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Viability selection will change gene frequencies of loci
controlling fitness. Consequently, the frequencies of marker
loci linked to the viability loci will also change. In genetic
mapping, the change of marker allelic frequencies is
reflected by the departure from Mendelian segregation ratio.
The non-Mendelian segregation of markers has been used to
map viability loci along the genome. However, current
methods have not been able to detect the amount of
selection (s) and the degree of dominance (h) simulta-
neously. We developed a method to detect both s and h
using an F2 mating design under the classical fitness model.

We also developed a quantitative genetics model for viability
selection by proposing a continuous liability controlling the
viability of individuals. With the liability model, mapping
viability loci has been formulated as mapping quantitative
trait loci. As a result, nongenetic systematic environmental
effects can be easily incorporated into the model and
subsequently separated from the genetic effects of the
viability loci. The quantitative genetic model has been verified
with a series of Monte Carlo simulation experiments.
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Introduction

Natural selection directly acts on the fitness of individuals in
a population. The population constantly evolves by
responding to the natural selection because the variance of
fitness, to some degree, is controlled by genes. There are
many fitness components, viability being one of the major
components. An individual is viable if it can survive to the
adult stage. Therefore, the viability of an individual is
simply defined as a binary variable indicating whether or
not the individual has survived. To the parent of the
individual or the genotype carried by the individual, the
viability of the individual and its siblings determines the
fecundity of the parent. Fecundity is another major fitness
component of the parent. It is defined as the number of
viable progeny of a parent. Fecundity may simply be treated
as a quantitative trait and analyzed using quantitative
genetics theory and technology. Analysis of viability
selection, however, requires an entirely different technology.

Viability selection is usually studied at the population
level by examining the change of gene frequencies (Hartl
and Clark, 1997). Since the introduction of interval
mapping for quantitative trait loci (QTL) using molecular
markers (Lander and Botstein, 1989), people have
attempted to map viability loci using molecular markers.
Earlier works may be traced back to Hedrick and Muona
(1990), who developed a maximum likelihood (ML)
method to estimate the selection coefficient of a viability
locus and the recombination fraction between the
viability locus and a molecular marker. Following the
idea of interval mapping, Hedrick and Muona (1990)
developed a flanking marker analysis to estimate the

fitness parameters of a viability locus. The model
examined by Hedrick and Muona (1990) is actually a
complete recessive model. Fu and Ritland (1994a)
showed that the parameter estimates tend to be biased
if partial dominance is present. Fu and Ritland (1994a)
further proposed a test for the deviation from Mendelian
ratio (a form of segregation distortion as they defined it)
and showed that the power has substantially increased
compared to Hedrick and Muona (1990) whose test was
in fact for recessiveness. Because both groups of
investigators tried to estimate the recombination fraction
and the selection coefficient simultaneously, there are not
enough degrees of freedom to estimate the degree of
dominance. Fu and Ritland (1994b) later proposed a
graphical approach to investigate the degree of dom-
inance. The position of the genotypic frequency array of
the investigated population in the graph represents a
different degree of dominance. Again, the method was
not intended to estimate the degree of dominance,
selection coefficient and recombination fraction simulta-
neously because of the lack of sufficient degrees of
freedom to perform such estimation.
Rather than using single markers or flanking markers

to estimate the fitness parameters and recombination
fraction, Mitchell-Olds (1995) adopted the idea of
interval mapping by examining one putative viability
locus at a time and then scanning the entire genome for
every putative position to provide a visual presentation
of the LOD test statistic profile for identification of the
viability locus. Because Mitchell-Olds was more inter-
ested in heterosis or inbreeding depression, he only fit a
dominance model assuming that the fitness values of the
two homozygotes are identical. Therefore, only the
degree of dominance was estimated and tested. In fact,
the interval mapping approach can simultaneously
estimate the amount of selection and the degree of
dominance. More recently, Vogl and Xu (2000) took a
Bayesian approach to mapping multiple viability loci
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using a backcross mating design as an example. Luo and
Xu (2003) extended the ML method of Mitchell-Olds
(1995) to estimate the degree of dominance and viability
selection at the allelic level (a kind of additive effect). The
type of population examined by Luo and Xu (2003) was a
four-way cross family, which mimics an outbred full-sib
family.

Other works related to viability mapping can be found
in Cheng et al (1998), who developed an EM algorithm
for estimating selection coefficient and recombination
fraction in backcross and double haploid populations.
Some theoretical investigation of viability selection and
segregation distortion has been conducted by Feldman
and Otto (1991), Jin et al (1994) and Asmussen et al (1998).
A comprehensive review can be found in Carr and
Dudash (2003).

Some attempt has been made to associate truncated
artificial selection for a quantitative trait to viability
selection for fitness (Falconer and Mackay, 1996). This
has led to a way to express the selection coefficient for
the recessive genotype of a viability locus as a function of
the selection intensity and the genetic effect of the
viability locus that has been interpreted as a QTL. This
treatment requires an assumption that the quantitative
trait under investigation is the target trait selected.
Natural selection, however, does not act on a single trait;
it affects the survivorship of individuals based on the
overall performance of all fitness components or all
quantitative traits. It is more legitimate to think that there
is an underlying variable called the liability for each
individual. The liability is continuously distributed, just
like a quantitative trait, but it is hidden from us. The
liability may be determined by a function of all
quantitative traits. For example, we may simply imagine
that the liability is a kind of Smith-Hazel ‘selection index’
(Hazel, 1943), but this index can only be seen by nature.
If the index value of an individual is greater than a
threshold, say zero, nature decides that the individual
should survive to the adult stage. Otherwise, nature will
eliminate this individual from the population. Such a
liability model will allow us to study viability selection
using typical quantitative genetics theory. Mapping
viability loci can then be formulated as a problem of
mapping QTL.

