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The ‘spatial’ pattern of the correlation of pairwise relatedness
among loci within a chromosome is an important aspect for
an insight into genomic evolution in natural populations. In
this article, a statistical genetic method is presented for
estimating the correlation of pairwise relatedness among
linked loci. The probabilities of identity-in-state (IIS) are
related to the probabilities of identity-by-descent (IBS) for the
two- and three-loci cases. By decomposing the joint
probabilities of two- or three-loci IBD, the probability of
pairwise relatedness at a single locus and its correlation
among linked loci can be simultaneously estimated. To
provide effective statistical methods for estimation, weighted

least square (LS) and maximum likelihood (ML) methods are
evaluated through extensive Monte Carlo simulations.
Results show that the ML method gives a better performance
than the weighted LS method with haploid genotypic data.
However, there are no significant differences between the
two methods when two- or three-loci diploid genotypic data
are employed. Compared with the optimal size for haploid
genotypic data, a smaller optimal sample size is predicted
with diploid genotypic data.
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Introduction

Pairwise relatedness at a single locus and its correlation
among linked loci along chromosomes give insights into
patterns of genomic evolution in natural populations.
Pairwise relatedness reveals the genetic similarity be-
tween individuals due to recently shared ancestors, and
is affected by several evolutionary forces (Wright, 1969).
The correlation of pairwise relatedness and its ‘spatial’
pattern along chromosomes may reflect differential
processes of co-evolution that have occurred among
different regions of chromosomes. Hitchhiking effects
and background selection (Maynard Smith and Haigh,
1974; Charlesworth et al, 1993) can enhance a positive
regional correlation of pairwise relatedness. Recombina-
tion separates linked alleles that have a common ancestor,
and hence alters the coalescence process for linked loci
(eg Hudson, 1991), resulting in a negative correlation in
pairwise relatedness for the two loci. Random drift or
founder effects can also reduce the correlation in pairwise
relatedness. In general, the joint effects of different forces
can bring about a nonuniform distribution of the
correlation of relatedness along chromosomes. Thus, a
combination of linkage maps and the correlation of
pairwise relatedness among loci can help us understand
the ‘patchy’ pattern of genomic evolution.

The significance of pairwise relatedness has long been
appreciated in understanding population genetic struc-
ture and evolution (Wright, 1922, 1969; Cotterman, 1940;
Jacquard, 1974). Estimation of the pairwise relatedness is
now simplified by the advent of abundant polymorphic

markers, such as microsatellite markers and single-
nucleotide polymorphisms (SNPs) (eg Brookes, 1999).
The populations studied can either be populations with
known pedigree or populations with unknown pedigree.
There have been numerous studies exploring the marker-
based statistical methods for the purpose of estimating
pairwise relatedness (eg Thompson, 1975; Pamilo and
Crozier, 1982; Lynch, 1988; Queller and Goodnight, 1989;
Ritland, 1996; Lynch and Ritland, 1999; Wang, 2002;
Milligan, 2003). However, these previous analyses
mainly focus on the average pairwise relatedness per
locus and have not been coupled with assessment of the
genome-wide diversity in relatedness. The heterogeneity
of pairwise relatedness along chromosomes cannot be
assessed using these methods.

Previous theories on kinship mapping, the relationship
between the joint probability of identity-by-descent (IBD)
of linked markers and the recombination fraction
(Morton et al, 1971; Morton and Simpson, 1983) did not
examine the interaction among linked loci in terms of the
correlation of relatedness. A recent theoretical study
evaluated the role of drift, gene flow, selfing, and
mutation in affecting the association of gene identity,
and shows that a small identity disequilibrium (ID)
within subpopulations is present (Vitalis and Couvet,
2001a). ID is termed as the difference between the joint
two-loci probability of identity-in-state (IIS) and the
expected product of each component’s IIS probability.
Such an ID approach is essentially distinct from the
correlation of relatedness, which assesses the difference
in terms of IBD. Unlike Vitalis and Couvet (2001b), who
apply ID to jointly estimate the local effective population
size and migration rate, I use the joint probabilities of
two- and three-loci IBD to address the correlation of
pairwise relatedness among loci.Published online 8 September 2004
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The purpose of this article is to develop a new
method for jointly estimating the pairwise relatedness
at a single locus and its correlation among loci. Unlike
previous methods where pairwise relatedness is esti-
mated at individual loci and then weighted to gain the
average (eg Ritland, 1996; Lynch and Ritland, 1999;
Wang, 2002), the present method relies on the estima-
tion of the joint probabilities of IBD at two or three
loci.

