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QTL analysis in arbitrary pedigrees with incomplete
marker information

C Vogl and S Xu
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Mapping quantitative trait loci (QTL) in arbitrary outbred
pedigrees is complicated by the combinatorial possibilities
of allele flow relationships and of the founder allelic con-
figurations. Exact methods are only available for rather short
and simple pedigrees. Stochastic simulation using Markov
chain Monte Carlo (MCMC) integration offers more flexibility.
MCMC methods are less natural in a frequentist than in a
Bayesian context, which we therefore adopt. Among the
MCMC algorithms for updating marker locus genotypes, we
implement the descent-graph algorithm. It can be used to
update marker locus allele flow relationships and can handle
arbitrarily complex pedigrees and missing marker infor-
mation. Compared with updating marker genotypic infor-
mation, updating QTL parameters, such as position, effects,
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Introduction
Quantitative trait locus (QTL) analysis maps quantitative
phenotypic variation to chromosomal regions using
marker and pedigree information. In contrast to QTL
mapping, association mapping does not require pedigree
information as it is based on whole population analysis
of historical recombinations. Experimental design, qual-
ity of the marker map, and methodology determine the
success of a QTL mapping study. Both design and meth-
odology are relatively simple with controlled inbred line
crosses. But even if a study using inbred lines success-
fully identified QTL, extension to the base population is
difficult: because numbers of available inbred lines are
generally low and relationships of lines to each other may
be unknown, statistical inference to the base population
is unreliable. Hence, even for organisms where inbred
lines are available, outbred pedigrees may be more
appropriate.

For most long-lived organisms, insufficient numbers of
inbred lines are available and mapping must be carried
out with available pedigrees. Mapping QTL in complex
pedigrees is a daunting task; the combinatorial com-
plexity is enormous. For a pedigree of N individuals and
F founders, each of the 2(N − F) meioses has two states,
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and the allele flow relationships is relatively easy with
MCMC. We treat the effect of each diploid combination of
founder alleles as a random variable and only estimate the
variance of these effects, ie, we model diploid genotypic
effects instead of the usual partition in additive and domi-
nance effects. This is a variant of the random model
approach. The number of QTL alleles is generally unknown.
In the Bayesian context, the number of QTL present on a
linkage group can be treated as variable. Computer simula-
tions suggest that the algorithm can indeed handle complex
pedigrees and detect two QTL on a linkage group, but that
the number of individuals in a single extended family is lim-
ited to about 50 to 100 individuals.
Heredity (2002) 89, 339–345. doi:10.1038/sj.hdy.6800136

resulting in a total of 22(N−F) states. The totality of the mei-
otic states defines the allele flow relationship between
individuals. Other terms used for this are segregation
pattern, inheritance pattern, set of meiosis indicators, or
‘descent-graph’ (Sobel and Lange, 1996). Furthermore,
the ordered diploid genotype of each founder, prior to
observing the data, may have any combination of alleles.
The combination of ordered founder genotypes and the
descent-graph is called the ‘descent-state’ (Sobel and
Lange, 1996) (see Figure 1). It completely determines the
ordered genotype of each indivual in the pedigree.
Because of the combinatorial complexity, exact methods
for calculation of the likelihood or the posterior distri-

Figure 1 Descent state representation of a pedigree with ordered
genotypes at a single locus. The numbers represent the ordered
founder genotypes and the arrows the descent graph.
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bution are only available for simple models and relatively
short pedigrees (eg, Kruglyak et al, 1996). Stochastic
simulation using Markov chain Monte Carlo (MCMC)
integration of the posterior distribution (Gelman et al,
1995) offers more flexibility.

With MCMC, an approximate sample from a distri-
bution is obtained by cyclically updating sets of para-
meters conditional on the current values of these and/or
other parameters and the data. For instance, the posterior
mean and variance of a normally distributed data set may
be obtained by cyclically alternating between (i) sampling
the mean conditional on the variance and the data and
(ii) sampling the variance conditional on the mean and
the data. Importantly, a complex problem can be thus
subdivided into smaller manageable units. MCMC can be
employed for integration of both the likelihood or pos-
terior distribution, ie, in both a frequentist as well as a
Bayesian context. But it fits more naturally into a Baye-
sian scheme, because it is based on updating conditonal
distributions rather than maximizing the log-likelihood.
We therefore adopt a fully Bayesian approach and supply
(non-informative or weakly informative) prior distri-
butions.

