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In genetic mapping experiments, some molecular markers
often show distorted segregation ratios. We hypothesize that
these markers are linked to some viability loci that cause the
observed segregation ratios to deviate from Mendelian
expectations. Although statistical methods for mapping
viability loci have been developed for line-crossing experi-
ments, methods for viability mapping in outbred populations
have not been developed yet. In this study, we develop a
method for mapping viability loci in outbred populations using
a full-sib family as an example. We develop a maximum

likelihood (ML) method that uses the observed marker
genotypes as data and the proportions of the genotypes of
the viability locus as parameters. The ML solutions are
obtained via the expectation–maximization algorithm. Appli-
cation and efficiencies of the method are demonstrated and
tested using a set of simulated data. We conclude that
mapping viability loci can be accomplished using similar
statistical techniques used in quantitative trait locus mapping
for quantitative traits.
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Introduction

The genetic consequence of selection is the change in
frequencies of the genes affecting fitness. The process of
evolution is reflected by the dynamic change of gene
frequencies by selection and other evolutionary agents.
Fitness is a complicated trait, which can be decomposed
into many fitness components (Falconer and Mackay,
1996; Hartl and Clark, 1997). Therefore, the genetic
variance of fitness is considered to be controlled by the
segregation of multiple genes. Fitness behaves like a
quantitative trait. It responds to natural selection with a
response equal to the genetic variance of fitness (Fisher,
1958). To study the genetic architecture of fitness, it is
important to explore the change of gene frequency of
alleles at individual loci. However, only in very limited
situations, for example, where allozyme markers are
available, can we evaluate natural selection on individual
loci. In most situations, we do not know what the genes
are and where in the genome the genes are located.
With the rapid development of molecular technology,
large amounts of molecular data are now available,
which provide a great opportunity to estimate the effects
and locate the chromosomal positions of loci responsible
for complicated traits, for example, quantitative traits.
The technology is now called quantitative trait locus
(QTL) mapping. Since fitness is just another complicated
trait with a polygenic background, a similar technology
can be applied to map loci determining variation in
fitness.

Although it does not seem easy to map fitness loci,
statistical methods of mapping QTL can be adopted

(Lander and Botstein, 1989). Fu and Ritland (1994a,b)
first utilized a QTL mapping approach to map viability
(a fitness component) loci under the maximum like-
lihood (ML) framework. Mitchell-Olds (1995) also
proposed a similar ML method for viability mapping in
F2 families. Recently, Vogl and Xu (2000) investigated a
Bayesian method to map viability loci in a backcross
family. All the aforementioned existing methods deal
with line-crossing experiments that require inbred lines.
Inbred lines, however, may not be available for many
species, such as humans, large animals and trees
(Hedrick and Muona, 1990). Mapping viability loci may
be more relevant to natural populations than to line
crosses. This is equivalent to the situation where
mapping QTLs is more relevant to breeding populations
than to designed line crosses. However, it is easier to
map QTLs in line-crossing experiments because we can
control the genetic background and environments. After
QTL are mapped in line crosses, the results may be
extended to natural populations or used to find homo-
logous loci in closely related species. Similarly, viability
loci may be mapped in line crosses and the inference
later extended to natural populations. In this study, we
attempt to map viability loci directly in outbred popula-
tions. Full-sib families are the simplest outbred popula-
tions. Although not necessarily natural populations, they
are one step closer to natural populations than are line
crosses.
The fitness of a genotype at a locus is the average

fitness of all individuals bearing this genotype. If we
assign the fitness for the ‘best’ genotype a value of one,
the selection coefficient for an arbitrary genotype is
defined as the reduction in fitness from this maximum
value. Therefore, we only describe the measurement of
fitness (rather than the selection coefficient) in subse-
quent discussion. Viability is only one of many compo-
nents of fitness. Fecundity is another important
component. In this study, however, we focus only onReceived 7 June 2002; accepted 17 January 2003
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loci responsible for viability selection, assuming that all
surviving individuals have an equal fecundity.

We develop a model of viability mapping that uses a
full-sib family derived from the mating of two unrelated
outbred parents. A full-sib family contains four different
alleles at a single locus, rather than two as is usually
assumed in inbred line crosses. Mapping in a full-sib
family requires the general rule of allelic transmission
from parents to children and thus the algorithm can
be extended to pedigree analysis. The method can be
directly applied to fitness analysis for open-pollinated
plants.

Theory and methods

Genetic model of fitness
Consider a single viability locus and a full-sib family.
Denote the genotypes of the sire (paternal parent) and
dam (maternal parent) by As

1A
s
2 and Ad

1A
d
2 , respectively.

Mating between the two parents will generate progenies
each with one of the four possible genotypes:
fAs

1A
d
1 ;A

s
1A

d
2 ;A

s
2A

d
1 ;A

s
2A

d
2g. Under the assumption of

Mendelian segregation, the four genotypes will have an
equal frequency, that is, 1

4. If this locus is subject to
viability selection, we will observe two or more
genotypes, which have frequencies different from Men-
delian expectations.