In my analyses of pairwise relatedness and its
correlation among loci, data can be randomly sampled
from either the haploids or diploids genotyped with
codominant markers, each with an arbitrary number of
alleles. The use of haploid and of diploid genotypic data
is evaluated through extensive Monte Carlo simulations.
The preexisting approaches are based on sampling
diploids (eg Ritland, 1996; Lynch and Ritland, 1999).
However, the approach of using the haploid geno-
typic data allows the method to be applicable to
specific chromosomes, such as the sex chromosomes,
and has an advantage of ignoring the effects of mating
system.

Two statistical methods are extensively evaluated
through simulation study: the weighted least squares
(LS) and the maximum likelihood (ML) methods.
Application of the simulation results to practical analysis
is discussed.

Two-loci relatedness
Throughout the study, the concept of pairwise related-
ness at a single locus refers to the probability that an
allele randomly sampled from one individual is IBD with
an allele at the same locus randomly sampled from
another individual (eg Jacquard, 1974; Ritland, 1996;
Lynch and Ritland, 1999). Rousset (2002) reviewed some
properties of this relatedness definition.

Haploid data: Consider a pair of two linked co-
dominant loci in a population, denoted by A and B,
with numbers of nA and nB alleles, respectively. Let pu

and qv be the frequencies of alleles Au (u¼ 1, 2,y, nA;P
u pu ¼ 1) and Bv (v¼ 1, 2,y, nB;

P
v qv ¼ 1),

respectively. Following the classical definition on the
probability of IBD at a single locus (Jacquard, 1974), four
parameters are defined in the two-loci case: k11

(0rk11r1) is the probability that the two alleles at
each of the two loci are IBD, k10 (0rk10r1) is the
probability that the two alleles at the A locus are IBD but
the two alleles at the B locus are not, k01 (0rk01r1) is
the probability that the two alleles at the B locus are IBD
but the two alleles at the A locus are not, and k00

(¼ 1�k11�k10�k01) is the probability that the two alleles
at each of the two loci are not IBD. Note that there are
several definitions of the probability of two-loci descent
(Whitlock et al, 1993; Vitalis and Couvet, 2001a, b; Laurie
and Weir, 2003), but the present definition of k11 is
actually the same as the definition F11 of Whitlock et al
(1993).

The basic approach for estimating the relatedness is to
use the probabilities of IIS to infer the relatedness
parameters, similar to previous studies (eg Ritland,
1996). Denote by Puv

u 0v 0 the probability that a pair of
two-loci gametes have genotypes AuBv and AúBv́

(u, u0 ¼ 1, 2,y, nA; v, v0 ¼ 1, 2,y, nB). When linkage dis-
equilibrium (LD) is absent, Puv

u 0v 0 can be decomposed as

Puv
u0v0 ¼duu0dvv0puqvk11 þ duu0 ð2 � dvv0 Þpuqvqv0k10

þ ð2 � duu0 Þdvv0pupu0qvk01

þ ð2 � duu0 Þð2 � dvv0 Þ
2ð1�duu0 Þð1�dvv0 Þ

pupu0qvqv0k00

ð1Þ

where duu0 is Kronecker delta variable, which is equal to
unity when u¼ u0 and zero otherwise. The factor
2�ð1�duu 0 Þð1�dvv 0 Þ in the coefficient of k00 on the right side
of equation (1) is introduced so that the coupling and
repulsion linkage phases can be separated, which is
distinct from the previous four-gene case at a single locus
(Lynch and Ritland, 1999). Note that the gamete and
allele frequencies in equation (1) are assumed known
beforehand with sufficient accuracy, as in previous
studies (eg Ritland, 1996, 2000; Lynch and Ritland, 1999).