In this study, we first combine the complete recessive
model of Hedrick and Muona (1990) and the dominance
model of Mitchell-Olds (1995) to formulate a consensus
model that allows simultaneous estimation and test of
the selection coefficient and the degree of dominance.
Since we directly estimate and test the fitness para-
meters, we call it the fitness model. We then develop a
quantitative genetics model for viability selection by
proposing an underlying liability that is targeted by
natural selection. The models and methods are subse-
quently tested through a series of Monte Carlo simula-
tion experiments.

Theory and methods

Mapping viability loci under the fitness model
Estimation of the selection coefficients and degree of
dominance is difficult in natural populations because
these parameters are confounded with gene frequencies.
In very limited situations where isozyme markers are

available, the selection coefficients of these isozyme
marker genotypes may be estimated and tested using
ML method by treating the isozyme markers as
candidate viability loci. We now have ample marker
data for the purpose of mapping QTL. People often
found that some regions of the chromosomes frequently
show deviation from Mendelian ratio. We hypothesize
that there are some viability loci distributed along these
regions that cause the observed departure from Mende-
lian segregation ratio. Rather than throwing these
markers away, we may use them to map the locations
of the viability loci. In QTL mapping, we normally select
two inbred lines and make a cross to generate genetically
uniform F1 individuals. These F1 are selfed (in some
plants) or intercrossed (in animals or some plants) to
generate a segregating F2 population. In viability
mapping, the purpose of the crossing experiment is to
generate a population with known gene frequencies
(under the hypothesis of no viability selection) so that we
can exclusively estimate the fitness parameters. In an F2
population, the gene frequencies for alleles A and a are
p¼ 1/2 and q¼ 1/2, respectively. When there is no
viability selection, we expect the three genotypes to
have frequencies of P(AA)¼ 1/4, P(Aa)¼ 1/2 and
P(aa)¼ 1/4, respectively. Any significant deviation from
this Mendelian ratio will indicate existence of viability
selection.

Let n(AA), n(Aa) and n(aa) be the numbers of the three
genotypes occurring in the population and n(AA)þn(Aa)
þn(aa)¼n, where n is the sample size of the F2
population. As usual, the relative fitnesses of the three
genotypes are defined as w(AA)¼ 1, w(Aa)¼ 1�hs and
w(aa)¼ 1�s, respectively, where s is the selection coeffi-
cient and h is the degree of dominance (Hartl and Clark,
1997). Let us define the mean fitness by

�ww ¼PðAAÞwðAAÞ þ PðAaÞwðAaÞ þ PðaaÞwðaaÞ

¼1=4þ ð1� hsÞ=2þ ð1� sÞ=4
ð1Þ

The frequencies for the three genotypes among the
surviving individuals after selection will be

pðAAÞ ¼ PðAAÞwðAAÞ
�ww

¼ 1

1þ 2ð1� hsÞ þ ð1� sÞ

pðAaÞ ¼ PðAaÞwðAaÞ
�ww

¼ 2ð1� hsÞ
1þ 2ð1� hsÞ þ ð1� sÞ

pðaaÞ ¼ PðaaÞwðaaÞ
�ww

¼ 1� s

1þ 2ð1� hsÞ þ ð1� sÞ

ð2Þ

In genetic mapping, the genotype of the viability locus is
not observable, and thus the count data are actually
missing. The log likelihood function under the assump-
tion that these counts are observed is called the complete
data likelihood, which is

Lðs; hÞ ¼nðAAÞ ln½pðAAÞ�
þ nðAaÞ ln½pðAaÞ� þ nðaaÞ ln½pðaaÞ�

ð3Þ

This leads to the ML estimates of the genotypic
frequencies in the progeny,

p̂pðAAÞ ¼nðAAÞ
n

; p̂pðAaÞ ¼ nðAaÞ
n

p̂pðaaÞ ¼ nðaaÞ
n

ð4Þ
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Solving for s and h using equation (2), we get,

ŝs ¼ p̂pðAAÞ � p̂pðaaÞ
p̂pðAAÞ and ĥh ¼ p̂pðAAÞ � p̂pðAaÞ=2

p̂pðAAÞ � p̂pðaaÞ ð5Þ

Since the count data are not observable, we need to
substitute them by their expectations, which in turn is
a function of the parameters. Therefore, we invoke an
EM algorithm to obtain the solution. The E-step is to
calculate