To model viability selection, we define the underlying
frequencies of the four genotypes in the progeny
by a vector w ¼ ½w11 w12 w21 w22 � for 0 � wkl � 1,P

kl wkl ¼ 1 and k; l ¼ 1; 2. These frequencies are now
defined as the relative fitness of the four genotypes. This
is a little different from the usual definition of relative
fitness in which the maximum fitness is set to one
and the rest expressed as reduced values relative to
one. Deviation of w from the Mendelian vector
w0 ¼ 1

4
1
4

1
4

1
4

� �
reflects the intensity of viability

selection.
The fitness of a genotype can be decomposed into the

product of the fitness of the two alleles that make up the
genotype and a deviation reflecting the interaction
between the two alleles, called the dominance effect,
that is,

wkl ¼ ws
kw

d
l þ dkl ð1Þ

where ws
k and wd

l denote the relative fitness of the kth
allele of the sire and the lth allele of the dam,
respectively, and dkl is the dominance effect. This
partitioning of the fitness is important because we can
separate gametic selection from zygotic selection using
statistical technology. Note that there are four possible
genotypes in the progeny, but after the decomposition
we have eight parameters. Therefore, we must impose
some restriction to the parameters to make the model
estimable. We take the restrictions similar to those used
in the four-way cross model (Xu, 1998) and define three
new independent parameters:

ws ¼ w11 þ w12 
 w21 
 w22

wd ¼ w11 
 w12 þ w21 
 w22

d ¼ w11w22 
 w12w21

ð2Þ

It is interesting to know that the fitness values of
the four genotypes can be expressed as functions

of the three independent parameters, as shown
below:

w11 ¼ 1
4ð1þ wsÞð1þ wdÞ þ d

w12 ¼ 1
4ð1þ wsÞð1
 wdÞ 
 d

w21 ¼ 1
4ð1
 wsÞð1þ wdÞ 
 d

w22 ¼ 1
4ð1
 wsÞð1
 wdÞ þ d

ð3Þ

This model is important in hypothesis tests and
computer simulations that will be discussed in later
sections.

ML estimation
We first assume that the four alleles of the viability locus
in the parents are distinguishable and the genotypes are
observable. Suppose that we sample n individuals from
the full-sib family in question. Let us define

yj ¼ ½ yjð11Þ yjð12Þ yjð21Þ yjð22Þ � for j ¼ 1; . . . ; n

where yjðklÞ ¼ 1 and yjðk0l0Þ ¼ 0 for k0 6¼ k and l0 6¼ l if
individual j takes genotype As

kA
d
l . We now have the

data, y, and the parameter, w, which allow the construc-
tion of the log likelihood:

LcðwÞ ¼
Xn
j¼1

X2
k¼1

X2
l¼1

yjðklÞ lnðwklÞ
" #

ð4Þ

The ML estimate of w is simply

ŵwkl ¼
1

n

Xn
j¼1

yjðklÞ ð5Þ

for k; l ¼ 1; 2.
In fact, the genotype of a viability locus cannot be

observed and we must use markers to infer the genotype.
Unless the viability locus is located exactly at a fully
informative marker, inference will be subject to error. The
amount of error depends on the distances of the viability
locus from marker loci, the level of marker polymorph-
ism and the genotypes of the markers. As a result
of the error, we are not certain about the actual genotype
of the viability locus for each individual, even though
we can observe the marker genotypes. The viability locus
can take any one of the four genotypes, but
with a different probability for each genotype given
the marker information. Define the four condi-
tional probabilities of the given viability locus markers
by pj ¼ ½ pjð11Þ pjð12Þ pjð21Þ pjð22Þ � for 0 � pjðklÞ � 1 andP2

k¼1

P2
l¼1pjðklÞ ¼ 1. This is a typical problem of missing

values in statistics where we can use the expectation-
maximization (EM) algorithm to solve for the MLE. The
actual incomplete-data log likelihood is

LðwÞ ¼
Xn
j¼1

ln
X2
k¼1

X2
l¼1

pjðklÞwkl

 !
ð6Þ

where the missing data y have been ‘integrated out’.
There are several ways to solve the MLE, but we take the
EM algorithm (Dempster et al, 1977).