When LD is present, a more general expression of Puv
u 0v 0

can be written as

Puv
u 0v 0 ¼guvduu0dvv0k11 þ guvgu0v0 duu0 ð2 � dvv0 Þ

k10

pu

�

þð2 � duu0 Þdvv0
k01

qv
þ ð2 � duu0 Þð2 � dvv0 Þ

2ð1�duu0 Þð1�dvv0 Þ
k00

�

ð2Þ
where guv and gu0v0 are the frequencies of gametes AuBv

and AúBv́ in the population, respectively.
In the case of two alleles per locus (say Ai, Aj, Bk, and

Bl), there are four categories of haplotype pairs according
to the number of shared alleles: IIS for both the two
alleles of each locus (AiBk�AiBk, AiBl�AiBl, AjBk�AjBk,
AjBl�AjBl), IIS for the two A alleles but not for the two B
alleles (AiBk�AiBl, AjBk�AjBl) and the reverse case
(AjBl�AiBl, AiBk�AiBl), and no shared alleles for both
loci (AiBk�AjBl, AjBk�AiBl). There are 16 types of
haplotype pairs, but only 10 of them are distinguishable
with codominant markers (Table 1). For an arbitrary
number of alleles at each locus, the number of distin-
guishable haplotype pairs, denoted by nAB, is shown to
be equal to nAnB(nAnBþ 1)/2.

Diploid data: When diploid genotypic data are used,
the preceding method can be applied as long as the
gamete frequencies are available. However, estimation of
gamete frequencies requires the assumption of random

Table 1 Probabilities for the two-loci haplotype pairs (two alleles
per locus: Ai, Aj; Bk, Bl)

Haplotype pairs Coefficient

k11 k10 k01 k00

AiBk–AiBk gik gik
2/pi gik

2/qk gik
2

AiBk–AiBl 0 2gikgil/pi 0 2gikgil

AiBl–AiBl gil gil
2/pi gil

2/ql gil
2

AjBk–AiBk 0 0 2gjkgik/qk 2gjkgik

AjBk–AiBl 0 0 0 2gjkgil

AjBk–AjBk gjk gjk
2/pj gjk

2/qk gjk
2

AjBl–AiBk 0 0 0 2gjlgik

AjBl–AiBl 0 0 2gjlgil/ql 2gjlgil

AjBl–AjBk 0 2gjlgjk/pj 0 2gjlgjk

AjBl–AjBl gjl gjl
2/pj gjl

2/ql gjl
2
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association of gametes (Hill, 1974; Weir, 1996; Kalinowski
and Hedrick, 2001); otherwise, the relative proportion of
heterozygotes with repulsion versus coupling linkage
phases is indistinguishable. When there are nonrandom
associations between gametes in forming zygotes (Yang,
2002), expectation–maximization (EM) (Dempster et al,
1977) and other methods are not applicable. The
following method is only valid under the assumption
of random association of gametes.

Denote by HAB the probability that both A and B loci
are heterozygous, HA the probability that the A locus is
heterozygous but the B locus is not, HB the probability
that the B locus is heterozygous but the A locus is not,
and H01 (H01¼1�HA�HB�HAB) the probability that both
loci are homozygous. I obtain

H01¼
X

u

X
v

guvk11 þ g2
uv

�
ðk00 þ k10=pu þ k01=qvÞ

�
ð3aÞ

HA ¼ 2
X

u

X
u0 6¼u

X
v

guvgu0vðk00 þ k01=qvÞ ð3bÞ

HB ¼ 2
X

v

X
v0 6¼v

X
u

guvguv0 ðk00 þ k10=puÞ ð3cÞ

HAB ¼ 2
X

u

X
u0 6¼u

X
v

X
v0 6¼v

guvgu0v0k00 ð3dÞ

Note that equation (3d) differs from the previous
study where only one parameter is considered
(Morton and Simpson, 1983). When only one locus
is considered, equations (3a)–(3d) reduce to the
classical results (Falconer and Mackay, 1996, p 66).
In practice, the heterozygote frequencies (H01–HAB

variables) can be estimated directly from the geno-
typic data. Thus, according to equations (3a)–(3d), the
three unknown parameters (k11, k10, and k01) can be
estimated.