E½nðAAÞ� ¼
Xn
j¼1

P�
j ðAAÞ ¼

Xn
j¼1

PjðAAÞpðAAÞ
�ppj

E½nðAaÞ� ¼ 1

2

Xn
j¼1

P�
j ðAaÞ ¼

1

2

Xn
j¼1

PjðAaÞpðAaÞ
�ppj

E½nðaaÞ� ¼
Xn
j¼1

P�
j ðaaÞ ¼

Xn
j¼1

PjðaaÞpðaaÞ
�ppj

ð6Þ

where

�ppj ¼ PjðAAÞpðAAÞ þ 1
2PjðAaÞpðAaÞ þ PjðaaÞpðaaÞ ð7Þ

An explanation for the 1/2 that appears in front of
the heterozygote is given in Appendix A. The probabil-
ities Pj(AA), Pj(Aa) and Pj(aa) are the probabilities of
the three genotypes for individual j conditional on
marker information. They are the prior probabilities
before viability selection has been taken into account.
Methods for calculating these three genotypes can be
found in Haley and Knott (1992) under the interval
mapping framework or Jiang and Zeng (1997) under
the multipoint framework. The probabilities Pj

*(AA),
Pj
*(Aa) and Pj

*(aa) are the so-called posterior probabi-
lities, which have incorporated the parameters of
viability selection. The M-step is to update the para-
meters by

p̂pðAAÞ ¼E½nðAAÞ�
n

; p̂pðAaÞ ¼ E½nðAaÞ�
n

and

p̂pðaaÞ ¼E½nðaaÞ�
n

ð8Þ

We go back and forth through the E-step and M-step
until the iteration converges to a satisfactory criterion.
We then use equation (5) to convert the estimated p
values into s and h.

The next step is to test various hypotheses. There are
many hypotheses we can test, for example, complete
dominance, partial dominance, overdominance and so
on. However, two of them are particularly interesting
here, that is, no viability selection and no dominance.
To test either hypothesis, we need to evaluate the
likelihood value under the full model, that is, when
both s and h are included in the analysis. This likelihood
value is

Lsh ¼
Xn
j¼1

ln PjðAAÞp̂pðAAÞ þ
1

2
PjðAaÞp̂pðAaÞ þ PjðaaÞp̂pðaaÞ

� �

ð9Þ
Derivation of the likelihood function is given in
Appendix A, which particularly explains why the 1/2
should appear in front of the heterozygote.

To test the hypothesis that there is no viability
selection, we let s¼ 0, which leads to the following

likelihood value under the null model:

L0 ¼
Xn
j¼1

ln
1

4
PjðAAÞ þ

1

4
PjðAaÞ þ

1

4
PjðaaÞ

� �

¼� n lnð4Þ
ð10Þ

The likelihood ratio test statistic is

lsh ¼ �2ðL0 � LshÞ ð11Þ
To test the hypothesis that there is no dominance, we let
h¼ 1/2, which leads to

pðAAÞ ¼ 1

2ð2� sÞ ; pðAaÞ ¼
1

2
and

pðaaÞ ¼ 1� s

2ð2� sÞ

ð12Þ

Under this hypothesis, we only have one parameter to
estimate, that is, p(AA) or p(aa), because p(AA)þ
p(aa)¼ 1/2. The likelihood value is

Lh¼1=2 ¼
Xn
j¼1

ln PjðAAÞp̂pðAAÞ þ
1

4
PjðAaÞ

�

þPjðaaÞp̂pðaaÞ
� ð13Þ

where p̂p(AA) is the MLE of p(AA) under this
hypothesis. We use the same EM algorithm as described
earlier to solve for p(AA) except that we always restrict
p(Aa)¼ 1/2 and p(aa)¼ 1/2�p(AA). The estimated
selection coefficient is converted from the following
equation:

ŝs ¼ 2½p̂pðAAÞ � 1=4�
p̂pðAAÞ ð14Þ

The test statistic for dominance is

lh ¼ �2ðLh¼1=2 � LshÞ ð15Þ
As with the usual interval mapping of QTL, we test
each putative position of the genome and use the
test statistic profiles to detect and localize the viability
loci. Our treatment differs from the works carried out
by others (Hedrick and Muona, 1990; Fu and Ritland,
1994a, b; Mitchell-Olds, 1995) in that they only tried
to estimate and test either the selection coefficient (s) or
the degree of dominance (h) but not both. Work
previously carried out in our lab (Vogl and Xu, 2000;
Luo and Xu, 2003) dealt with either a backcross (BC) in
which the degree of dominance was irrelevant or a four-
way cross in which the degree of dominance was
formulated differently from that in the biallelic system.

Mapping viability loci under the liability model
Systematic environmental effects may mask the effects of
viability loci and cause low power of detection. It is
impossible to remove the systematic error from the
analysis using the classical fitness model described
above. However, the liability model proposed here
provides an extremely convenient way to remove such
systematic errors.
Let yj be the liability of individual j in the F2

population under study. It may be described by the
following linear model:

yj ¼ Xjbþ ZjaþWjdþ ej ð16Þ
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where Xj is an incidence matrix, b is a vector for
systematic environmental effects, a is the additive
effect, d is the dominance effect, ejBN(0, s2) is a
normally distributed residual error, and Zj and Wj are
defined as

Zj ¼

ffiffiffi
2

p
if j takes genotypeAA

0 if j takes genotypeAa

�
ffiffiffi
2

p
if j takes genotype aa

8><
>:

and

Wj ¼
�1 if j takes genotypeAA

1 if j takes genotypeAa

�1 if j takes genotype aa

8><
>:

ð17Þ

Since the liability is simply a hypothetical variable, the
residual variance can be arbitrarily defined without
affecting the conclusion. For convenience, we set s2¼ 1,
and thus only a and d are unknown parameters of
interest. We hypothesize that the liability is subject to
natural selection. An individual will survive if yjX0 and
will be eliminated from the population if yjo0. Since all
the sampled individuals have survived from the viability
selection, the liability of each observed F2 individual will
follow a truncated normal distribution with a cumulative
probability

Prðyj40Þ ¼ FðXjbþ ZjaþWjdÞ ð18Þ
This may be considered as the relative fitness for
individual j and thus denoted by

wj ¼ FðXjbþ ZjaþWjdÞ ð19Þ
Since there are three possible genotypes for each
individual, we may define

wjðAAÞ ¼ FðXjbþ
ffiffiffi
2

p
a� dÞ

wjðAaÞ ¼ FðXjbþ dÞ

wjðaaÞ ¼ FðXjb�
ffiffiffi
2

p
a� dÞ

ð20Þ

Define the mean of wj by

�wwj ¼1
4FðXjbþ

ffiffiffi
2

p
a� dÞ þ 1

2FðXjbþ dÞ

þ 1
4FðXjb�

ffiffiffi
2

p
a� dÞ

ð21Þ

We now have the following individual specific survivor-
ship

pjðAAÞ ¼
1
4wjðAAÞ

�wwj

¼
FðXjbþ

ffiffiffi
2

p
a� dÞ

FðXjbþ
ffiffiffi
2

p
a� dÞ þ 2FðXjbþ dÞ þ FðXjb�

ffiffiffi
2

p
a� dÞ

pjðAaÞ ¼
1
2wjðAaÞ

�wwj

¼
2FðXjbþ dÞ

FðXjbþ
ffiffiffi
2

p
a� dÞ þ 2FðXjbþ dÞ þ FðXjb�

ffiffiffi
2

p
a� dÞ

pjðaaÞ ¼
1
4wjðaaÞ

�wwj

¼
FðXjb�

ffiffiffi
2

p
a� dÞ

FðXjbþ
ffiffiffi
2

p
a� dÞ þ 2FðXjbþ dÞ þ FðXjb�

ffiffiffi
2

p
a� dÞ
ð22Þ

from which a likelihood function can be constructed,

Lða; dÞ ¼
Xn
j¼1

ln½PjðAAÞpjðAAÞ

þ 1

2
PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ�

ð23Þ

Unfortunately, we do not enjoy the luxury of using EM to
provide the solution. Instead, we use the simplex
algorithm of Nelder and Mead (1965) to search for the
solution. Hypotheses tests under the liability model
follow exactly the same methods as used in QTL
mapping (Lander and Botstein, 1989). The flexibility of
the liability model is also reflected by the easy way of
quantifying the relative importance or the genetic
determination of the viability locus. As a quantitative
trait, the trait variance contributed by the viability locus
in the liability scale is determined by

h2G ¼ s2G
s2G þ s2

¼ a2 þ d2

a2 þ d2 þ 1
ð24Þ

where

s2G ¼ VarðZÞa2 þ VarðWÞd2 ¼ a2 þ d2 and s2 ¼ 1

Variables Z and W are independent and both have mean
0 and variance 1 because of the special way they are
defined in equation (17). With the liability model, we
have unified viability locus analysis with QTL analysis.
However, we gain the flexibility at the cost of computa-
tional complexity.

In the absence of systematic environmental effects, that
is, b¼ 0, the liability model is identical to the fitness
model. This has been theoretically demonstrated in a
previous section. If b is significantly large, ignoring b
may inflate the residual variance to bTRbþ 1, where
R¼Var(Xj). This inflated variance will decrease the QTL
effect by a factor of (bTRbþ 1)�1/2. In other words, if the
systematic environmental effects are ignored, the true
additive effect a will be reduced to (bTRbþ 1)�1/2a.

Simulation study

Statistical power of the liability model
When there are no systematic environmental effects, the
fitness model and liability model are identical because
one is simply a reparameterization of the other. As a
result, we can focus only on the liability model and
further evaluate the performance of the method. We
simulated one chromosome of 100 cM long covered by 11
evenly spaced codominant markers. We put a single
viability locus at position 25 cM (between markers 3 and
4). We now concentrate on the intensity of viability
selection, the mode of viability selection and the sample
size. The liability model allows us to use the proportion
of the liability variance contributed by the QTL, denoted
by hG2 , as a convenient measure of the selection intensity.
This is due to the fact that if there is no selection, both a
and d will be zero, leading to a zero hG2 . Three levels of hG2

were set up: 0.05, 0.15 and 0.25. Three modes of the
viability selection were investigated: additive only (A),
dominance only (D) and both additive and dominance
(A and D). When both the additive and dominance
effects are present, they contributed equally to the total
liability variance. The sample size (n) was investigated in
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three levels: 100, 200 and 300. Each parameter combina-
tion (scenario) was simulated 200 times. The perfor-
mance of the method was evaluated by the statistical
powers, the average estimates of the genetic parameters
and the standard deviations of the estimates. The critical
values of the test statistics for declaring significance were
calculated using the approximate method of Piepho
(2001).