First, we choose an initial value wð0Þ and calculate the
expectation of yjðklÞ conditional on w ¼ wð0Þ,

E½ yjðklÞ� ¼ ŷyjðklÞ ¼
pjðklÞw

ð0Þ
klP2

k0¼1

P2
l0¼1 pjðk0l0Þw

ð0Þ
k0l0

ð7Þ
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which is also called the posterior probability of yjðklÞ. We
have now completed the expectation step (E-step). The
maximization step (M-step) is simply to replace yjðklÞ in
equation (7) by the conditional expectation,

w
ð1Þ
kl ¼ 1

n

Xn
j¼1

ŷyjðklÞ ð8Þ

This concludes the first iteration of the EM algorithm.
The iteration continues until convergence at the tth
iteration and the MLE takes ŵ ¼ wðtÞ. According to the
invariance property of MLE, we have

ŵws ¼ ŵw11 þ ŵw12 
 ŵw21 
 ŵw22

ŵwd ¼ ŵw11 
 ŵw12 þ ŵw21 
 ŵw22

d̂d ¼ ŵw11ŵw22 
 ŵw12ŵw21

ð9Þ

The EM algorithm provides a convenient way to solve
the MLE, but it does not automatically give the
asymptotic variance–covariance matrix of ŵ, which must
be obtained separately through some additional compu-
tation (Louis, 1982). This is the drawback of the EM
algorithm compared to Fisher’s scoring method, which
automatically provides an asymptotic variance–covar-
iance matrix for the MLE. However, Fisher’s scoring
method requires calculation of the information matrix,
which is not easy in the missing value problem. In
practice, we can use the bootstrap method (Efron, 1979)
to assess the variance–covariance matrix. The bootstrap
method is computationally demanding, but the method
is executed only once after convergence has been reached
and only on the positions that show significant evidence
of viability selection.

Hypothesis test
Recall that the conditional probability of the viability
locus genotype is calculated from marker information
with the assumption that the location of the viability
locus relative to the markers is known. Therefore, the
hypothesis test on the effects of the viability locus is
actually a conditional test given the position of the
viability locus. If the test is not significant, we will
conclude that the current position of the chromosome
being tested does not segregate for a viability locus. To
test the overall hypothesis of no viability selection, we
need to scan the entire genome (multiple tests). The null
hypothesis (no viability selection) will be rejected if none
of the locus-specific tests is significant. We will discuss
the overall test later and now focus on the test of an
individual locus.

The first null hypothesis is H0:w ¼ w0, which tests no
segregation distortion for the locus of interest. The test
statistic is l ¼ 
2½Lðw0Þ 
 LðŵÞ�, where Lðw0Þ ¼ n lnð14Þ ¼

1:3863n. Under the null hypothesis, l will approxi-
mately follow a w2 distribution with three degrees of
freedom.

If this null hypothesis is rejected, we can further test
the significance of each component. The null hypothesis
that the two alleles carried by the sire have identical
fitness is formulated by Hs: w

s ¼ 0;wd 6¼ 0; d 6¼ 0. The
test statistic for Hs is ls ¼ 
2½LðŵsÞ 
 LðŵÞ� where LðŵsÞ
is the log likelihood value obtained by maximizing
LðwÞ under the restriction of ws ¼ ðw11 þ w12Þ

ðw21 þ w22Þ ¼ 0, which is achieved by using the
Lagrange multiplier. A more intuitive and easier way

to enforce the restriction is to make the substitutions,
w12 ¼ 1

2 
 w11 and w22 ¼ 1
2 
 w21, which reduces

the number of parameters to two, w11 and w21. The EM
solutions of these two parameters are

ŵw11 ¼
1

2

Pn
j¼1ŷyjð11ÞPn

j¼1ŷyjð11Þ þ
Pn

j¼1ŷyjð12Þ
¼ 1

n

Xn
j¼1

ŷyjð11Þ

and

ŵw21 ¼
1

2

Pn
j¼1ŷyjð21ÞPn

j¼1ŷyjð21Þ þ
Pn

j¼1ŷyjð22Þ
¼ 1

n

Xn
j¼1

ŷyjð21Þ

because the denominators equal n
2 due to the restrictions.

The MLE of the remaining parameters are ŵw12 ¼ 1
2 
 ŵw11

and ŵw22 ¼ 1
2 
 ŵw21. Under Hs, ls will approximately

follow a w2 distribution with one degree of freedom.
The null hypothesis that the two alleles carried by the

dam have identical fitness is formulated by
Hd: w

d ¼ 0;ws 6¼ 0; d 6¼ 0, where the test statistic for Hd

is ld ¼ 
2½LðŵdÞ 
 LðŵÞ�, with LðŵdÞ being the log
likelihood value obtained by maximizing LðwÞ under
the restriction of wd ¼ ðw11 þ w21Þ 
 ðw12 þ w22Þ ¼ 0. The
EM solutions of the parameters are

ŵw11 ¼
1

2

Pn
j¼1ŷyjð11ÞPn

j¼1ŷyjð11Þ þ
Pn

j¼1ŷyjð21Þ
¼ 1

n

Xn
j¼1

ŷyjð11Þ

and

ŵw12 ¼
1

2

Pn
j¼1ŷyjð12ÞPn

j¼1ŷyjð12Þ þ
Pn

j¼1ŷyjð22Þ
¼ 1

n

Xn
j¼1

ŷyjð12Þ

The MLE of the remaining parameters are ŵw21 ¼ 1
2 
 ŵw11

and ŵw22 ¼ 1
2 
 ŵw12.