Correlation of pairwise relatedness: Denote by rA and
rB the probabilities of pairwise relatedness at the A
and B loci, respectively, and cr the covariance of the
probabilities of pairwise relatedness between A and B.
If the three unknown parameters ðk̂k11; k̂k10; and k̂k01Þ
are estimated, the probability of pairwise relatedness
at a single locus (rA and rB) and its covariance among
loci (cr) can be calculated from the following
equations:

k̂k11 ¼ rArB þ cr ð4aÞ

k̂k10 ¼ rAð1 � rBÞ � cr ð4bÞ

k̂k01 ¼ ð1 � rAÞrB � cr ð4cÞ

Solution to equations (4a)–(4c) is r̂rA ¼ k̂k11 þ k̂k10,
r̂rB ¼ k̂k11 þ k̂k01, and ĉcr ¼ k̂k11k̂k00 � k̂k10k̂k01.

From equation (4a), cr can also be viewed as the
kinship disequilibrium since it is expressed as the
difference between the joint probability of two-loci IBD
and the product of single-locus probability of IBD,
analogous to the definition of ID (Vitalis and Couvet,
2001a). cr may be negative when k11k00ok10k01, or
positive when k11k004k10k01. Theoretically, cr is asso-

ciated with the recombination fraction, or inversely
proportional to the physical distance between the two
linked loci. A smaller distance between two loci
implies a stronger correlation of their relatedness. In
order to make the correlation be comparable among
different pairs of loci, the correlation coefficient of
pairwise relatedness is defined as ĉcr r̂rAr̂rBð1 � r̂rAÞð
ð1 � r̂rBÞÞ�1=2 so that its value ranges from �1 to 1.
This formula can also be proven using the general
definition of statistical correlation (see also Hartl and
Clark, 1989, pp 53–54).

Three-loci relatedness
Compared with the two-loci analysis, the advantage of a
three-loci analysis is that it considers the event of double
crossovers during meiosis and hence can give more
precise estimates.

Haploid data: The preceding two-loci method can be
extended to the three-loci case. Suppose that an
additional marker C with nC (Z2) alleles is linked
to the A and B markers. The ordering of the three
loci is unknown. Denote by k111 (0rk111r1) the joint
probability that the two alleles at each of the three
loci are IBD, k110 (0rk110r1) the joint probability that
the two alleles at both A and B loci are IBD but the
two alleles at the C locus are not IBD. The definitions
of other parameters k101–k000 can be given in a
similar way. The joint probability for a pair of three-
loci gametes (AuBvCw–Au0Bv0Cw0; w, ẃ¼ 1,y, nC),
denoted by Puvw

u0v0w0, can be written in a general
formula,

Puvw
u0v0w0 ¼ guvwduu0dvv0dww0k111

þ guvwgu0v0w0 duu0dvv0 ð2 � dww0 Þ k110

puqv

�

þ duu0 ð2 � dvv0 Þdww0
k101

puow

þ ð2 � duu0 Þdvv0dww0
k011

qvow

þ duu0 ð2 � dvv0 Þð2 � dww0 Þ
2ð1�dvv0 Þð1�dww0 Þ

k100

pu

þ ð2 � duu0 Þdvv0 ð2 � dww0 Þ
2ð1�duu0 Þð1�dww0 Þ

k010

qv

þ ð2 � duu0 Þð2 � dvv0 Þdww0

2ð1�duu0 Þð1�dvv0 Þ
k001

ow

þ ð2 � duu0 Þð2 � dvv0 Þð2 � dww0 Þ
22�ðduu0 þdvv0 þdww0 Þþduu0dvv0dww0

k000

�

ð5Þ

where ow is the frequency of allele Cw in the
population, and guvw and gu0v0w0 are the frequencies
of gametes AuBvCw and Au0Bv0Cw0, respectively. For an
arbitrary number of alleles at each locus, the number
of distinguishable three-loci gamete pairs, denoted by
nABC, is shown to be equal to nAnBnC(nAnBnCþ 1)/2.

