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Inbreeding and relatedness coefficients: what do they
measure?

F Rousset
Laboratoire Génétique et Environnement, Institut des Sciences de l’Évolution, Université de Montpellier II, 34095 Montpellier,
France

This paper reviews and discusses what is known about the
relationship between identity in state, allele frequency,
inbreeding coefficients, and identity by descent in various
uses of these terms. Generic definitions of inbreeding coef-
ficients are given, as ratios of differences of probabilities of
identity in state. Then some of their properties are derived
from an assumption in terms of differences between distri-
butions of coalescence times of different genes. These
inbreeding coefficients give an approximate measurement of
how much higher the probability of recent coalescence is for
some pair of genes relative to another pair. Such a measure

Keywords: relatedness; population structure; identity-by-descent; coalescence, kin selection

Introduction
Concepts of relatedness, measuring the genetic relation-
ships among individuals, are basic to population
genetics. They were initially conceived as measures of
genetic likeness due to recent shared ancestry given by
pedigree relationships, and as such they are standard
tools in quantitative genetics and in kin selection theory.
However, there are cases where ‘relatedness’ measures
may be used even though the shared ancestry is not
given by a single well-identified pedigree. For example,
it was clear since Wright’s early work that classical meas-
ures of population structure such as ‘F-statistics’ (Wright,
1951) may be viewed as measures of relatedness among
individuals in spatially subdivided populations.
Although ‘relatedness’ may be defined in an infinite
number of ways, not all measures are equally relevant to
quantitative models of evolution. It is useful to dis-
tinguish parameters that do not depend on mutation
(such as ‘relatedness’ below) and related measures that
may depend on mutation (such as ‘inbreeding coef-
ficients’ below). The most common uses of relatedness
measures in spatially subdivided populations are to
quantify the relative effects of drift and migration, and
to quantify selection in ways more or less analogous to
Wright’s (1931) initial attempt in this direction. In parti-
cular, measures of relatedness may be needed to develop
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is in general not equivalent to identity by descent; rather, it
approximates a ratio of differences of probabilities of identity
by descent. These results are contrasted with some other
formulas relating identity, allele frequency, and inbreeding
coefficients. Additional assumptions are necessary to obtain
most of them, and some of these assumptions are not
always correct, for example when there is localized disper-
sal. Therefore, definitions based on such formulas are not
always well-formulated. By contrast, the generic definitions
are both well-formulated and more broadly applicable.
Heredity (2002) 88, 371–380. DOI: 10.1038/sj/hdy/6800065

an ‘inclusive fitness’ framework for measuring selection
(eg, Hamilton, 1971; Crow and Aoki, 1984; Taylor, 1988;
Rousset and Billiard, 2000).

Some formulas are familiar enough to population gen-
eticists to be taken as basic and even as definitions of
relatedness in these different contexts. One such formula
expresses the probability that two genes are of a given
allelic type, as rp � (1 � r)p2 where p is the ‘allele fre-
quency’ in a ‘reference population’ (or ‘base population’,
Falconer and Mackay, 1996) and r is a ‘relatedness’ meas-
ure, or ‘probability of identity-by-descent’. Whatever the
exact definition of these terms, if r is independent of p,
it can be computed by independent methods, such as
recursion methods for probabilities of identity, or directly
from pedigrees. Such an r can then be used to predict the
probability that two genes are of a given allelic type,
given p. However, it is assumed that r is independent of
p, which raises the question whether it is actually so.

The definition of identity in terms of an ancestral popu-
lation does lead to some correct computations for a num-
ber of basic models, but it may also be questioned per se.
When confronted with the concept of identity by descent,
and to its computation from a real pedigree (eg Hartl and
Clark, 1997; Lynch and Walsh, 1998), one may wonder
what is the significance of a number that ignores the
identity due to common ancestry of members of the ‘ref-
erence population’.

Some further problems with commonly used
definitions of relatedness will be illustrated when the dif-
ferent concepts involved have been defined (see
Discussion). However, evidence of difficulties may be
found in the claims that there is ‘something arbitrary’ in
the definition of relatedness (Maynard Smith, 1998, p 141;
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Table 1 Notation for measures of identity and coalescence

p, pk frequency of allele k

�k expectation of frequency of allele k

Qj and Q
·
j probabilities of identity in state and identity by

descent, respectively, for a pair of genes
specified by index j

Qw, Qb w and b are generic notations for identity of
pairs of genes compared within and between
some structural units

:k as in eg Qj:k allelic type qualifier; eg Qj:k is the probability of
identity in state, both genes being of allelic type
k