Again, under Hd, ld will approximately follow a w2
distribution with one degree of freedom.
The null hypothesis that the dominance effect is absent

is formulated as Hd: d ¼ 0;ws 6¼ 0;wd 6¼ 0. Let us define

a ¼ 1

n

Xn
j¼1

ŷyjð11Þ þ
Xn
j¼1

ŷyjð12Þ

0
@

1
A and

b ¼ 1

n

Xn
j¼1

ŷyjð11Þ þ
Xn
j¼1

ŷyjð21Þ

0
@

1
A

The MLE under this restriction are ŵw11 ¼ ab,
ŵw12 ¼ að1
 bÞ, ŵw21 ¼ ð1
 aÞb and ŵw22 ¼ ð1
 aÞð1
 bÞ.
Again, the test statistic for Hd is ld ¼ 
2½LðŵdÞ 
 LðŵÞ�,
which follows approximately a w2 distribution with one
degree of freedom.

Genome scanning
To scan viability loci for the entire genome, we need to
move the putative position from one end to the other end
of the genome. The genotype of each chromosome
position for each individual is inferred from marker
information, that is, pjðklÞ ¼ PrðyjðklÞ ¼ 1jIMÞ, where IM
stands for marker information. For outbred populations,
not all markers are fully informative. Therefore, we
adopted the multipoint method developed by Rao and
Xu (1998) to infer the probabilities of viability loci. This
multipoint method is identical to that of Kruglyak and
Lander (1995) when the linkage phases of the parents are
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known. In our study, we focus on developing the genetic
model of viability mapping rather than the multipoint
method. Therefore, we assume that the parental marker
linkage phases are known without error. This assump-
tion holds very well when the family size is sufficiently
large because the true linkage phases can be easily
recovered using marker information of the progeny.

To find the optimal location of the viability locus on
the chromosome, we test all putative positions. However,
the chromosome is a continuous linear structure, and
there are an infinite number of putative positions. As
usually done in interval mapping (Lander and Botstein,
1989), we scan the whole chromosome from one end to
the other by evaluating a position in every one or two
cM. The likelihood ratio test statistic is then plotted
against the chromosomal position to form a test statistic
profile. The MLE of the position of viability locus takes
the one where the peak occurs. The critical value used for
declaring at least one viability locus on the entire genome
with a type I error rate of a ¼ 0:05 is found using the
permutation test (Churchill and Doerge, 1994).

Monte Carlo simulation

We simulated one chromosome of length 100 cM with 11
markers evenly spaced. The two alleles of each parent at
each locus were randomly assigned from five distin-
guishable alleles (randomly selecting two out of five).
This generates markers with a range of information
content. A single viability locus was simulated at
position 25 cM, that is, between markers 3 and 4. The
following factors were considered in the simulations: the
mode of viability selection, the intensity of viability
selection and sample size of the mapping population.
The purpose of the simulation was not to compare the
relative efficiencies of different methods for viability
mapping (since there are no other methods to compare),
nor to investigate the range of parameter values where
the method works best. Instead, we simply attempted to
demonstrate that the method works well and the test
statistic behaves as expected. From this simulation study,
we try to validate our method and program of viability
mapping.

The mode of viability selection was investigated under
three levels: an additive model, a dominance model and
a combination of both additive and dominance. For the
additive model, we set d ¼ 0 and ws ¼ wd ¼ 0:1; 0:2; 0:3.
From these parameters, the fitness values of the four
genotypes were generated. Under the dominance model,
we set ws ¼ wd ¼ 0 and d ¼ 
0:15; 0:05; 0:15. We also
investigated one model with both the additive and
dominance effects, that is ws ¼ wd ¼ 0:15 and d ¼ 0:1.

From the three effects of the viability locus, we use
equation (3) to calculate the actual fitness values of the
four possible genotypes. For example, when ws ¼
wd ¼ 0:15 and d ¼ 0:1, the four fitness values are

w11 ¼ 1
4ð1þ 0:15Þð1þ 0:15Þ þ 0:1 ¼ 0:4306

w12 ¼ 1
4ð1þ 0:15Þð1
 0:15Þ 
 0:1 ¼ 0:1444

w21 ¼ 1
4ð1
 0:15Þð1þ 0:15Þ 
 0:1 ¼ 0:1444

w22 ¼ 1
4ð1
 0:15Þð1
 0:15Þ þ 0:1 ¼ 0:2806

Following the conventional notation of natural selection,
we calculate the selection coefficient for the fitness of
genotype As

kA
d
l using skl ¼ 1
 wkl=wmax (Hartl and Clark,

1997). These selection coefficients were used to
determine whether an individual with genotype As

kA
d
l

should be deleted from the mapping population
(Table 1).

Three different sample sizes under each of the above
models were investigated, n ¼ 50; 100; 200. The estimated
location of the putative viability locus under each
analysis took the position where the peak of the test
statistic profile occurred. The simulation was replicated
100 times under each setting. The means and standard
deviations of the 100 replicates were used to evaluate the
performance of each parameter combination.