As the first part in the MCMC sampler, consider updat-
ing the marker genotypic information. For obtaining the
descent-state, ie, the descent-graph or inheritance pattern
and the genotypic founder configurations, many MCMC
schemes are available (reviewed in Hoeschele, 2001). One
such scheme proceeds individual by individual and locus
by locus, conditional on the parameter settings of all
other individuals and loci (Kong, 1991). This can be done
relatively simply using a Gibbs sampler (Gelman et al,
1995), ie, by sampling directly from the conditional distri-
bution. But it has been demonstrated that this approach
may get stuck locally: with multiallelic loci, legal states
may not communicate through a finite chain of single
steps, such that it is impossible to reach a (potentially)
more probable state; with biallelic loci, the sampler gets
stuck locally for long times (Hoeschele, 2001). Expressed
in MCMC jargon (Gelman et al, 1995), the approach suf-
fers greatly from poor mixing (it is ‘sticky’) and problems
of reducibility (it does not reach some possible parameter
regions at all). To avoid this pitfall, more complex updat-
ing methods have been devised (reviewed in Hoeschele,
2001): genotypes of many or all individuals in a pedigree
are updated jointly instead of sequentially, eg, the ‘peel-
ing’ (Elston and Stewart, 1971; Fernando et al, 1993) and
‘reverse peeling’ (Ott, 1989; Heath, 1997) algorithms.
Although these procedures are relatively slow and com-
plicated to implement, they are successful where appli-
cable. But unfortunately not all pedigrees are ‘peelable’.

Sobel and Lange (1996) presented a flexible method
applicable to arbitrary pedigrees, ie, also to those where
peeling is impossible, called the ‘descent-graph sampler’.
With the descent-graph sampler, the probability of an
inheritance pattern (descent-graph) is evaluated by sum-
ming over the probabilities of all compatible founder
genotypes. Thus the sample space is reduced compared
with the above-mentioned methods: instead of sampling
the descent state, ie, the descent-graph and the founder
genotypes, only the descent-graph is sampled.

Compared with sampling marker genotypes, updating
the QTL genotypes conditional on the flanking loci, QTL
effects, and phenotypic information is relatively easy.
Since the number of QTL alleles in an outbred population

is generally unknown, we treat the effect of each diploid
combination of two founder alleles as a normally distrib-
uted random variable with mean zero and only estimate
the variance of these effects. This is called the random
model approach (Xu and Atchley, 1995). As another step
in the cycle of MCMC updating, we jointly update
location, genotypes, and effects, for each QTL in turn.

With a Bayesian approach, the number of QTL can be
treated as a random variable, ie, the posterior probability
of models with zero, one, or more QTL on a linkage
group may be evaluated. For this technically demanding
step in the MCMC cycle, we use the reversible jump
algorithm developed by Green (1995) and employed to
advantage in the context of QTL mapping (eg, Satagopan
et al, 1996; Stephens and Fisch, 1998; Sillanpää and Arjas,
1998, 1999).

Herein, we develop a Bayesian method to map QTL
using the descent-graph sampler of marker inheritance
patterns for arbitrarily complex mating designs and
incomplete marker information. The Bayesian method is
implemented via an MCMC algorithm. The number of
QTL on a linkage group is assumed to be variable. The
algorithm allows for the simultaneous estimation of num-
ber, locations, and effects of QTL. We evaluate the
efficacy of the algorithm by computer simulations and
compare it with other methods for QTL mapping in out-
bred populations.

Model

Let individuals in the mapping population be indexed by
i with 1 � i � N and let F be the number of founder
individuals. Let marker loci be indexed by l with 1 � l
� L. Denote the proportion of allele a of locus l by pla

and let P = {pla}L,Al=1, a=1, where A is the number of alleles of
locus l in the population. (Note that P is not a matrix
because the number of alleles may vary between loci.) Let
M represent the marker information and let the vector y
represent the phenotypic values of the N individuals.