�p as in eg Qj:k�p conditioning on allele frequency p; eg Qj:k�p is Qj:k

given allele frequency is p in the population

Q
·
(t*) the probability of coalescence before time t* (t*

included)

F generic notation for inbreeding coefficients, (Qw

− Qb)/(1 − Qb)

F
·

same as F but in terms of identity by descent

T, Tw, Tb average coalescence time; Tw and Tb for genes
within and between some structural units,
respectively

C (Tb − Tw)/Tb

ct (cj,t) probability of coalescence, at time t in the past
(of a pair of genes specified by index j)

see also Cotterman, 1940, reprinted 1974, quoted below),
or that, when computing relatedness, ‘we are not
attempting to characterize a reality’ (Jacquard, 1975, p
342). As emphasized by Grafen (1985), this is certainly
not what one should expect from a definition of
relatedness suitable for the analysis of biological pro-
cesses.

There are alternative definitions of relatedness in the
literature, but there is little discussion of their relation-
ships to each other. The aim of this paper is to compare
some definitions of relatedness parameters and their
properties, pointing that these difficulties follow from
using some definitions, and not from using some others.
Some of the notation used below is summarized in
Table 1.

A generic definition of inbreeding
coefficients
Several approaches, based either on statistical consider-
ations or on theoretical analysis of evolutionary
processes, have led to the following definition of inbreed-
ing coefficients.

Inbreeding coefficients are defined in terms of the
probability of identity in state of different pairs of genes.
Here the probability of identity in state is simply the
probability that two genes are of identical allelic type.
For example, for microsatellite loci, allelic type may be
characterized by allele size, or it may be characterized by
the exact DNA sequence.

Consider a population structured in some way
(geography, age structure, etc). The probability of ident-
ity will depend on whether one compares genes within
subpopulations, between subpopulations, and so on. One

may define Qw, the probability of identity within a ‘struc-
tural unit’, or ‘class of genes’ (for example among
individuals within the same age class, in the same geo-
graphical area, etc), and Qb, the probability of identity
between genes in two different structural units, eg two
subpopulations. In a generic way one can define a para-
meter F of the form:

F �
Qw � Qb

1 � Qb
. (1)

This definition is ‘generic’, ie it is not based on the con-
sideration or the properties of a particular model. For
example we do not assume a particular mutation model.
We only consider that populations follow some unspeci-
fied random (stochastic) process. Note that the prob-
ability of identity in state is not the frequency of identical
pairs of genes in a biological population (which, in many
models of interest, will be a random variable, not a
parameter). The probability of identity in state is the
expectation of the frequency of identical pairs of genes
in some sample or population. These expectations are
parameters, ie functions of the parameters defining the
model, whatever these parameters may be (deme sizes,
mutations rates, and so on).

‘1’ in the above definition may be viewed the prob-
ability of identity of a gene with itself. More generally,
inbreeding coefficients may be defined as a ratio of differ-
ences in probabilities of identity. A simple conceptual
message underlying a ratio of differences is that it com-
pares more and less identical individuals, rather than
‘related’ vs ‘unrelated’ individuals. Which ratio it is best
to consider depends on the biological process considered
and, secondarily, may be a matter of convenience. For
example, in the analysis of models with localized disper-
sal (at least), it may be convenient to consider parameters
of the form (Qw � Qr)/(1 � Qw), where Qw is the prob-
ability of identity of different genes within a deme, and
Qr is the probability of identity of genes at some geo-
graphical distance r (Rousset, 1997; Rousset and Billi-
ard, 2000).

The well-known F-‘statistics’ originally considered by
Wright may be defined as above. Such definitions were
explicitly considered by, for example, Takahata (1983)
and Crow and Aoki (1984) (inspired from Nei’s (1973)
similar definitions in terms of frequencies of identical
pairs of genes) and were further discussed by Cockerham
and Weir (1987, 1993) and Nagylaki (1998). For Wright’s
FST, Qw is the probability of identity within a deme and
Qb is the probability of identity between demes. Likewise,
Wright’s FIS, Qw is the probability of identity of the two
homologous genes in a diploid individual, and Qb is the
probability of identity of two genes in different individ-
uals.

Probabilities of identity in state depend on the
mutation process. A measure of relatedness that does not
take into account the mutation process may be more
appealing. However, in many models of interest, the
value of inbreeding coefficients, defined following the
above generic expression (1), is only weakly dependent
on the mutation model. As emphasized by Crow and
Aoki (1984), this is a necessary condition if such measures
are to yield information about pedigrees or genealogies,
which do not depend on mutation.