The empirical statistical power for each setting was
calculated as the percentage of the replicates (out of 100
simulations) with the highest (overall) test statistic (along
the chromosome) greater than the empirical critical
value. The expected standard error for the empirical
power is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1
 bÞ=Nr

p
where Nr is the number of

replicates. For example, if the true power is 1
 b ¼ 0:8,
the standard error is 0.04, which is reasonably small. The
critical value was obtained by simulating additional 1000

Table 1 Parameter values used in the simulation experiments

Parameters Genetic model

Additive (A) Dominance (D) Both A and D

High Medium Low High(
) Low High(+)

ws 0.300 0.200 0.100 0.000 0.000 0.000 0.150
wd 0.300 0.200 0.100 0.000 0.000 0.000 0.150
d 0.000 0.000 0.000 
0.150 0.050 0.150 0.100

w11 0.4225 0.3600 0.3025 0.100 0.300 0.400 0.4306
w12 0.2275 0.2400 0.2475 0.400 0.200 0.100 0.1444
w21 0.2275 0.2400 0.2475 0.400 0.200 0.100 0.1444
w22 0.1225 0.1600 0.2025 0.100 0.300 0.400 0.2806

s11 0.0000 0.0000 0.0000 0.750 0.0000 0.000 0.0000
s12 0.4615 0.3333 0.1818 0.000 0.3333 0.750 0.6647
s21 0.4615 0.3333 0.1818 0.000 0.3333 0.750 0.6647
s22 0.7100 0.5555 0.3305 0.750 0.0000 0.000 0.3483
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samples under the null hypothesis. The highest test
statistics of the 1000 samples were ranked from the
lowest to the highest. The empirical critical value took
the 95th percentile of the distribution of the null samples.

The test statistic profile of a single replicate for
the combined additive and dominance model
(ws ¼ wd ¼ 0:15 and d ¼ 0:1) with sample size n ¼ 100
is demonstrated in Figure 1 (the dotted line). From the
total test statistic profile, we can see that the viability
locus has been identified at position 23 cM, very close to
the true position (25 cM). The estimated effects for this
particular run are ŵw11 ¼ 0:5902; ŵw12 ¼ 0:03290; ŵw21 ¼

0:03410 and ŵw22 ¼ 0:3528. These estimated fitness values
were converted into ŵws ¼ 0:2361; ŵwd ¼ 0:2385 and d̂d ¼
0:2071 using equation (2). The estimated effects are
larger than the simulated effects, but maintain the same
trend. The deviations are not larger than expected
considering the sampling errors with n ¼ 100. The
average test statistic profile of the 100 replicates for this
setting is shown in Figure 1 (solid line), clearly showing
the expected property of the test statistic profile for QTL
mapping.
The empirical critical values appear to be quite

independent of the sample size and they are about 14.5
at a ¼ 0:05 and about 18.0 at a ¼ 0:01. These empirical
critical values are clearly larger than w23;0:95 ¼ 7:815 and
w23;0:99 ¼ 11:34. Therefore, we used the empirical critical
values to declare significance.
Means and standard deviations of the estimated

parameters for various genetic models are given in
Table 2 for n ¼ 50, Table 3 for n ¼ 100 and Table 4 for
n ¼ 200. The results do follow the expected trends: the
viability locus location is more accurately estimated as
the sample size and the selection intensity increase.
When the sample size is small, the estimated position of
the locus is severely biased towards the center of the
chromosome. Besides these general trends, we found
that the additive models are more sensitive to the
intensity of selection. Under different levels of para-
meters (high, medium and low), the accuracy of both the
estimated viability locus location and parameters varies
more than the dominance models and both additive and
dominance (A/D) model. Overall, the A/D model gives
the highest accuracy of estimation.
The empirical statistical powers under various genetic

models and sample sizes are given in Table 5. The
powers are quite low for small sample size (n¼ 50) and
are reasonably high when sample size reaches 200. These
observations are the same as those expected in the more
usual QTL mapping studies. The results of these
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Figure 1 Likelihood ratio test statistic profiles for the combined A/D
model ws ¼ wd ¼ 0:15 and d ¼ 0:1 with sample size n ¼ 100. The
simulated position of the viability locus is located at position 25 cM
(indicated by the solid bar). The solid line is the average profile of 100
replicates, the dotted line is the profile of a randomly picked single
run from the 100 replicates and the dashed horizontal line is the
threshold value for the test statistic at a ¼ 0:05.

