort used during collection of the data set.
Variation of correlation according to the numbers of loci
used was examined using two data sets for Mahogany
(Swietenia macrophylla): an AFLP data set of 215 markers,
46 individuals, N¼ 46 (Lowe et al, 2003) and a micro-
satellite data set of eight loci, N¼ 93 (Lemes et al, 2003).
The Mahogany AFLP data set contained a high propor-
tion of low frequency or monomorphic markers, such
that only 44 of the 215 loci were polymorphic (frequency
of 40.05). The full data set was used as published (Lowe
et al, 2003) to examine variation in locus numbers but, for
analysis of SGS, the data set was reduced to include only
polymorphic loci. In addition, variation in correlation
according to the numbers of individuals sampled was
examined for four microsatellite data sets: S. macrophylla
(8 loci, N¼ 93; Lemes et al, 2003), Sextonia rubra (4 loci,
N¼ 184; Hardy unpublished), Dicorynia guianensis (6 loci,
N¼ 154; Degen et al, 2001a) and Symphonia globulifera (3
loci, N¼ 148; Degen et al, 2004) and a single AFLP data
set: Eugenia uniflora (109 loci, N¼ 278; Salgueiro, unpub-
lished).

For each real microsatellite and AFLP data set, the
pattern of SGS was determined using the program SGS
v1.0c, in all cases using 1000 permutations of the data set
to obtain 95% confidence intervals. These were assessed
in the light of the results from the simulations and
resamplings.

Results

Repeated simulations of the development of SGS over
1000 years in the model population produced highly
consistent patterns (Figure 3a, b). In addition, the scale of
SGS observed, that is, the distances at which significant
spatial autocorrelation was detected, was similar to

experimentally determined values observed for other
tropical tree species (Degen et al, 2001a).

The sampling strategies evaluated indicate some clear
patterns (Figure 4a, b; Table 2). Firstly, in our simulations,
AFLP data required much greater sampling effort
compared to microsatellite data. For any given sample
size many more AFLP loci and greater numbers of
individuals were required to achieve the same degree of
correlation as for microsatellites. The pattern is clearly
evident in comparison of the trends observed for
variation in the estimates from the 100 repetitions carried
out (Figure 5). Estimates derived from microsatellite data
achieve consistency much more rapidly than those from
AFLP data sets. The contrast is a consequence of the
lower information content and lower allele numbers per
locus of dominant markers as compared to codominant
markers (Lynch and Milligan, 1994).

For both marker types, it is a logical expectation that
the more markers and individuals sampled, the better the
correlation with ‘real’ SGS. However, for both data types,
target sampling ranges are evident, with lower limits
below which meaningful estimates of real SGS cannot be
made but with upper limits above which the information
gain per unit sampling effort declines rapidly.

If a mean correlation of at least 0.9 between real and
sampled distogram is taken as a minimum target then,
for microsatellites, this can be achieved with a sample of
100 individuals and 10 loci, although close to 0.9 is
achievable with five loci. With 200 individuals sampled,
five loci can provide 0.95 correlation and little is gained
from increasing either locus or individual numbers. For
AFLPs, 40.9 correlation can be achieved with a sample
of 150 individuals and 100 loci. With 200 individuals
sampled, 100 loci provide 40.95 correlation and, again,
little is gained for greater effort. It should be noted,
however, that this means 100 polymorphic loci (no fixed

Table 1 Real data sets used for resampling, including seed and pollen dispersal characteristics, data set size and sampling area and density as
determined from supplied coordinates

Species Location Area (km2) Density trees/ha Agg. index Seed disp Pollen disp N Loci Ref

Swietenia macrophyllaa Costa Rica 0.12 3.83 0.755 Wind Insect 46 215b Lowe et al (2003)
Swietenia macrophyllac Brazil 4.57 0.20 0.681 Wind Insect 93 8 Lemes et al (2003)
Sextonia rubrac F. Guiana 3.79 0.49 0.360 Gravity Insect 184 4 Hardy, unpublished
Dicorynia guianensisc F. Guiana 0.26 5.92 0.703 Wind Insect 154 6 Degen et al (2001a)
Symphonia globuliferac F. Guiana 0.29 5.10 0.427 Animal Bird 148 3 Degen et al (2004)
Eugenia unifloraa Brazil 0.09 30.89 0.202 Animal Insect 278 109 Salgueiro, unpublished

aAFLP data.
bData set contained a high proportion of low frequency/monomorphic loci: these were removed for analysis of SGS (no. of polymorphic
loci¼ 44).
cMicrosatellite data.
Area¼precise area over which samples taken. Density¼N/(Area*100). Aggregation index from SGS program.