Instead of evaluating all the 27 possible cases of the
parameter combinations (three factors each with three
levels), we first investigated the effect of sample size on
the performance of the method with the selection
intensity (measured by the heritability of the fitness in
the scale of liability) fixed at hG2 ¼ 0.15 and the gene action
fixed at the A and D (both additive and dominance)
mode. The results of 200 replicated simulations are
summarized in Table 1. The means of the estimated
parameters are close to the true values with the standard
deviations among the replicates changing in the correct
direction, that is, as sample size increases, the standard
deviation decreases. The empirical statistical power also
changes in the correct direction. Note that the power is
quite low when the sample size was 100. A dramatic

increase in the power has been observed when the
sample size increased from 100 to 200, but only a slight
increase in the power has been observed when the
sample size increased from 200 to 300.
When we investigated the effect of the mode of gene

action on the performance of the method, we fixed the
sample size at 200 and fixed the size of the viability locus
at hG2 ¼ 0.15. Table 2 shows that the estimated parameters
are close to the true parametric values under all three
modes of gene action. The A and D mode of gene action,
however, has a substantially higher power than either
mode of additive or dominance alone.
Finally, we investigated the effect of the size of the

viability locus (measured by the heritability of fitness in
the liability scale) on the performance of the method
under the A and D mode of gene action with sample size
fixed at 200. The results are summarized in Table 3. First,
the mean estimates of all parameters (except the position
of the viability locus) are all close to the true values.
Second, the standard deviations of the estimates, in
general, show a trend of increase as hG2 decreases. Third,
the estimated position of the viability locus shows a
phenomenon normally observed in QTL mapping, that

Table 1 Effect of sample size on the parameter estimation under the additive and dominance (A and D) mode of gene action when the
viability locus contributes 15% of the liability variance (hG2¼ 0.15)

Sample size Power (%) Position (cM) a d p(AA) p(Aa) p(aa)

True 25.00 0.2970 0.2970 0.2719 0.6109 0.1172
100 Estimate 41 25.99 (12.54) 0.3213 (0.1596) 0.3194 (0.1848) 0.2720 (0.0592) 0.6157 (0.0666) 0.1123 (0.0414)
200 Estimate 93 24.63 (5.82) 0.3087 (0.0924) 0.3217 (0.1086) 0.2694 (0.0356) 0.6185 (0.0392) 0.1122 (0.0226)
300 Estimate 95 25.26 (5.00) 0.3092 (0.0780) 0.2855 (0.0809) 0.2770 (0.0259) 0.6057 (0.0290) 0.1174 (0.0215)

The standard deviations among 200 replicated simulations are given in parentheses after the mean estimate.

Table 2 Effect of the mode of gene action on the parameter estimation when the viability locus contributes 15% of the liability variance
(hG2¼ 0.15) and the sample size is 200

Gene action Power (%) Position (cM) a d p(AA) p(Aa) p(aa)

A and D True 25.00 0.2970 0.2970 0.2719 0.6109 0.1172
Estimate 93 24.63 (5.82) 0.3087 (0.0924) 0.3217 (0.1086) 0.2694 (0.0356) 0.6185 (0.0392) 0.1122 (0.0226)

Additive True 25.00 0.4201 0.0000 0.3619 0.5 0.1381
Estimate 80 27.08 (9.92) 0.4725 (0.1107) �0.0025 (0.1268) 0.3725 (0.0376) 0.4993 (0.0453) 0.1282 (0.0280)

Dominance True 25.00 0.0000 0.4201 0.1686 0.6628 0.1686
Estimate 80 25.63 (7.47) �0.0049 (0.1145) 0.4171 (0.0935) 0.1688 (0.0323) 0.6598 (0.0340) 0.1714 (0.0357)

The standard deviations among 200 replicated simulations are given in parentheses after the mean estimate.

Table 3 Effect of the variance contributed by the viability locus (selection intensity) on the parameter estimation under the additive and
dominance (A and D) mode of gene action when the sample size is 200

hG2 Power (%) Position (cM) a d p(AA) p(Aa) p(aa)

0.25 True — 25.00 0.4082 0.4082 0.2772 0.6436 0.0792
Estimate 100 25.70 (3.31) 0.4182 (0.1013) 0.4091 (0.1000) 0.2786 (0.0335) 0.6422 (0.0333) 0.0792 (0.0194)

0.15 True — 25.00 0.2970 0.2970 0.2719 0.6109 0.1172
Estimate 93 24.63 (5.82) 0.3087 (0.0924) 0.3217 (0.1086) 0.2694 (0.0356) 0.6185 (0.0392) 0.1122 (0.0226)

0.05 True — 25.00 0.1622 0.1622 0.2630 0.5635 0.1735
Estimate 20 34.64 (22.61) 0.1631 (0.1134) 0.1804 (0.1481) 0.2591 (0.0438) 0.5696 (0.0572) 0.1713 (0.0395)

The standard deviations among 200 replicated simulations are given in parentheses after the mean estimate.