Let the QTL be indexed by q with 1 � q � Q and
located at positions �q = {�q}Qq=1. Let the diploid genotypic
value of locus q, ie, the sum of the maternal and the
paternal additive genetic and the dominance effects, be
represented by the vector gq = {gqr}2F(F+1)

r=1 . We employ the
constraint that one of the gq is set to zero. For a particular
pedigree, only a limited set of founder allelic combi-
nations may be realized, such that the dimension of gq

may effectively be much smaller than 2F(F + 1). Let G =
{g1, . . ., gQ}. We assume that the genotypic effects G
depend on the underlying genetic variances �2

g = {�2
gq}Qq=1,

ie, we assume a random model approach (Xu and Atch-
ley, 1995). Let �2

e represent the environmental variance.
For each marker locus or QTL, the descent-graph speci-

fies the allele flow relationship between individuals and,
thus, consists of two parts: the pedigree relationship and
the 2(N − F) meiosis indicators, which we will represent
as a vector zq. The meiosis indicators can take on a value
of 0 or 1 depending on whether the maternal or paternal
allele is inherited. Let the matrix of meiosis indicators for
the L marker loci plus Q QTL be represented as Z =
{z1}(L+Q)

k=1 . If a particular (focal) locus is referred to, let its
vector of meiosis indicators be represented as z and that
of the previous and next loci be represented as z− and z+,
respectively. Whether the focal locus is a QTL or a
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the Haldane mapping function.

For partitioning the phenotypic variation, we employ
the following statistical model:

y + Xb + �
q

Wqgq + e, (1)

where X is the design matrix of the fixed effects b and
Wq = Wq(zq) is the design matrix of the genetic effects; Wq

is a deterministic function of the random variables zq. The
gq are the genetic effects and the vector e represents the
environmental effects. In this formula, each allele is
traced back to its founder alleles, ie, the model is written
in the form of a reduced animal model (Hoeschelc, 2001).

Next we focus on the posterior distribution. Let the
variables be represented by � = {b, G, �2

g, �, Z, �2
e}. To

complete a Bayesian model, prior distributions must be
chosen. For Z and �, we assume flat (or uninformative)
prior distributions, ie, every possible parameter value has
the same prior probability. For the QTL effects G, we
chose rather uninformative priors of the same functional
form as the likelihood (conjugate priors Gelman et al,
1995). Conjugate priors are often very reasonable and
facilitate the mathematical analysis. For the environmen-
tal variance �e and the prior QTL variances, we also chose
conjugate priors: independent inverse chi-square distri-
butions with prior variances fractions of the observed
phenotypic variance and prior degrees of freedom of two.
Combining all the independent prior and conditional dis-
tributions, the posterior distribution of the variables con-
ditional on the data for a given number of QTL is
given by

Pr(��y, M, P) � Pr(y�b, G, Z, �2
e) Pr(Z�M, P, �)

× Pr(b) Pr(G��2
g) Pr(�2

g) Pr(�2
e). (2)

We model the number of QTL on a linkage group as
a random variable. Following other authors (eg, Satago-
pan et al, 1996; Stephens and Fisch, 1998; Sillanpää and
Arjas, 1998, 1999), we choose a truncated Poisson distri-
bution as prior for QTL number.

Implementation
An approximation of the posterior distribution is
obtained by cyclically switching between the following
steps: (i) sampling of the marker descent-graph for all
marker loci, (ii) joint sampling of position, meiosis indi-
cators, and QTL effects for all QTL, (iii) separate sam-
pling of QTL meiosis indicators, (iv) sampling of pheno-
typic mean and genetic and environmental variances,
and (v) birth or death of a QTL.

Sampling of the marker descent-graph for all marker
loci
The marker genotype sampler employed is an implemen-
tation of the Sobel and Lange (1996) descent-graph sam-
pler. Central to the algorithm is the evaluation of the like-
lihood of the data given the descent-graph, ie, the allelic
inheritance pattern for each independent extended fam-
ily. For this, the probability of the data must be evaluated
conditional on all possible allelic states and the descent-
graph and then summed, such that the probability of the
data conditional on the descent-graph is obtained.
Recursing naively through all possible allelic states
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requires evaluation of A(2F) states for a locus with A
alleles.