Table 2 Mean correlation for microsatellites and AFLPs between the real distogram and the distogram drawn from different samples

N\loci Microsatellites AFLPs

100 50 20 10 5 1 100 50 20 10 5 1

50 0.889 0.889 0.837 0.712 0.621 0.317 0.484 0.470 0.342 0.216 0.150 0.158
100 0.972 0.963 0.942 0.926 0.885 0.673 0.825 0.774 0.594 0.409 0.394 0.186
150 0.986 0.983 0.976 0.966 0.927 0.800 0.924 0.869 0.725 0.631 0.432 0.180
200 0.992 0.991 0.985 0.981 0.966 0.855 0.951 0.931 0.806 0.670 0.509 0.334

Italic values indicate correlation of 40.9: sampling strategies using these numbers are recommended.

Optimal sampling for SGS
S Cavers et al

284

Heredity



loci were included in this analysis). With a sample of
only 100 individuals, more than 100 polymorphic AFLP
loci would be required to approach correlation of 0.9.

In this analysis we have assessed correlation by
calculating, in each distance class, the mean Pearson
correlation coefficient between the genetic distance in the
real population and the values in the sampled popula-
tion. This is a conservative approach in that the shape of
whole distogram is considered, so the sampling ranges
we identify can be considered stringent. In other words,
sampling within the ranges identified is likely to allow
efficient and accurate estimation of ‘real’ SGS. There is a
limitation on the extent to which our results can be
considered general, in that correlation between samples
and the real population depends, to some extent, on the
selection of distance classes. As greater numbers of
distance classes are used, the number of data pairs per
distance class decreases, introducing more stochastic
variation and reducing correlation. Our analysis of the
simulated data consistently used 10 distance classes so,
within this framework, the patterns of correlation should
be robust. As a natural outcome of the balance between
physical sampling effort and ensuring that the numbers
of data pairs per distance class is sufficient, selection of

around 10 distance classes is commonplace and as such
our results should be broadly applicable.
The pattern of correlation observed in the simulations

was mirrored in the resampling studies of real data sets
(Figures 6 and 7). For both AFLP and microsatellite
markers in S. macrophylla, 40.9 correlation is achieved
with fewer markers than used in the published analyses
(Figure 6; Lemes et al, 2003; Lowe et al, 2003). In the case
of the AFLP study, 40.9 correlation with the final data
set is achieved with 75 markers. As noted above, the
AFLP data set used here was as published (Lowe et al,
2003) and contained a high proportion of low frequency/
monomorphic loci (44 polymorphic loci). So, the correla-
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tion rapidly approaches 1 as the number of sampled loci
approaches the number of polymorphic loci present.
Comparing this data set with the simulations, all of the
polymorphic loci would have to be included to make any
estimation of SGS, and this would still have low
correlation with the ‘real’ SGS. For microsatellites,
estimation with six loci matched that made with the
eight loci used in the published analysis (Lemes et al,
2003). For these data sets, if the scale of real SGS is of the
same order as that observed for the simulated popula-
tion, then even the full AFLP sample will only achieve a
correlation of around 0.5 with the ‘real’ SGS, while for
the microsatellite data, six loci and N¼ 93 would achieve
nearly 0.9 correlation.

For both the AFLP and microsatellite data sets that
were resampled for numbers of individuals (Figure 7),
high levels of correlation with the ‘real’ data set were
attained quickly when the number of loci was high. For
microsatellites, the rate at which correlation was attained
was not strictly dependent on the number of loci (S.
globulifera, with three loci, approached full correlation
faster than S. rubra, four loci), perhaps suggesting that
qualities of the individual locus may become important
(eg level of polymorphism), although we did not explore
the relationship between allelic richness and SGS
calculation efficiency.