Viability selection
L Luo et al

351

Heredity



is, when hG2 is small, the estimate tends to be biased
toward the center of the chromosome with a large
standard deviation. Finally, the empirical statistical
power shows a trend of decrease as hG2 decreases. When
hG2 ¼ 0.05, the power is down to 20%.

Removal of systematic environmental errors
We now add a systematic environmental error to the
liability and try to remove this error using the liability
model. For the same marker map and QTL position, we
simulated a single QTL with hG2 ¼ 0.15 and n¼ 200 under
the additive mode of gene action. Each individual was
randomly assigned one of two locations. If an individual
was assigned to location one, its liability was increased
by an effect b, otherwise, its liability was decreased by b.
Therefore, the liability is described by the following
model

yj ¼ Xjbþ ZjaþWjdþ ej ð25Þ
where Xj¼ 1 if j is in location one and Xj¼�1 otherwise.
The effect of the systematic environmental effect was
examined at the following levels: b¼ 0.5 and 1.0. The X
variable defined this way has an expectation of 0 and
variance of S¼ 1. If the systematic error is ignored, the
residual error variance will be inflated to

bTSbþ 1 ¼ b2 þ 1 ð26Þ
which is 1.25 when b¼ 0.5 and 2.0 when b¼ 1.0. There-
fore, the QTL effect will be deflated by a factor of
1=

ffiffiffiffiffiffiffiffiffi
1:25

p
and 1=

ffiffiffi
2

p
, respectively, for the two levels of b.

We analyzed the same data set with both the correct
model where the systematic error has been fully taken
into account and the wrong model where the systematic
error has been completely ignored. The average esti-

mated parameters and their standard deviations among
100 replicated simulations are given in Table 4. When the
systematic error is large (b¼ 1.0), ignoring this error has
significantly decreased the power and the accuracy of
parameter estimation. However, ignoring a less impor-
tant systematic error (b¼ 0.5) does not seem to cause any
major problem.

For the same model, we changed the discrete X
variable into a continuous one, for example, age. Without
loss of generality, we simulated the continuous X from an
N(0,1) distribution. Again, the same levels of b were
examined. The results are listed in Table 5. Virtually no
differences were found between the continuous X
(Table 4) and discrete X (Table 5). Our conclusion was
that if there is a good reason to believe that a large
systematic error exists, one should include this error in
the model and try to remove it from the analysis. This
kind of error, however, cannot be removed using the
classical fitness model.

Multiple viability loci
Our model was developed only for a single viability
locus. However, like the original interval mapping
procedure (Lander and Botstein, 1989), the single locus
model may be used to search for multiple loci, which are
implied by multiple peaks on the test statistic profiles.
We simulated two viability loci on the same chromo-
some, one at position 25 cM and the other at position
75 cM. Each locus contributed 0.15 of the liability
variance and each with an additive mode of gene action.
The simulated sample size was n¼ 200. The simulation
was repeated 100 times. The average test statistic profile
is depicted in Figure 1, which does show two peaks
approximately at the corresponding positions where the

Table 4 Effect of systematic error on the parameter estimation when the incidence variable for the systematic error is discrete under the
additive mode of gene action with hG2¼ 0.15 and n¼ 300

Systematic error Power (%) Position b a d p(AA) p(Aa) p(aa)

b¼ 1.0 True 25.00 1.0 0.4201 0.0000 0.3619 0.5000 0.1381
Estimate (1) 93 25.82 (10.23) 1.1529 (0.5768) 0.4567 (0.1521) 0.0113 (0.1424) 0.3654 (0.0385) 0.5026 (0.0473) 0.1320 (0.0404)
Estimate (2) 56 26.70 (18.20) — 0.2768 (0.0936) �0.0030 (0.1018) 0.3259 (0.0320) 0.4988 (0.0393) 0.1753 (0.0307)

b¼ 0.5 True 25.00 0.5 0.4201 0.0000 0.3619 0.5000 0.1381
Estimate (1) 98 24.61 (6.24) 0.5102 (0.3249) 0.4293 (0.0876) 0.0124 (0.1083) 0.3605 (0.0302) 0.5042 (0.0390) 0.1352 (0.0261)
Estimate (2) 93 24.57 (6.73) — 0.3810 (0.0758) 0.0067 (0.0983) 0.3504 (0.0286) 0.5024 (0.0364) 0.1473 (0.0233)

Estimate (1): estimate from the correct model where the systematic error has been taken care of.
Estimate (2): estimate from the wrong model where the systematic error has been ignored.

Table 5 Effect of systematic error on the parameter estimation when the incidence variable for the systematic error is continuous under the
additive mode of gene action with hG2¼ 0.15 and n¼ 300

Systematic error Power (%) Position b a d p(AA) p(Aa) p(aa)

b¼ 1.0 True 25.00 1.0 0.4201 0.0000 0.3619 0.5000 0.1381
Estimate (1) 93 26.57 (8.63) 1.1146 (0.5519) 0.4346 (0.1044) 0.0123 (0.1207) 0.3614 (0.0337) 0.5041 (0.0434) 0.1345 (0.0310)
Estimate (2) 70 27.53 (10.55) — 0.3126 (0.0803) 0.0108 (0.0940) 0.3325 (0.0297) 0.5041 (0.0357) 0.1634 (0.0239)

b¼ 0.5 True 25.00 0.5 0.4201 0.0000 0.3619 0.5000 0.1381
Estimate (1) 99 25.80 (8.91) 0.5410 (0.3707) 0.4327 (0.0815) �0.0040 (0.0934) 0.3646 (0.0278) 0.4985 (0.0343) 0.1369 (0.0234)
Estimate (2) 95 25.95 (9.56) — 0.3908 (0.0760) �0.0094 (0.0859) 0.3559 (0.0258) 0.4965 (0.0320) 0.1476 (0.0226)