To speed up this step, Sobel and Lange (1996) divide
the descent graph into non-communicating compart-
ments (‘founder-tree graphs’). This requires much com-
putational overhead and may not be successful in some
pedigrees. We therefore employed a different algorithm:
the path of each founder allele (the ‘founder-tree’ in the
terminology of Sobel and Lange (1996)) is traversed in its
entire length and the set of possible alleles is restricted
to the intersection of the alleles of all typed individuals
it passes through. If the path passes through at least one
individual with complete marker phenotypic infor-
mation, the number of compatible alleles is at most two.
For the simulated data sets we used, it is usually reduced
to just a single allele. This allows for swift recursion
through possible states.

Note that this algorithm can handle dominant markers,
which are generally biallelic. But since the population
allele frequency of dominant markers is usually
unknown, this would require a change of the model.

For running the descent-graph MCMC chain, a
Metropolis-Hastings algorithm (Gelman et al, 1995) must
be used: a new state of the descent-graph is sampled con-
ditional on the old state from a jumping or proposal dis-
tribution; this new state is then accepted or rejected in
favor of the old state with a certain probability (see the
Appendix for an example). Choice of appropriate pro-
posal distributions is an art as well as a science: if the
proposal is too similar to the old values, speed of mixing
may be unacceptably slow even though most proposals
are accepted; if the proposal is too different from the old
values, mixing may be slow because proposals are nearly
never accepted.

In our implementation of the marker sampler, we devi-
ate only in minor details from the proposal distributions
used by Sobel and Lange (1996): for convenience, we
strictly base our implementation on the full-sib family. In
each round of updating, the number of full-sib families
is a random variable sampled from a Poisson distribution
truncated at the maximum number of available families.
Conditional on this number, a set of families are
chosen randomly.

Within the chosen family or families, we suggest three
types of switches. The simplest switch is a source switch
(eg, Figure 2a): the origin of the arrow connecting a par-
ental allelic node with the child is changed from the par-
ental paternal node to the parental maternal node (Sobel
and Lange (1996) transition rule T0). Each of the four
possible combinations of source switches, two paternal
and two maternal ones, are proposed with equal prob-
ability.

The second switch (eg, Figure 2b), corresponding to
transition rule T1 of Sobel and Lange (1996), is most easily
understood as a switch of the phase in a parent. The ori-
gin of all outgoing arrows from a single individual are
switched, such that a child that before the switch
inherited the maternal allele inherits the paternal one,
and vice versa. We also include the possibility of switch-
ing the phases of both parents in a nuclear family.

The third switch (eg, Figure 2c), corresponding to tran-
sition rule T2 of Sobel and Lange (1996), is more compli-
cated than the previous two. It can be most easily thought
of as swapping the contribution of the parents in the focal
family. After swapping, however, paternally derived
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Figure 2 An example of the three move types: (a) a source switch,
(b) a phase switch, and (c) a parent switch (with a phase switch).
The focal family, where the switch happens, is always indicated
with filled circles.

genes flow to maternal ones and vice versa. To correct
for this illegal flow, requires further rearrangement in the
next generation. We also consider a concurrent change of
phase in the parents as exemplified in Figure 2c.

These three transition types combine randomly in the
selected families to update the old state z in a compound
switch, ie, a new set of meiosis indicators z*. Acceptance
or rejection of z* over the old state z is determined locus
by locus conditional on the neighboring loci (z+ and z−)
using a Metropolis-Hastings step. As Metropolis-
Hastings samplers are generally rather insensitive to
minor changes in the proposal distribution (eg, Richard-
son and Green, 1997), the differences between the Sobel
and Lange (1996) implementation and ours will be negli-
gible.

Loci on a single chromosome are updated in a corre-
lated fashion: a compound switch proposed for a certain
marker locus will, with probability p, also be proposed
for the next locus; with probability 1 − p a different, inde-
pendently sampled switch will be proposed. With this
choice of proposal distribution the probability of pro-
posal of multilocus descent-graph B given multilocus
descent-graph A is the same as proposal of A given B,
ie, j(A�B) = j(B�A). Hence, correction of differences in pro-
posal probability is not required in the acceptance ratio
of the Metropolis step. Especially for tightly linked loci,
such as those considered in the simulations later on, this
correlated updating of loci improves mixing.