Diploid data: As in the two-loci case, denote by HAC the
probability that both A and C loci are heterozygous, HBC

the probability that both B and C loci are heterozygous,
HABC the probability that the three loci are heterozy-
gous, and HO2 the probability that three loci are
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homozygous. With the assumption of random asso-
ciation of gametes, I obtain

HO2 ¼
X

u

X
v

X
w

guvwk111 þ g2
uvw

�
ðk000 þ k110=puqv

þ k101=puow þ k011=qvow

þ k100=pu þ k010=qv þ k001=owÞÞ
ð6aÞ

HA ¼ 2
X

u

X
u0 6¼u

X
v

X
w

guvwgu0vwðk000 þ k011=qvow

þ k010=qv þ k001=owÞ
ð6bÞ

HB ¼ 2
X

v

X
v0 6¼v

X
u

X
w

guvwguv0wðk000 þ k101=puow

þ k100=pu þ k001=owÞ
ð6cÞ

HC ¼ 2
X

w

X
w0 6¼w

X
u

X
v

guvwguvw0 ðk000 þ k110=puqv

þ k100=pu þ k010=qvÞ
ð6dÞ

HAB ¼ 2
X

u

X
u0 6¼u

X
v

X
v0 6¼v

X
w

guvwgu0v0wðk000

þ k001=owÞ ð6eÞ

HAC ¼ 2
X

u

X
u0 6¼u

X
w

X
w0 6¼w

X
v

guvwgu0vw0 ðk000

þ k010=qvÞ ð6fÞ

HBC ¼ 2
X

v

X
v0 6¼v

X
w

X
w0 6¼w

X
u

guvwguv0w0 ðk000

þ k100=puÞ ð6gÞ

HABC ¼ 2
X

u

X
u0 6¼u

X
v

X
v0 6¼v

X
w

X
w0 6¼w

guvwgu0v0w0k000 ð6hÞ

The seven unknown parameters (k111–k001) can be solved
using equations (6a)–(6h), provided that the frequencies
of alleles and three-loci gametes are available with
sufficient accuracy.

Correlation of pairwise relatedness: Denote by cr1, cr2,
and cr3 the covariances of pairwise relatedness between
the A and B loci, the B and C loci, and the A and C loci,
respectively. Let eyAyByC

(yA, yB, yC¼ 0, 1) be the residual
part of kyAyByC

ð
P

yA

P
yB

P
yC
kyAyByC

¼ 1Þ after the
deduction of individual components of the covariances
of two-loci relatedness. The residual part comes from the
effects of double crossover among the three loci. Thus,
kyAyByC

can be written in a general form,

kyAyByC
¼ryA

A ryB
B ryC

C ð1 � rAÞ1�yAð1 � rBÞ1�yBð1 � rCÞ1�yC

þ ð�1ÞyAþyB cr1 þ ð�1ÞyBþyC cr2 þ ð�1ÞyAþyC cr3

þ eyAyByC

ð7Þ

There are eight configurations of the sequence of yAyByC,
that is, (111), (110), (101), (011), (100), (010), (001),
and (000). The probabilities of relatedness at individual
loci can be estimated by r̂rA ¼

P
yB

P
yC
k̂k1yByC

,
r̂rB ¼

P
yA

P
yC
k̂kyA1yC , and r̂rC ¼

P
yA

P
yB
k̂kyAyB1. According

to equation (7), the coefficients for the three covari-
ances ðð�1ÞyAþyB ; ð�1ÞyBþyC ; and ð�1ÞyAþyCÞ are the same
between the partitions of k111 and k000, k110 and k001, k101

and k010, and k011 and k100. Thus, I can only use the
partitions of four three-loci relatedness values (k111, k110,
k1 01, and k011) to estimate cr1, cr2, and cr3. The analytic
solution from the least-square method is given by

ĉcr1 ¼ 1
4 k̂k111 þ k̂k110 � k̂k101 � k̂k011 � r̂rAr̂rBð
þr̂rCðr̂rA þ r̂rB � r̂rAr̂rBÞÞ

ð8aÞ

ĉcr2 ¼ 1
4 k̂k111 � k̂k110 � k̂k101 þ k̂k011 � r̂rBr̂rCð
þr̂rAðr̂rB þ r̂rC � r̂rBr̂rCÞÞ

ð8bÞ

ĉcr3 ¼ 1
4 k̂k111 � k̂k110 þ k̂k101 � k̂k011 � r̂rAr̂rCð
þr̂rBðr̂rA þ r̂rC � r̂rAr̂rCÞÞ

ð8cÞ

Denote by R1, R2, and R3 the correlation coefficients of
relatedness between the A and B loci, the B and C loci,
and the A and C loci, respectively. Estimates of these
three correlation coefficients are respectively given by