The approximate independence from mutation cannot
arise ex nihilo: it must depend on underlying assumptions
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assumption in terms of the comparison of distributions
of coalescence times of the pairs of genes that define the
inbreeding coefficients.

An assumption and its implications
We consider the probability ci,t that two genes have their
most recent common ancestor (‘coalesce’) at time t in the
past. The i index corresponds to the type of pair of genes
considered (two homologous genes within a diploid indi-
vidual, two genes in different individuals, and so on) and
we will use the w and b indices as in the previous Section.

We assume that the probabilities of coalescence cw,t and
cb,t become proportional to each other in the distant past.
This simple assumption has a number of consequences,
that we first describe graphically, and then more for-
mally.

Graphical argument
To illustrate our argument, we will consider different
examples. One example illustrates the computation of
relatedness from a pedigree in a panmictic population.
To keep mathematics to a minimum, the particular case
considered in Figure 1a is relatedness between two genes
in a selfed individual in a panmictic population with ran-
dom mating (including selfing). That is, here identity Qw

is for the two genes borne by a selfed individual, while
Qb is for genes borne by two random individuals in the
population. The second example (Figure 1b) is an island
model with selfing, detailed in Rousset (1996). The third
(Figure 1c) is a stepping stone model.

A property observed in these three examples is that the
probabilities of coalescence cw,t and cb,t become pro-
portional to each other in the distant past. Thus we can
split the area covered by the probability distribution of
coalescence times of more related genes (the area
delimited by cw,t) into two parts. Take the area below the
cb,t curve (the distribution of coalescence times of less
related genes) and consider this surface reduced by the
value of the ratio cw,t/cb,t for large t. For large t, this
reduced area coincides with the area delimited by cw,t.
The other part is the rest of the area delimited by cw,t.
These two areas are shown in Figure 1b for the compari-
son of genes within individuals (cw,t) and between indi-
viduals within demes (cb,t). This second area (lightly
shaded in Figure 1b) is restricted to the recent past.

We will see that, as a first approximation, the inbreed-
ing coefficient F, defined as a ratio of differences of prob-
abilities of identity, equals this ‘initial area’, ie relatedness
equals the increased probability of coalescence in the
recent past.

Formal argument
The assumption that the probabilities of coalescence cw,t
and cb,t become proportional to each other in a distant
past may be expressed as follows (Rousset, 2001): for two
different pairs of genes, the limit limt→� cw,t/cb,t exists and
is finite. This limit may be computed in models of popu-
lation structure, as detailed in the Appendix. For the
selfed individual example of Figure 1(a), cw,t/cb,t is con-
stant for any t � 1. Actually cw,1 � 1/2 for genes from
the selfed individual, cb,1 � 1/(2N) for random individ-
uals, and for both we have cj,t � (1 � 1/(2N))t�2(1 �
cj,1)/(2N) for t � 1. Thus cw,t/cb,t � N/(2N � 1) for t � 1.

Heredity

Figure 1 Probabilities cj,t of coalescence at t. This figure compares
distributions of coalescence times of different pairs of genes, used
to define inbreeding coefficients. Three different cases are con-
sidered. (a) Selfed individuals in a panmictic, diploid, randomly
mating (including selfing) hermaphroditic population of N = 1000
individuals. Each offspring may be produced by selfing with prob-
ability 1/N, independently of each other. (b) An island model with
selfing (see Rousset, 1996, for details), with 100 demes of 2N = 20000
genes, a dispersal rate m = 1/N, and a selfing rate 0.5. j = 0: two
genes within the same individual; j = 1: two genes in different indi-
viduals within a deme; j = 2: two genes in different demes. Distri-
butions of coalescence times are shown as plain lines. The shaded
surface below the dotted line is constructed from the surface
covered by the distribution of coalescence times of genes between
individuals, reduced as described in the text. The shaded area
above the dotted line is the ‘initial area’ for FIS. Redrawn from Rous-
set (1996). (c) A one-dimensional stepping stone model, 100 demes
of N = 10 haploid individuals, dispersal rate m = 1/4. Redrawn
from Rousset (2001).
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For models in which limt→�cw,t/cb,t exists and is finite,
one may then define

� � 1 � lim
t→�

cw,t/cb,t. (2)

The height of the ‘initial area’ at time t is then

g(t) � cw,t � (1 � �)cb,t. (3)

Given that the two distributions cw,t and cb,t must each
sum to 1 (Σ�

t�1 cw,t � Σ�
t�1 cb,t � 1), if we sum (3) over t,

we find that

��
t�1

g(t) � �. (4)

Thus � is both the ‘initial area’ and the asymptotic pro-
portional factor between probabilities of coalescence
defined by equation 2. These two interpretations of the
same quantity have been separately pointed out in differ-
ent analyses (eg Chesser et al, 1993; Rousset, 1996).