Joint sampling of position, meiosis indicators, and QTL
effects for all QTL
For updating of QTL variables, we note that the diploid
genotypic effects of all the 2F(F+1) genotypic combi-
nations of each QTL will, generally, be different from

each other. Furthermore, none of the 2F(F+1) QTL geno-
types can be excluded with certainty using the pheno-
typic data, although different genotypes are differently
probable. Hence, the descent-graph algorithm we used
for marker data is unavailable. We, thus, update QTL
descent-states and other QTL parameters as follows: a
new position �*

q is proposed from a uniform distribution
symmetric around the old position. Conditional on the
new position and the meiosis indicators of the neighbor-
ing loci (z+, z−), the new meiosis indicators z* for the focal
QTL are sampled using Haldane’s mapping function.

Conditional on these meiosis indicators the fixed
effects and the variances and z*, a vector of the QTL-
effects gq needs to be sampled. This would be difficult
using the usual parametrization in additive and domi-
nance effects. Instead, we parametrize the model using
diploid genotypic effects. With this parametrization, the
effect of each particular combination of two founder
alleles is independently normally distributed with mean
zero and the same genetic variance. Furthermore, the
variance-covariance matrix of the genotypic effects
(Wang et al 1993) (WT

qWq/�2
g + I/�2

e)−1 is diagonal and
inversion is trivial. This makes it possible to sample
directly from the conditional distribution for updating
QTL effects and variances, ie, to use a relatively simple
Gibbs sampling scheme. All new variables are accepted
or rejected with a single Metropolis-Hastings step (see
the Appendix for equations).

Separate sampling of QTL meiosis indicators
It turned out that mixing is improved with an additional
step: a proposal for the QTL-meiosis indicators is
sampled conditional on the neighboring loci and
accepted or rejected with a Metropolis-Hastings step
using the ratio of the old and new probabilities calculated
from Pr(y�b, G, Z, �2

e).

Sampling of phenotypic mean and genetic and
environmental variances
The phenotypic mean is drawn from a Normal distri-
bution using a Gibbs sampler. Environmental and genetic
variances are drawn from an inverse chi-square distri-
bution using a Gibbs sampler.

Birth or death of a QTL
We will not go into the details of the reversible jump
algorithm, but refer the reader to Green (1995) for a gen-
eral mathematical introduction and to, eg, Satagopan et
al (1996), Stephens and Fisch (1998), Sillanpää and Arjas
(1998), Sillanpää and Arjas (1999), and Vogl and Xu
(2000) for applications to linkage mapping. The posterior
distribution of number of QTL is obviously influenced by
the parameters of the truncated Poisson prior distribution
but also by the prior genetic QTL variance. For small
prior variances, more and smaller QTL, are placed along
the chromosome; for large prior variances, fewer and
larger QTL are placed along the chromosome. Mixing
between different numbers of QTL is more effective for
small prior variances. As speed of computation is pro-
portional to number of QTL, the prior variance influences
practical computation too. We had good results when
truncating the prior Poisson distribution at four QTL per
chromosome and setting the mean prior QTL variance to
0.03 the phenotypic variance.
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Simulation study
We simulated one chromosome of length 1M; markers
were equally and rather tightly spaced in 0.1M intervals.
For checking the marker sampler, we simulated a single
fullsib family of variable size and employed the follow-
ing test: the marker sampler is started both from the true
descent-graph as well as from a set of random descent-
graphs drawn independently for each marker locus.
Initially, runs started from the true value have much
lower values of imputed recombination rates between
adjacent loci than runs started randomly. The test con-
sists in monitoring the convergence rate of the difference
in the sum of the log of the recombination probability for
all loci and individuals between these two sets of runs;
the better the sampler mixes the faster the convergence.

For checking both the marker and the QTL sampler,
the environmental variance was always set to one; two
QTL were always present; their genotypic effects were
sampled from a normal distribution with a genotypic
variance of one at locations 0.15 and 0.65. Whether the
effects are in coupling or repulsion (if the effects are
mainly additive) or exhibit more complicated patterns (if
the dominance component is large) in a certain extended
family depends on chance. We refrained from analysing
QTL on different linkage groups, because it is very time-
consuming and does not pose any theoretical or practi-
cal challenges.