R̂R1 ¼ ĉcr1 r̂rAr̂rBð1 � r̂rAÞð1 � r̂rBÞð Þ�1=2 ð9aÞ

R̂R2 ¼ ĉcr2 r̂rBr̂rCð1 � r̂rBÞð1 � r̂rCÞð Þ�1=2 ð9bÞ

R̂R3 ¼ ĉcr3 r̂rAr̂rCð1 � r̂rAÞð1 � r̂rCÞð Þ�1=2 ð9cÞ

Monte Carlo simulation
Like previous studies of the pairwise relatedness at a
single locus (eg Ritland, 1996; Lynch and Ritland, 1999;
Wang, 2002), the aims of the simulations are to examine
the effects of (i) sample size, (ii) allele frequency
distribution, (iii) the type of data sets (haploid or
diploid), and (iv) LD.

Statistical methods: The weighted LS and ML methods
are used to estimate the correlation coefficient of
pairwise relatedness. With the two-loci haploid
genotypic data, estimates of pairwise relatedness with
the weighted LS method can be written as

�̂yy�yy
ĵj

� �
¼ 10

X0

� �
Wð1XÞ

� ��1
10

X0

� �
WY ð10Þ

where ĵj is the vector of ðk̂k11; k̂k10; k̂k01Þ0, 1 is the vector of
ð1; 1; :::; 1Þ0nAB�1, X is the known coefficient matrix with
nAB� 3 elements calculated from equation (2), Y is the
known vector ðyuv

u0v0 ÞnAB�1 in which

yuv
u0v0 ¼ Puv

u0v0 �
ð2 � duu0 Þð2 � dvv0 Þ

2ð1�duu0 Þð1�dvv0 Þ
guvgu0v0

W is the known diagonal matrix with the diagonal
element being wuv

u0v0 ¼ 1=Puv
u0v0 ð1 � Puv

u0v0 Þ, and �̂yy�yy is the
estimate of the mean of yuv

u0v0 .
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For the ML method, the likelihood function is set as
L /

Q
uv;u0v0 ðPuv

u0v0 Þ
Muv

u0v0 , where Muv
u0v0 is the observed num-

ber of gamete pairs (AuBv�Au’Bv’) in the random sample
with N haploids ð

P
Muv

u0v0 ¼ NðN � 1ÞÞ. ML estimates are
obtained through Newton–Raphson iteration. The esti-
mate of ĵj at the (tþ 1) step is iteratively calculated by

ĵjtþ1 ¼ ĵjt þ F�1ðĵjtÞsðĵjtÞ ð11Þ
where s(j) is the score vector, equal to q ln L=ð
qk11;q ln L=qk01; q ln L=qk01Þ0, and FðjÞ ¼ �EðsðjÞsðjÞ0Þ is
the Fisher information matrix. The above iterative
calculation is continued until jĵjtþ1 � ĵjtj is sufficiently
small (convergence).

When the estimates of pairwise relatedness are
obtained, the correlation coefficients of pairwise related-
ness are calculated according to ĉcrðr̂rAr̂rBð1 � r̂rAÞ
ð1 � r̂rBÞÞ�1=2 for the two-loci case and equations
(9a)–(9c) for the three-loci case. The correlation
coefficients of pairwise relatedness in the other cases
(two-loci diploid, three-loci haploid and diploid) can be
estimated in a way similar to the above two approaches.

Data generation: The simulated samples with the
haploid or diploid data are generated in the following
steps. Given a set of parameters, including LD, the
number of alleles, allele frequencies and the distribution
type, and pairwise relatedness (k11–k00 in the two-loci case
and k111–k000 in the three-loci case) calculate the
probabilities for each two-gamete pair according to
equation (2) for the haploid case, and the probabilities of
each type of heterozygote according to equations (3a)–(3d)
and (6a)–(6h) for the diploid case. Then, use this
probability distribution (multinomial distribution) to
create random samples. It can be shown that a sample
of N/2 diploids (or N haploids) can generate a total of
N(N�1) gamete pairs for either the two- or the three-loci
case. Simulation programs in C are available upon request.

In all, 5000 independent data sets are created, and each
is used for estimating the correlation coefficients of
pairwise relatedness according to the theories described
in the preceding two sections. Means and standard
deviations of estimates are calculated from these repli-
cated data sets.