For pedigrees in panmictic populations, � can be
defined exactly, such that g(t) � 0 for t � �. In the above
example, selfed individuals have � � 1 (g(1) � �). More
generally, there is no obvious way to define � accurately:
the value of comparing distributions of coalescence times
is to provide an intuitive understanding of more exact
results. For the example of Figure 1b, a value of � may
be chosen as the time where cw,t � cb,t. Thus � � 20 for
c0,t vs c1,t, and � � 30000 for c1,t vs c2,t. Likewise Figure 1c
suggests � � 20.

The validity of the assumption on distributions of
coalescence times must itself be proven under any parti-
cular model. This is done in the Appendix for the island
model, and for local relatedness under isolation by dis-
tance. A notable exception concerns average inbreeding
coefficients of the form (Qw � Q̄)/(1 � Q̄), involving the
probability of identity within demes, Qw, and the prob-
ability of identity averaged across all possible spatial dis-
tances, Q̄. In a stepping stone model, a new problem
appears: for Qb � Q̄, limt→� cw,t/cb,t is approached increas-
ingly slowly as the number of demes increases. Thus the
properties and possible uses of such coefficients will be
distinct from those reviewed here. Indeed, similar para-
meters appear in expressions for effective size (eg Wright,
1943; Maruyama, 1972; Whitlock and Barton, 1997), but
not as relatedness parameters in some analyses of selec-
tion (Rousset and Billiard, 2000).

Definitions in terms of identity by descent
Here we review two definitions of inbreeding coefficients
in terms of two concepts of identity by descent. The first
definition is related to �, and the second is a special case
of the previous definition of F. Hence, by further showing
the relationship between � and F, we will tie all defi-
nitions together.

Identity by descent may be defined as the total prob-
ability of coalescence between now and some time t*. A
time-dependent definition of ‘FST’ is then obtained by
computing a ratio of differences of such identities:

F(t*) �
�t*
t�1

(cw,t � cb,t)

1 � �t*
t�1

cb,t

� 1 �

��
t�t*�1

cw,t

��
t�t*�1

cb,t

(5)

Similar definitions were considered by Chesser et al

(1993), Wang (1997), and Whitlock and Barton (1997). The
dependence on t* is removed by considering the asymp-
totic value of F(t*) for large t*. Given limt*→�cw,t*/cb,t* � 1
� �, this asymptotic value is �. The time scale at which
this value is approached is also given by � since for t* 	 �,

F(t*) �

�t*
t�1

(g(t) � (1 � �)cb,t � cb,t)

1 � �t*
t�1

cb,t

(6)

�

��1 � �t*
t�1

cb,t�
1 � �t*

t�1

cb,t

� �.

Identity by descent may also be defined as the prob-
ability Q̇j that there has not been any mutation since the
common ancestor, so that

Q̇j � ��
t�1

cj,t (1 � u)2t (7)

(Malécot, 1975, equation 6; Slatkin, 1991). Correspond-
ingly, we can define the identity-by-descent version of F
(eg Slatkin, 1991):

Ḟ �
Q̇w � Q̇b

1 � Q̇b
. (8)

Since Q̇ is also the identity in state in the ‘infinite-allele
model’, Ḟ is a special case of F.

The effects of mutation
Given there is some � such that Σ�

t�1 g(t) � � and that
mutation can be neglected in the first � generations, we
may intuitively expect that the inbreeding coefficient F
will be weakly dependent on mutation and will be
approximately �. Slatkin (1991) noticed a relationship
between Ḟ and the average coalescence times of pairs of
genes, which can be extended to the identity in state
parameter F as follows. In a finite population and for dif-
ferent mutation models, Qj � 1 � 2uTj � O(u2) where Tj

is the average coalescence time of a pair of genes of type
j, and O(u2) is a residual term which scales as the square
of the mutation rate. It follows that the limit value of F
is a ratio of coalescence times, Tw and Tb:

lim
u→0

Qw � Qb

1 � Qb
� lim

u→0

1 � 2uTw � (1 � 2uTb)
1 � (1 � 2uTb)

(9)

�
Tb � Tw

Tb
� C.

Thus, in the low mutation limit, the identity in state and
identity-by-descent parameters measure the same
‘relatedness’ measure C (Slatkin, 1995; Rousset, 1996).