We present in detail three types of simulations: (i) 13
full sib families with 40 offspring each; (ii) 24 pedigrees,
each with two unrelated founder families that gave rise
to one sire and two dams, which were crossed recipro-
cally with the other family to give rise to four families
with 10 offspring each; (iii) similar to the second simul-
ation, but with 35 pairs of families and with one dam less
in the middle generation and thus only 20 offspring in
the last generation. Note that in the latter two pedigrees
nearly all information is contained in the third and last
generation. Marker genotype information was simulated
as either present in all individuals or missing from half
the founders. We also performed trial runs with more
complicated pedigrees. In all cases, we assumed that
phenotypic information was missing from the founders.

A consistent descent-graph was sampled for each
marker using the algorithm of Sobel et al (1995) and zero
QTL were assumed to be present initially. Before starting
regular alternation between the marker and QTL sam-
pler, 5000 rounds of marker sampling were performed.
The first 5000 rounds of the marker plus QTL sampler
were discarded to allow for approximate convergence to
the posterior distribution, while the next 10000 were
sampled.

A second test of the marker sampler in conjunction
with the QTL sampler is comparison of the posterior dis-
tribution of inferred QTL locations with the simulated
true positions and effects; this also tests the QTL sampler.

Descent-graph (marker) sampler
The number of individuals in a full sib family influences
the speed of convergence of the difference between runs
started from the true multilocus descent-graph and from
a random multilocus descent-graph (Figure 3). With 40
individuals, approximate convergence is achieved after
less than 1000 iterations, while for 100 individuals 10000
iterations was not enough.

Heredity

Figure 3 Dependence of the convergence speed (as difference in the
log-likelihood of runs from different starting conditions depending
on time) of the marker sampler on the number of offspring in a
fullsib family. Solid line: 100 offspring; coarsely broken line: 80 off-
spring; finely broken line: 60 offspring dotted line: 40 offspring.

For more complicated pedigrees, convergence speed
was slightly slower than for a single fullsib family of
comparable size (data not shown). The limit of the capa-
bility of our sampler is thus between about 50 to 100 indi-
viduals in a single extended family. We did not try to
more accurately determine this limit as it varies with
pedigree structure and is likely implementation depen-
dent. Applicability of our algorithm to an extended fam-
ily with over 50 members should be ascertained with
computer simulations.

QTL sampler
Results of the simulations of the three pedigrees with full
or missing founder marker information are presented in
Figure 4 (i) corresponding to a and b; (ii) corresponding
to c and d; (iii) corresponding to e and f. As expected
results are better with full information, (a), (c), and (e),
and clearly indicate presence of two major QTL in about
the right locations. If information is missing, (b), (d), and
(f), the posterior distributions are a bit more erratic. Only
for pedigree (iii), the mode of the QTL at 0.15 is appreci-
ably lower for the pedigree with full information (e) than
for the one with missing information (f). This is probably
a statistical fluke.

Discussion
Mapping QTL in large, arbitrary pedigrees is a complex
task. Exact methods (eg, Kruglyak et al, 1996) are only
available for simple pedigrees. For larger pedigrees,
approximate samples from the likelihood or posterior
distribution can be obtained by MCMC integration. Pub-
lished MCMC methods differ in the strategy for sampling
marker meiosis indicators and in model assumptions for
QTL, mainly whether a biallelic fixed effects model (eg,
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Figure 4 QTL intensity for pedigrees (i) (a and b), (ii) (c and d), and (iii) (e and f), with full founder information (a, c, and e) and with
partially missing founder information (b, d, and f). Solid line: QTL intensity (intensity); broken line: average QTL variance.

Heath, 1997; Sillanpää and Arjas, 1999) or a multiallelic
random effects model (eg, Xu and Atchley, 1995; Yi and
Xu, 2000) is assumed.

Herein, we implement the descent-graph sampler
(Sobel and Lange, 1996) for updating marker inheritance
indicators. With the descent-graph sampler, a modified
descent-graph (pattern of meiosis indicators) is suggested
conditionally on the old pattern and the pedigree but
unconditionally on the observed marker phenotypes.
This allows for great flexibility; it can handle arbitrary
pedigrees and is unaffected by missing marker data.
From our simulations it seems, however, that if the num-
ber of meioses is larger than 50 to 100, approximation to
the posterior distribution is slow.