Results

With the two-loci haploid data and the weighted LS
method, average estimates of the correlation coefficients
of pairwise relatedness gradually become consistent with
their actual values as the sample size increases
(Figure 1a). The standard deviations decrease with the
number of haploids (Figure 1b). However, there are large
differences in the sample sizes required for obtaining
appropriate estimates: 50 haploids for the two-allele case,
120 haploids for the four-allele case, and more than 180
haploids for the eight-allele case (Figure 1a).

A difference between the weighted LS and ML
methods is that the ML method can give better estimates
when the sample size is small. For example, when the
number of haploids is greater than 40 for the four- or
eight-allele case, an appropriate estimate of the correla-
tion coefficient of pairwise relatedness can be obtained
(Figure 2a, b).

The effects of the distribution of allele frequency
(uniform versus triangular distribution; see Lynch and

Ritland, 1999) on the LS or ML methods are very small.
Although the triangular distribution produces a slightly
greater standard deviation than does the uniform
distribution (Figure 3), there are no differences in
obtaining the unbiased average of the correlation
coefficients of pairwise relatedness.

Unbiased estimates of the correlation coefficient of
pairwise relatedness can be obtained when LD is present
and the sample size is appropriate. For example, there
are no significant differences when LD is changed from
0 to 0.2 in the two-allele case (Figure 4a, b). Also, no
significant differences are observed between the
weighted LS and ML methods.

With the two-loci diploid data, an unbiased estimate of
the correlation coefficient of pairwise relatedness can be
obtained with each of the two methods when an
appropriate sample size is provided. Compared with
the haploid case, the optimal sample size is smaller. For
example, a good estimate can be obtained with sampling
40 diploids in the four-allele case (Figure 5). Both the
weighted LS and ML methods have the same perfor-
mance (Figure 5).

With the three-loci diploid data, the unbiased average
estimates of the three correlation coefficients of pairwise
relatedness can be simultaneously obtained when the
sample size is appropriate. For example, when the
sample size is more than 80 individuals, the three
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Figure 1 Effects of sample size: (a) average correlation coefficients
of pairwise relatedness; (b) standard deviations. The results are
obtained from 5000 independent runs under the uniform distribu-
tion of allele frequencies, with the two-loci haploid data, the
weighted LS method, and linkage equilibrium. Two-loci relatedness
values are set as k11¼ 0.3, k10¼ 0.2, and k01¼ 0.2.
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unknown parameters (R1, R2, and R3) can be estimated
with a good accuracy and precision in the case of four
alleles per locus (Figure 6a–f). Both the weighted LS and
the ML methods have a very similar performance.

Discussion

In this paper, I have shown that the correlation of
pairwise relatedness among loci along chromosomes can

be estimated from the approach of partitioning the joint
probabilities of IIS into the probabilities of IBD at two or
three loci. Such an approach of using two- or three-loci
probabilities of IBD enables the estimation of individual
pairwise relatedness and its correlation among loci
simultaneously, and allows us to study the picture of
‘landscape’ relatedness along chromosomes and to infer
the naturally occurring pattern of co-evolution. Unlike
traditional kinship mapping, which pictures the ‘static’
relationships between the physical position of markers
and IBD (eg Morton and Simpson, 1983), the map of the
correlation of relatedness implies ‘dynamic’ relationships
among linked loci.
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case. The results are obtained from 5000 independent runs under
the uniform distribution of allele frequencies, with the two-loci
haploid data, the ML method, and linkage equilibrium. Two-loci
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When the linkage maps of all the markers assayed are
available beforehand, the relatedness at each locus and
the correlation of relatedness among linked loci can be
readily mapped. Since the present method involves only
one-generation data randomly sampled from the popu-
lation with unknown pedigree, the recombination frac-
tion between linked loci cannot be estimated. The
physical linkage map of relatedness cannot be directly
constructed. However, the following properties are likely
applicable to constructing the map of pairwise related-
ness and its correlation among loci. First, a significant
difference of k11 from zero indicates that the two loci are
likely to be linked. Second, the joint probability of two-
loci IBD (k11) is negatively correlated with the mapping
distance between the two loci, while the joint probabil-
ities of one-locus IBD and one-locus non-IBD (k10 and
k01) are positively correlated with mapping distance.
Thus, a larger k11 and a smaller k10 or k01 indicate a
shorter distance between the two loci. Third, a larger

positive correlation of relatedness indicates a shorter
physical distance, while a larger negative correlation of
relatedness indicates a larger physical distance. These
properties can be combined for ordering markers.
Among all possible linkage maps for a given set of
markers, the optimal one should have the largest sum of
all k11’s among adjacent markers.