Patterns of SGS for each species are shown in Figure 8.
The mean pairwise genetic distance in each distance
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Figure 8 Distograms for real data sets used for resampling. All data sets were analysed using the program SGS. Solid central line indicates
value at which there is no spatial autocorrelation. Solid line with filled circles indicates observed level of genetic distance. Dotted lines
indicate 95% significance levels as determined using 1000 permutations of the actual data set: hollow squares – upper 95% confidence
interval, filled squares – lower 95% confidence interval.
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class is plotted together with the level at which genetic
structure is random and upper and lower 95% con-
fidence intervals generated by 1000 permutations of the
data sets. Significant spatial structure is observed where
the observed mean genetic distance is above or below the
confidence interval, that is, where observed genetic
distance is significantly greater or less than that expected
from a random distribution respectively.

Discussion

Our simulations indicate that, where moderate SGS
exists, there are clear target sampling ranges, of both
numbers of individuals and loci, within which the
effectiveness of a molecular marker type for estimating
SGS is maximised. The sampling effort required (for both
individuals and of loci) is much greater for AFLP
markers than for microsatellite markers. Using micro-
satellites and for species with SGS of the same
magnitude as that simulated, once five loci are available,
it is much more effective to focus on increasing
individual sample numbers than increasing numbers of
loci. With five loci and 100 individuals, a correlation of
close to 0.9 is achievable. Using dominant markers, the
number of both loci and individuals required is much
higher; at least 100 loci and 150 individuals. These
recommendations are somewhat lower than previous
predictions, for example (Geburek and Tripp-Knowles,
1994) recommend sampling of 300–400 trees, but it is
important to bear in mind that the sampling scheme
required will depend strongly on the particular char-
acteristics of the species studied. The key question is how
closely does the SGS estimated by the analysed sample
reflect the actual SGS in the population? To successfully
estimate real SGS, scale and distribution of sampled
individuals and the number and type of molecular loci
must be carefully considered.

Sampling of individuals
Theoretical expectations are that where the spatial scale
of sampling is similar to the spatial scale of the pattern of
SGS, the ability to make inferences based on autocorrela-
tion statistics is limited (Slatkin and Arter, 1991). When
the spatial scale of sampling is smaller than that of the
SGS, autocorrelation can be powerful (Sokal and Oden,
1978; Epperson, 1990, 1993; Sokal et al, 1997). However,
the number and distribution of individuals sampled
from a population must be carefully considered, with
respect to local species distribution, spatial density and
expectations of SGS based on life form and breeding
system (Hamrick et al, 1992). For example, species with
effective long-distance dispersal mechanisms (eg wind-
dispersed pollen or animal-dispersed seed) should be
expected to show only weak SGS (Vekemans and Hardy,
2004). In this case it is likely to be more efficient to put
effort into sampling individuals than increasing the
number of markers. In general, if the SGS of a study
species is expected to be weak, then sample sizes should
be increased above our recommendations.

The orientation of sampling with respect to the
distribution of individuals on the ground is also
important. Our simulations used a random sampling of
individuals across the whole population. In reality for
tropical tree species, it is likely that sampling will be
biased towards clustered individuals, due to the diffi-

culty of locating low-density target species in species-
rich forest. To counter bias due to distribution, a mixed
sampling strategy is probably best, balancing high-
density local sampling with wider scale coverage, for
example, using transects in multiple dimensions (Veke-
mans and Hardy, 2004). At the same time, however, the
sampling strategy must ensure that sufficient numbers of
pairwise comparisons are produced in each distance
class to achieve statistical significance (a minimum of 30
pairs per class is recommended; Degen et al, 2001b). A
further consideration for sample distribution is the age
structure of the population. It is notoriously difficult to
successfully estimate age in tree populations, particularly
tropical tree populations, but diameter at breast height
(DBH) measurements are often used (but see case of
Eugenia uniflora below). Where possible these should be
taken and incorporated into the data set. In natural
stands, SGS is likely to be influenced by age: as
populations age, self-thinning and succession will lead
to changes in SGS, most likely increasing the spatial
extent of patterns (eg Jensen et al, 2003). Therefore, it
will be important to account for age when estimating
SGS, particularly where comparative analysis is to be
attempted.