Running the descent-graph sampler requires rapid cal-
culation of the probability of a particular descent-graph
conditional on the marker data and population allele fre-
quencies. Naively, this would require recursing through
all possible marker states for each of the 2F founder
alleles. This strategy is prohibitively slow and needs to
be sped up significantly. Instead of partitioning the space
into independent units (the founder-tree graph approach
of Sobel and Lange (1996)), we traverse the path of each

founder allele to limit the number of possible allelic com-
binations. With this modification, speed of calculation of
the probability of a particular descent-graph conditional
on the marker data and population allele frequencies is
not rate limiting any more. We note, as an aside, that the
descent-graph sampler has the ability to handle dominant
loci as well.

For modeling the QTL effects, we employ the random
effect model (eg, Xu and Atchley, 1995; Yi and Xu, 2000).
Instead of the usual parametrization using additive and
dominance effects, we sample diploid genotypic effects.
This makes sampling of genotypic effects much simpler
than separate sampling of additive and dominance
effects. If the genotypic effects and the (diagonal) design
matrix are stored, additive and dominance variances can
be calculated after the MCMC run has finished. Thus,
partitioning of variances can be performed a posteriori
without affecting MCMC speed. The only remaining dis-
advantage of our parametrization is that it is not possible
to choose independent priors for additive and domi-
nance effects.

All methods for mapping in complex pedigrees
advanced so far involve trade-offs: exact methods are
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ual and locus by locus sampling gets trapped locally;
summation over genotypes via the peeling algorithm is
only possible for certain pedigrees (all reviewed in Hoes-
chele, 2001). Furthermore, an allele-dropping algorithm
where, starting from the founders, offspring alleles are
sampled sequentially conditional on the parental geno-
types, requires that at least complete founder allelic infor-
mation is available (eg, Yi and Xu, 2000). But since allelic
information of especially the founder individuals is often
unavailable, this will rule out analysis of many data sets.

The descent-graph method (Sobel and Lange, 1996),
employed herein, can handle arbitrarily complex pedi-
grees and allows for missing marker information, but is
prohibitively slow in too large pedigrees (pedigrees with
more than about 50 members) because the sampler mixes
poorly. Hence, for large but regular pedigrees, eg, a col-
lection of large nuclear families, other, less flexible
methods may be more successful. For extremely large
and complicated (unpeelable) pedigrees, no method is
currently available.

Outbred pedigrees that necessitate the complicated
approaches discussed above usually arise with long-lived
lifestock or trees, and in human populations. If at least
some influence on the experimental design is possible,
eg, in livestock and tree breeding, the method of analysis
may be chosen first and the pedigree fitted to it. Other-
wise choice of method requires careful evaluation of their
relative merits.

Appendix
The general formula for probability of acceptance of a
proposed new set of variables � given the data and the
old set of variables � in a Metropolis-Hastings step is min
{1, a} with

a =
Pr(�*�y)j(���*)
Pr(��y)j(�*��)

, (3)

where j (. . .) represents the jumping or proposal distri-
bution, y the data vector. Consider updating the variables
of a particular QTL; since we are only dealing with a
particular QTL we drop subscripting for the QTL. The
posterior probability of the QTL variables conditional on
the flanking locus meiosis indicators is proportional to

Pr(��y) �Pr(y�G, b, �2
g, �2

e, z) Pr(G) Pr(�) (4)
Pr(z�z+, z−, �).

Usually in QTL mapping, the new location �* is
sampled from a uniform distribution symmetric around
the old position �. It is difficult to sample from the full
conditional distribution:

Pr(z*�y, b, �2
g, �2

e, G, z+, z−, �*). (5)

Hence, the meiosis indicators are sampled from the con-
ditional distribution Pr(z*�z+, z−, �*) and subsequently the
QTL effects are sampled from the conditional distribution

Pr(G*�y, z*, b, �2
g, �2

e), (6)

using Gibbs sampling. After cancelling out various terms,
the acceptance ratio for the compound step becomes

a =
Pr(y�z*, b, �2

g, �2
e, G) Pr(G*)

Pr(G*�y, z*, b, �2
g, �2

e)
(7)

This algorithm updates jointly QTL meiosis indicators,
QTL effect, and QTL location.
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