Estimate (1): estimate from the correct model where the systematic error has been taken care of.
Estimate (2): estimate from the wrong model where the systematic error has been ignored.
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true loci were simulated. The estimated parameters of
the two viability loci are given in Table 6. Both loci were
identified at almost 100% power. The estimated positions
for the two loci are biased toward the center of the
chromosome. The estimated genetic effects are also
biased upward. This simulation experiment demon-
strates that the single locus model may be considered
as an approximate approach to searching for multiple
loci if the loci are sufficiently separated by markers.

Discussion

We developed a method to map viability loci using the
classical fitness model by simultaneously estimating and
testing the amount of selection and the degree of
dominance, which is in contrast to previous studies
where either the selection coefficient or the degree of
dominance is tested but not both (Hedrick and Muona,
1990; Fu and Ritland, 1994a; Mitchell-Olds, 1995). We
also developed a quantitative genetics model under the
framework of liability. With a proper reparameterization,
we showed that the two models are equivalent. The
liability model, however, is more general than the fitness
model in the sense that we can partition the total amount
of selection into selection due to additive effect and
selection due to dominance effect. The real motivation of
developing the liability model is to unify the method of
viability mapping and that of QTL mapping. We have

formulated viability mapping into a problem of QTL
mapping, where the theory and methodology have been
well developed. QTL mapping is so flexible that it can
include nongenetic cofactors in the model so that their
effects do not interfere with the result of QTL mapping.
We have demonstrated this advantage in the simulation
studies where inclusion or exclusion of a large systematic
error does make a difference. For discrete systematic
variation with a few levels, the fitness model may still
be applied simply by analyzing the data separately
within each environment. As the number of different
environments (levels of the systematic variable) in-
creases, the number of parameters will increase drama-
tically, leading to low power and inconclusive results. If
the systematic environmental variable is continuous, as
demonstrated by the second example, the fitness model
cannot be used. However, this can be handled easily with
the liability model. Any type of controllable environ-
mental effects can be handled with the liability model. If
there is a good reason to believe the existence of QTL by
environment interaction, simple modification may be
conducted to take care of it, but only with the liability
model.
The liability model gains it flexibility at the cost of

computational complexity. The fitness model parameters
can be estimated using a simple EM algorithm (Demp-
ster et al, 1977). Such an EM algorithm does not exist for
the liability model. We simply adopted the simplex
method (Nelder and Mead, 1965) in SAS (SAS Institute,
1999) to search for the solution. The study emphasizes
the quantitative genetics model, rather than the compu-
tational algorithm. Researchers interested in the compu-
tational algorithm may want to develop a more efficient
algorithm, for example, Newton–Raphson ridge algo-
rithm or Fisher-scoring algorithm, for the ML solution.
Interested researchers may also want to develop a special
algorithm to obtain the estimation errors of the para-
meters.
As demonstrated by the last simulation experiment,

the interval mapping approach can be used to search for
multiple viability loci. The parameter estimates, how-
ever, are biased when two loci are not far away. This
observation is consistent with that found by Fu and
Ritland (1994a). To reduce the bias, a multiple locus
model may be required. It has proved to be difficult to
implement such a multiple locus model under the ML
framework, even in standard QTL mapping. With the
liability model, the composite interval mapping ap-
proach (Zeng, 1994) may be adopted in which markers
outside the current interval may be included in the
model to control the background effects. The exact
multiple locus model may be developed using the

Figure 1 The average test statistic profile among 100 replicated
simulation experiments for two viability loci under the liability
model. The true positions of the two viability loci are at 25 and
75 cM. Each viability locus explains 0.15 of the variance of the
underlying liability.

Table 6 Results of mapping multiple viability loci using a genome scan approach

QTL Power (%) Position (cM) a d p(AA) p(Aa) p(aa)

1 True 25.00 0.4201 0.0000 0.3619 0.5 0.1381
Estimate 100 32.26 (9.88) 0.5982 (0.1147) �0.0017 (0.1338) 0.3988 (0.0365) 0.4991 (0.0449) 0.1021 (0.0261)

2 True 75.00 0.4201 0.0000 0.3619 0.5 0.1381
Estimate 99 66.83 (10.14) 0.5896 (0.1154) �0.0038 (0.1479) 0.39723 (0.0418) 0.4988 (0.0499) 0.1039 (0.0251)

The estimate values were obtained by the averages of 100 replicated simulations under the additive model for two viability loci each
contributing 0.15 of the liability variance. The sample size of each simulated sample was 200. The standard deviations of the estimated
parameters among the 100 replicates are given in parentheses.
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Bayesian method where even the number of loci can be
treated as a parameter (Sillanpaa and Arjas, 1998).
However, a multiplicative model must be assumed if
the fitness model is to be taken, whereas, the liability
model handles multiple loci simply by assuming
additivity among the loci. Theoretically, interaction
effects among multiple viability loci can be modeled as
epistatic effects among multiple loci in the scale of
liability, which has been well developed in QTL mapping
(Yi and Xu, 2002; Yi et al, 2003).