The analytical formulae presented here are only
suitable for the case of two- and three-loci relatedness,
where each locus has an arbitrary number of alleles.
When many loci on a chromosome (more than three loci)
are analyzed, these loci can be analyzed in terms of
two- or three-loci as a unit, similar to the procedure of
classical linkage mapping analysis. The individual two-
or three-loci results are then jointly analyzed to map the
correlation of pairwise relatedness.

Statistically, the critical problem for the weighted LS
method with haploid data is that the number of
distinguishable pairs is substantially increased with the
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number of alleles. Only when the number of sampled
haplotype pairs is much greater than the number of
distinguishable haplotype pairs can an appropriate
estimate be obtained. Thus, the optimal sample size
varies with the number of alleles. The present simula-
tions suggest sample sizes of 100–200 haploids for
moderate numbers of alleles, the lower bound for the
two-allele case, the upper bound for the eight-allele case.
However, such situations are not often met in the single
locus case (Ritland, 1996; Lynch and Ritland, 1999; Wang,
2002), where the sample size is much larger than the
expected number of distinguishable two-gene pairs.

Compared with the haploid case, the weighted LS
method with the diploid data has a better performance,
and the optimal sample size is also smaller (eg 40
diploids for two loci, each with four to eight alleles). The
reason for the better performance of the weighted LS
method with the diploid than with the haploid data is a
small number of ‘units of observations’ – the hetero-
zygous types, that is, four in the two-loci case and eight
in the three-loci case. These ‘condensed’ variables
contain all possible sampled haplotype pairs, and
display a ‘robust’ property even when the sample size
is small. Clearly, the ML method for the haploid data is
suggested when highly polymorphic markers (eg, Z4
alleles per locus) and a small sample size are used.
However, either the weighted LS or ML method can be
applied with diploid data.

The advantage of the ML over the weighted LS
method with the haploid data is that all information is
utilized, including different sampling variances for
individual pairs and the correlation between different
pairs. This can be seen from the Fisher information
matrix (F(j)). One of the assumptions underlying the
weighted LS method is the independence among
different observations of distinguishable gamete-pairs,
which is actually violated.

Another striking result is the same performance for the
ML method with either the haploid or diploid data. The
condensed H variable does not affect the accuracy and
precision of estimation, compared with the analysis with
the haploid data. The reason for such robust behavior is
that the score function (s(j)) and the Fisher information
matrix (F(j)) are essentially the same with either
approach under the assumption of random association
of gametes, and this can be shown algebraically.
However, the advantage of using diploid over haploid
data is significant in practice.

There are two distinctions between the present two-
loci haplotype approach and the previous ‘four-gene’
pairs at a single locus in pairwise relatedness analysis.
There are three parameters in the former (k11, k10, and
k01), but only two parameters in the latter (eg Ritland,
1996; Lynch and Ritland, 1999). There are 10 informative
pairs in the former for a four-gene case (two alleles per
locus), but six in the latter (four alleles per locus). Such
distinctions imply that a larger sample size is required in
the two-loci analysis, compared with the case of a single
locus.

Finally, one must acknowledge the assumptions
underlying the present method of estimating the
correlation of pairwise relatedness. First, the method is
based on the assumption of the availability of accurate
and precise estimates of gamete and allele frequencies
(eg Ritland, 1996; Lynch and Ritland, 1999; Ritland,

2000). In practice, gamete and allele frequencies will
probably be estimated from the same data sets used for
relatedness analysis. Clearly, biased estimates of these
frequencies can bring about biased estimates of the
correlation coefficients of pairwise relatedness. Second,
the present diploid approach is based on the assumption
of random association of gametes. Extension to partially
selfing populations is clearly needed in future study, as
selfing populations show greater linkage disequilibria
(Wright, 1969) and likely enhance the correlation of
pairwise relatedness along chromosomes.
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