Marker properties
Different molecular markers yield significantly different
amounts of information and all require a critical
minimum effort to provide a statistically meaningful
picture of true SGS. Our simulations have clearly
demonstrated the consequences of the lower information
content of dominant markers relative to codominant
markers. In addition, the markers themselves need to be
critically evaluated, in particular the assumption of
marker neutrality. Criticism has been made of the use
of traditional autocorrelation statistics (eg Moran’s I) to
address population genetic questions (Slatkin and Arter,
1991), due to the risk that different loci experience
different evolutionary forces, rendering averaged statis-
tics meaningless (Hardy and Vekemans, 1999). However,
if it is reasonable to assume linkage disequilibrium, and
selective neutrality, then averaging over loci should not
introduce bias (Epperson, 2004), although this should be
explicitly tested (Kremer et al, 2005).
A further consideration is the allele fequency distribu-

tion. We based initial allele frequencies in our simula-
tions on those of a series of neotropical trees (codominant
data; Degen et al, 2001a) and on an even distribution of
marker presence across 100 loci (dominant data). In both
cases, it is possible (even likely) that allele frequency
distributions for other species will differ and efficiency of
SGS estimation may be affected.

Real data sets
Of the real data sets reanalysed here, most would give
good estimates of SGS (ie 40.9 correlation), if the ‘real’
SGS for these species is of the same order as that
simulated. For the Swietenia macrophylla AFLP data set,
the number of individuals sampled is low (N¼ 46), thus,
even with 215 loci, only a weak estimate of the ‘real’ SGS
is achievable (likely to achieve around 0.6 correlation
with ‘real’ SGS). Furthermore, there are only 44 poly-
morphic loci present in this data set. So while the
inclusion of all loci in the original publication is justified
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(analysis of genetic diversity), their inclusion for analysis
of SGS is not and the extent of SGS estimated here
(Figure 8) is much stronger than that found previously
(Lowe et al, 2003). In any case, for the purposes of
estimating real SGS, the difference between the full and
edited data sets is minimal as the number of individuals
sampled is so low. Also, the inclusion of fixed loci in this
case reduced the magnitude of the SGS detected, but the
spatial pattern found was similar to that detected using
only polymorphic loci. So, for the S. macrophylla AFLP
data set, a greater sampling of both individuals and loci
is necessary.

In the case of the Symphonia globulifera microsatellite
data set, the number of loci sampled is low (three loci).
However, due to the high information content of the
marker a good estimate of the ‘real’ SGS is possible (40.8
correlation with ‘real’ SGS). For this data set, the number
of individuals sampled should be sufficient to success-
fully estimate SGS, and, if further effort were to be made,
it would be most efficient to concentrate on obtaining
additional loci (two more would give 40.9 correlation).

In terms of effort required to successfully estimate
SGS, the microsatellite data sets for S. macrophylla (8 loci,
N¼ 93), Dicorynia guianensis (6 loci, N¼ 154) and the
AFLP data set for Eugenia uniflora (109 loci, N¼ 278) all
achieve a good balance (sufficient but not excessive). In
the latter case, fewer individuals could theoretically have
been sampled to achieve a successful estimate of SGS
(with 100 loci, between 150 and 200 individuals should
be sufficient). However, this case illustrates the necessity
for considering individual species characteristics. Eu-
genia uniflora has a shrub form and identifying indepen-
dent individuals can be difficult (Salgueiro, pers.
comm.). As a result, many apparently independent
samples may in fact be duplicates of single widespread
individuals. Therefore, in this case, the extra sampling is
justified in order to ensure a large enough sampling of
independent trees. The form of E. uniflora also highlights
the difficulty of using DBH to estimate age structure in
populations: for this species DBH gives no real indication
of individual age due to the shrub structure and high
frequency of regrowing stems. For the species Sextonia
rubra and Symphonia globulifera, the population sample is
sufficient and additional loci would be the most efficient
focus for further sampling effort.

Summary and extensions
The simulations and analysis presented provide indica-
tions of the numbers of individuals and loci for dominant
and codominant markers, necessary for successful
estimation of SGS in tree populations. These recommen-
dations are qualified by the requirement that any study
must consider the characteristics of its target species
(mating system, seed and pollen dispersal mechanisms)
and plan sampling and marker selection appropriately.
In addition, SGS is a dynamic quality that changes over
time with population aging, due to selection, density
independent thinning and successional processes (eg
Jensen et al, 2003). Such considerations are particularly
pertinent for comparative analyses that seek common
biological factors responsible for patterns of genetic
structure; studies that are being actively pursued to
identify key considerations for forest management (Lowe
et al, 2005; Ward et al, 2005). For these efforts, it will be

critical to ensure that sampling schemes for different
species provide statistically meaningful outputs. Using
the recommendations detailed here as a guide, sampling
for each species can be designed such that estimates of
SGS can be confidently expected to mirror real patterns.
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