From an evolutionary point of view, identifying
viability loci is interesting in its own right. From a
quantitative genetics point of view, identifying viability
loci may improve the efficiency of QTL mapping.
Viability loci may cause segregation distortion in
markers. Using distorted markers for QTL mapping is
risky because the basic assumption of Mendelian
segregation is violated. Most quantitative geneticists
interested in QTL mapping do not want to use distorted
markers for QTL mapping. These markers are typically
removed from the marker map. Unfortunately, one
cannot rule out the possibility that some important
QTL may reside nearby a viability locus. When the
distorted markers are removed, these linked QTL will be
removed as well along with the distorted markers.
Therefore, too many distorted markers will cause
tremendous information loss in QTL mapping. The
method of viability locus mapping takes advantage
of all markers, whether they follow Mendelian ratio
or are distorted. Therefore, the same data set generated
by experimentalists may be used by both quantitative
geneticists for QTL mapping using subset of markers
and naturalists for mapping viability loci using all
markers. This is a ‘one-stone-kills-two-birds’ approach.
It will be interesting to include the distorted markers
also in QTL mapping to see what the effect of the
distorted markers has on the result of QTL mapping.
While doing this, one may take a risk of detecting
false QTL not due to their genetic effects on the
quantitative trait but due to violation of the Mendelian
segregation law. It will be a tremendous breakthrough in
the genetic mapping area if we can develop a method to
separate the effects of viability loci from the effects of
QTL. Because of the complexity of the combined
analysis, it will be investigated separately in a future
project.
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Appendix A

Derivation of the likelihood function
This appendix provides the derivation of the likelihood
function and explains why it appears to be different from
the likelihood function commonly seen in F2 mapping.
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The survivorships of individual j conditional on the
genotype are defined as

pjðAAÞ ¼
FðXjbþ

ffiffiffi
2

p
b1 � b2Þ

FðXjbþ
ffiffiffi
2

p
b1 � b2Þ þ 2FðXjbþ b2Þ þ FðXjb�

ffiffiffi
2

p
b1 � b2Þ

pjðAaÞ ¼
2FðXjbþ b2Þ

FðXjbþ
ffiffiffi
2

p
b1 � b2Þ þ 2FðXjbþ b2Þ þ FðXjb�

ffiffiffi
2

p
b1 � b2Þ

pjðaaÞ ¼
FðXjb�

ffiffiffi
2

p
b1 � b2Þ

FðXjbþ
ffiffiffi
2

p
b1 � b2Þ þ 2FðXjbþ b2Þ þ FðXjb�

ffiffiffi
2

p
b1 � b2Þ

ðA:1Þ
However, the survivorship of the heterozygote is the sum
of the two phase specific survivorships, that is,

pjðAaÞ ¼ pjfAag þ pjfaAg ðA:2Þ
where

pjfAag ¼ pjfaAg ¼ 1
2pjðAaÞ ðA:3Þ

Similarly, the probability of heterozygote conditional on
markers should also be seen as the sum of two phase
specific probabilities, that is,

PjðAaÞ ¼ PjfAag þ PjfaAg ðA:4Þ
where

PjfAag ¼ PjfaAg ¼ 1
2PjðAaÞ ðA:5Þ

The log likelihood function is actually constructed by
taking into account all the four possible genotypes for
each individual:

L ¼
Xn
j¼1

ln½PjðAAÞpjðAAÞ

þ PjfAagpjfAag þ PjfaAgpjfaAg þ PjðaaÞpjðaaÞ�

¼
Xn
j¼1

ln PjðAAÞpjðAAÞ þ
1

4
PjðAaÞpjðAaÞ

�

þ 1

4
PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ

�

¼
Xn
j¼1

ln PjðAAÞpjðAAÞ þ
1

2
PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ

� �

ðA:6Þ
This is contradictory to the following wrong likelihood
function that appears to be logical:

L ¼
Xn
j¼1

ln½PjðAAÞpjðAAÞ

þ PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ�
ðA:7Þ

For the same reason, the posterior probabilities of the
genotypes conditional on markers and the QTL para-
meters are

P�
j ðAAÞ

¼
PjðAAÞpjðAAÞ

PjðAAÞpjðAAÞ þ 1
2PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ

;

ðA:8Þ

P�
j ðAaÞ ¼ P�

j fAag þ P�
j faAg

¼
PjfAagpjfAag þ PjfaAgpjfaAg

PjðAAÞpjðAAÞ þ PjfAagpjfAag þ PjfaAgpjfaAg þ PjðaaÞpjðaaÞ

¼
1
2PjðAaÞpjðAaÞ

PjðAAÞpjðAAÞ þ 1
2PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ

ðA:9Þ

and

P�
j ðaaÞ

¼
PjðaaÞpjðaaÞ

PjðAAÞpjðAAÞ þ 1
2PjðAaÞpjðAaÞ þ PjðaaÞpjðaaÞ

ðA:10Þ
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