Table 2 Means and standard deviations (in parentheses) of estimated parameter values for the EM algorithm with sample size 50

Parameters Genetic model

Additive (A) Dominance (D) Both A and D

High Medium Low High(
) Low High(+)

cMA 31.01 39.38 46.43 27.22 50.8 26.94 30.16
(18.35) (26.66) (31.52) (5.96) (34.59) (8.63) (20.01)

ws 0.3219 0.2171 0.1254 0.0047 0.0399 -0.0327 0.1841
(0.1768) (0.2039) (0.1882) (0.1594) (0.1942) (0.1702) (0.1567)

wd 0.3064 0.2814 0.0844 
0.0362 
0.0034 0.0076 0.1902
(0.1685) (0.1877) (0.2195) (0.1465) (0.1829) (0.1874) (0.1526)

d 0.0042 
0.0098 0.0129 
0.1515 0.0391 0.1494 0.1052
(0.0474) (0.0516) (0.0532) (0.0297) (0.0639) (0.0354) (0.0411)

w11 0.4392 0.3828 0.3231 0.0967 0.3036 0.3985 0.4623
(0.0919) (0.0875) (0.0965) (0.0550) (0.0816) (0.0827) (0.0771)

w12 0.2318 0.2358 0.2496 0.4158 0.2264 0.0953 0.1398
(0.0832) (0.0972) (0.0899) (0.0735) (0.0896) (0.0666) (0.0579)

w21 0.2240 0.2680 0.2291 0.3952 0.2047 0.1154 0.1429
(0.0842) (0.0885) (0.0877) (0.0653) (0.0861) (0.0520) (0.0623)

w22 0.1250 0.1335 0.2182 0.1125 0.2853 0.4110 0.2751
(0.0553) (0.0721) (0.0843) (0.0526) (0.1052) (0.0838) (0.0732)

cMA: the estimated location of the viability locus.
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simulations have verified the derivations of our methods
and the computer programs; more importantly, they
have demonstrated that viability locus mapping can be
accomplished following the usual approach of QTL
mapping.

Discussion

The fitness considered here is a special fitness compo-
nent, the viability, which relates to the change of gene
frequencies in the current generation where the mapping

individuals are collected. Another major fitness compo-
nent is the fecundity, that is, the number of progenies
produced by the individual of interest. Fecundity is also
related to the change of gene frequencies, but it affects
the gene frequencies in the next generation. Fecundity is
measured quantitatively and thus mapping fecundity
loci can be directly accomplished using standard QTL
mapping approaches. Therefore, we only focused on the
statistics of mapping viability loci in this study.
The ultimate result of viability selection in a population
is the change in gene frequencies, but if we concentrate

Table 3 Means and standard deviations (in parentheses) of estimated parameter values for the EM algorithm with sample size 100

Parameters Genetic model

Additive (A) Dominance (D) Both A and D

High Medium Low High(
) Low High(+)

cMA 26.52 30.43 45.13 26.05 37.63 25.91 28.79
(11.58) (20.09) (33.50) (3.61) (26.76) (3.30) (12.13)

ws 0.3135 0.2241 0.0945 0.0001 
0.0035 
0.0223 0.1486
(0.1098) (0.1094) (0.1325) (0.1081) (0.1428) (0.1025) (0.1189)

wd 0.3036 0.2105 0.1129 0.0103 
0.0002 
0.0083 0.1542
(0.1235) (0.1322) (0.1345) (0.1003) (0.1370) (0.1098) (0.1221)

d 0.0013 
0.0056 
0.0037 
0.1521 0.0514 0.1470 0.1013
(0.0343) (0.0317) (0.0443) (0.0216) (0.0386) (0.0236) (0.0302)

w11 0.4320 0.3679 0.3030 0.1030 0.3027 0.3920 0.4356
(0.0651) (0.0679) (0.0677) (0.0365) (0.0607) (0.0521) (0.0654)

w12 0.2297 0.2491 0.2492 0.4020 0.2005 0.1017 0.1437
(0.0555) (0.0560) (0.0677) (0.0471) (0.0625) (0.0315) (0.0473)

w21 0.2247 0.2423 0.2584 0.4071 0.2022 0.1088 0.1465
(0.0512) (0.0482) (0.0634) (0.0537) (0.0611) (0.0361) (0.0441)

w22 0.1234 0.1505 0.1993 0.0978 0.3045 0.4074 0.2842
(0.0463) (0.0456) (0.0595) (0.0291) (0.0665) (0.0536) (0.0530)

cMA: the estimated location of the viability locus.

Table 4 Means and standard deviations (in parentheses) of estimated parameter values for the EM algorithm with sample size 200

Parameters Genetic model

Additive (A) Dominance (D) Both A and D

High Medium Low High(
) Low High(+)

cMA 26.80 29.91 35.43 25.98 34.43 25.89 26.53
(6.43) (15.26) (27.34) (1.84) (22.34) (1.85) (4.34)

ws 0.2986 0.1862 0.1125 0.0021 
0.0095 
0.0050 0.1528
(0.0643) (0.0837) (0.0907) (0.0765) (0.0933) (0.0801) (0.0728)

wd 0.3024 0.2177 0.1040 0.0081 0.0068 
0.0074 0.1539
(0.0681) (0.0898) (0.1009) (0.0651) (0.0894) (0.0659) (0.0717)

d 0.0017 0.0019 
0.0008 
0.1479 0.0498 0.1517 0.1004
(0.0201) (0.0203) (0.0246) (0.0169) (0.0276) (0.0148) (0.0167)

w11 0.4255 0.3639 0.3073 0.1058 0.3004 0.3998 0.4339
(0.0366) (0.0385) (0.0432) (0.0229) (0.0472) (0.0372) (0.0340)

w12 0.2262 0.2316 0.2514 0.3977 0.1972 0.1000 0.1449
(0.0337) (0.0413) (0.0412) (0.0365) (0.0382) (0.0195) (0.0262)

w21 0.2281 0.2473 0.2471 0.4007 0.2054 0.0988 0.1454
(0.0315) (0.0359) (0.0444) (0.0348) (0.0426) (0.0236) (0.0301)

w22 0.1250 0.1619 0.1990 0.1007 0.3018 0.4061 0.2806
(0.0237) (0.0315) (0.0390) (0.0239) (0.0402) (0.0347) (0.0309)

cMA: the estimated location of the viability locus.
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on one particular family or pedigree, the result of
viability selection is the deviation of allelic segregation
from the expected Mendelian ratio. The non-Mendelian
segregation of a viability locus causes deviation from
Mendelian segregation for markers linked to the viability
locus. The viability considered in this study is defined in
the adult stage (genotype). However, the statistics
developed allow us to separate the gametic selection
from zygotic selection. The maternal and paternal allelic
effects represent the gametic selection and the dom-
inance effect represents the zygotic selection.

The purpose of the simulation studies is to demon-
strate that viability mapping can be performed in the
same way as QTL mapping. There was no attempt to
explore the range of parameter values in which the
method works better than for other ranges. That would
require extensive simulation studies with exhaustive
combinations of parameter values. However, from the
results of the limited simulation experiments, we
conclude that the sample size should be sufficiently
large to be able to detect a locus subject to a weak
selection. For the parameter values selected in our
simulation experiments, n � 200 seems to be reasonable.

In the evolutionary literature, the fitness of the best
genotype (the maximum fitness) is usually set to unity
and the fitness values of all other genotypes are then
expressed as lower values than unity (Hartl and Clark,
1997). As a result of the restriction, wmax ¼ 1, the fitness
defined in this way is called the relative fitness. The
fitness values defined in this study are also relative
fitness but with a different restriction,

P
klwkl ¼ 1. The

difference in the restriction has no effect on the
estimation and statistical tests. This has been verified

by our simulation studies where we converted the fitness
values into selection coefficients by setting wmax ¼ 1 and
expressed the selection coefficients as skl ¼ 1
 wkl=wmax.
The estimated fitness values are very close to the true
values simulated. In fact, researchers often convert
the relative fitness into selection coefficients as we did
in the simulations and investigate the magnitudes of the
selection coefficients. In natural populations, people
often concentrate on the biallelic situation with only
three phenotypes: A1A1, A1A2 and A2A2. Using the
selection coefficients, researchers are able to investigate
the degree of dominance. If the A1A1 is the fittest
genotype, the fitness values of the three genotypes are
defined as w11 ¼ 1, w12 ¼ 12hs and w22 ¼ 1
 s, respec-
tively, where s represents the ‘additive effect’ or gametic
selection and h represents the ‘degree of dominance’ or
zygotic selection. We simply used a different but more
general notation to handle multiple alleles.
Mapping viability loci has only been investigated in

line-crossing experiments (Fu and Ritland, 1994a; Mitch-
ell-Olds, 1995; Vogl and Xu, 2000). Results are only rarely
inferred to natural populations, which are usually
outbred. A full-sib family is the simplest case that can
be studied from an outbred population. This research is
the first attempt to extend viability mapping to outbred
populations. The results can be easily extended to more
complicated outbred pedigrees, commonly seen in hu-
mans, trees and large animals. In pedigree analysis, we
focus on the relative representation of founder alleles.
Each founder carries two alternative alleles at any locus.
Under Mendelian segregation (no viability selection), the
two alleles should be equally represented in the
descendents. However, if there is evidence that the two

Table 5 Empirical statistical powers (%) under type I error rates of 0.05 and 0.01

Sample size Type I error Genetic model

Additive (A) Dominance (D) Both A and D

High Medium Low High(
) Low High(+)

50 0.05 52 36 14 82 12 86 57
0.01 29 18 2 68 2 64 37

100 0.05 82 47 13 100 19 99 86
0.01 74 22 2 98 12 98 68

200 0.05 100 84 27 100 40 100 100
0.01 99 68 10 100 24 100 100

Table 6 The definitions of fitness parameters for an outbred population with F founder alleles

Paternal Maternal

w1 w2 ? wF

w1 w11 ¼ w1:w:1 þ d11 w12 ¼ w1:w:2 þ d12 ? w1F ¼ w1:w:F þ d1F w1: ¼
PF

k¼1 w1k

w2 w21 ¼ w2:w:1 þ d21 w22 ¼ w2:w:2 þ d22 ? w2F ¼ w2:w:F þ d2F w2: ¼
PF

k¼1 w2k

^ ^ ^ & ^ ^
wF wF1 ¼ wF:w:1 þ dF1 wF2 ¼ wF:w:2 þ dF1 ? wFF ¼ wF:w:F þ dFF wF: ¼

P
k¼1

FwFk

w:1 ¼
PF

k¼1 wk1 w:2 ¼
PF

k¼1 wk2
? w:F ¼

PF
k¼1 wkF

w:: ¼
P

kl wkl ¼ 1

Mapping viability loci
L Luo and S Xu

465

Heredity



alleles are not equally represented, the locus may be
subject to viability selection. The allele comparisons from
different founders can be combined to increase the
power of viability locus detection. The multiple allelic
model in pedigree analysis may be investigated as
follows. Assume that there are F=2 founders with a total
of F founder alleles. The model parameters may be set up
in an F�F table as shown in Table 6. The fitness of
genotype AkAl is wkl for k; l ¼ 1; . . . ; F, which is parti-
tioned as wkl ¼ wk:w:l þ dkl, where wk: ¼ w:k is the
proportion of allele Ak represented in the mapping
population and dkl ¼ dlk is the dominance effect. Notice
the symmetry of the definitions. The parameters of the
viability locus are wk: and dkl for k; l ¼ 1; . . . ; F. Restric-
tions are required to make the model estimable and they
are

PF
k¼1wk: ¼ 1 and

PF
k¼1dkl ¼ 0 for all l. To test the

hypothesis that there is no gametic selection, we test
wk: 
 mk ¼ 0 for all k, where mk is the theoretical
proportion of the presence of allele Ak in the mapping
population and can be calculated based on pedigree
information. For example, in a diallele mating design,
mk ¼ 1=F for all k. To test the hypothesis of no zygotic
selection, we test dkl ¼ 0 for all k and l. In fact, it is
convenient to formulate viability mapping in pedigrees
as a random model problem where we are interested in
testing

s2A ¼ 1

F

XF
k¼1

ðwk: 
 mkÞ2 ¼ 0 and

s2D ¼ 2

FðFþ 1Þ
XF
k¼1

XF
l¼k

d2kl ¼ 0

Of course, the founder alleles cannot be traced without
marker information. Inference of the relative contributions
of the founder alleles in the descendents is not easy. We
need to invoke the recurrent algorithm of Yi and Xu (2001)
to trace the allelic origin of each allele in the mapping
population. If missing markers are involved, the descent
graph algorithm of Sobel and Lange (1996) is also needed.
In addition, we will need to adopt the Bayesian method
implemented via the Markov chain Monte Carlo (Gelman
et al, 1995; Green, 1995; Satagopan and Yandell, 1996;
Heath, 1997; Richardson and Green, 1997; Sillanpaa and
Arjas, 1998; Stephens and Fisch, 1998; Vogl and Xu, 2000).
The detailed algorithm has not been worked out and
development of such an algorithm is our next project.

Our assumption is that segregation distortion is
caused by viability selection. However, it may also be
caused by genotyping errors. If genotyping errors
happen randomly across loci and genotypes within loci,
they may not bias our results but increase the errors of
our detection and estimation. This can be compensated
by increasing the sample size. However, if genotyping
errors happen in a systematic manner, that is, some
genotype is more often scored as another genotype, then
the result will be confounded with segregation distor-
tion. If we know this a priori, we may put a flag on the
genotype and treat the genotype as incomplete. For
example, if A1A2 is often scored as A1A1 for some
markers, the experimenter should warn us that ‘A1A1’
may have a certain probability of being A1A2. This
probability may be incorporated into our analysis. This
incomplete information is still useful because we are sure
that ‘A1A1’ is not A2A2.

We have not investigated multiple viability loci in this
study, simply because the single locus model can also be
applied to the search for multiple loci. This is equivalent
to the interval mapping of Lander and Botstein (1989),
which is a single QTL mapping procedure but has been
used to search for multiple QTLs by most people. When
two or more loci are located in a single chromosome but
with a large distance between pairs of loci, multiple loci
can be detected from multiple separated peaks of the test
statistic profiles. Similar to multiple QTL mapping, when
two viability loci are close together or there is an
interaction (non-multiplicative) effect between the two
loci, the model needs to be revised to take into
consideration multiple viability loci, as the multiple
QTL model of Kao et al (1999). The situation of multiple
locus viability mapping in pedigrees is extremely
complicated. A Bayesian approach should be considered
(Sheehan and Thomas, 1993; Lin et al, 1993, 1994; Lin,
1995, 1996; Hoeschele et al, 1997). The ML analysis for a
single locus proposed in this study serves as a necessary
first step towards a full solution of viability mapping.
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