The effects of mutation rate may be understood as fol-
lows. Let qt be the probability of identity in state of a pair
of genes which coalesce t generations in the past. If qt
were a linear function of the coalescence time of these
pairs of genes (qt � 1 � 2ut, for example), one would
have F � C. More generally, writing qt � 1 � 2ut � R(t)
where R(t) � O(u2) is the deviation from linearity, the
difference between F and C is proportional to
Σ�
1 R(t)g(t). Hence the difference between F and C is more
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qt and coalescence time t is more strongly nonlinear and
when g(t) remains large in the distant past. The latter con-
dition occurs in island models with low migration rates,
or over large distances under models of isolation by dis-
tance (Slatkin, 1995; Rousset, 1996, 1997).

There are simple mathematical analogies between the
1 � Q terms and measures of divergence between pairs of
genes based on sequence divergence (eg Hudson, 1990),
additive genetic variance (eg Lande, 1992), or variance in
allele size (eg Slatkin, 1995). In each case these measures
of divergence between pairs of genes are assumed to be
linearly related to their realized coalescence time, hence
the value of the FST analogues, defined from these meas-
ures of divergence, is C.

Exact relationships between � and inbreeding
coefficients
When does Ḟ � �? From equations 2 and 7, it follows that

Q̇w � Q̇b � ��
t�1

((1 � �)cb,t � g(t) � cb,t)(1 � u)2t

� ��
t�1

(��cb,t � g(t)) (1 � u)2t (10)

� � �1 � ��
t�1

cb,t (1 � u)2t� � ��
1

g(t) (1 � (1 � u)2t)(11)

(where we have inserted � � 
tg(t) which is null by equ-
ation (4))

� � (1 � Q̇b) � ��
1

g(t) (1 � (1 � u)2t). (12)

Hence

Ḟ �
Q̇w � Q̇b

1 � Q̇b
� � �

��
1

g(t) (1 � (1 � u)2t)

1 � Q̇b
. (13)

Hence in general Ḟ� �. The low mutation limit value of
Ḟ may be written

C � � �

��
1

tg(t)

Tb
. (14)

Hence in general, limu→0F � C � �. But there is an
important exception, that of migration models with an
infinite number of demes, such as the infinite island
model or more generally models of isolation by distance
on an infinite lattice. In the latter case it is shown in the
Appendix that

lim
u→0

Ḟ � C � � (15)

ie Σ�
1 tg(t)/Tb → 0 as the number of demes n → �.

It may be checked from the algebra of island or iso-
lation by distance models that Ḟ is weakly dependent on
the number of demes, as noted for related quantities by
Crow and Aoki (1984) or Rousset (1997). Further, � for
the finite population model is itself close to � for the
infinite population model, so Ḟ for the finite population
model is close to � for the infinite population model.
Since F(t*) is asymptotically equivalent to � (equations 5
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and 6), F(t*) is asymptotically equivalent to the low-
mutation value of Ḟ when this value is �, ie for large
number of subpopulations. These results tie together the
different definitions of relatedness or inbreeding coef-
ficients for low mutation and large number of subpopula-
tions.

Concepts of reference population
We have seen that F approximates a ratio of differences
in probabilities of identity by descent (Ḟ), rather than a
probability of identity by descent. Such conclusions may
seem to conflict with usual arguments according to which
‘inbreeding coefficients’ measure ‘identity by descent’ (eg
Hartl and Clark, 1997; Lynch and Walsh, 1998). Here we
discuss such an argument, based on the concept of a ‘ref-
erence population’, and show that when it is correctly
interpreted, it leads to the same ratios of differences of
identities as considered above. Under some conditions,
this reduces to an identity by descent.

Definitions of relatedness in terms of a ‘reference popu-
lation’ were introduced by Cotterman (1940, reprinted
1974):

“[A definition of identity] should also be, if possible, a math-
ematically exact one, but so far the author has been unable
to fulfill this requirement. We may say that [identical] genes
shall be taken to mean two or more genes derived recently,
in terms of generations of adults, from some common gene
or one from the other. But precisely how recently? Again, in
the absence of a definite criterion we may say 5 or 6 gener-
ations for the human population. Though this is quite arbi-
trary, it is nevertheless serviceable for several reasons.

First, the chance that mutation should have occurred dur-
ing this time is in most cases quite negligible, whereas it
would not be so for some longer period. Hence in the sol-
ution of many statistico-genetic problems we may choose to
assume that mutation is absent and that all derivative genes
must be identical with but little loss of accuracy. Secondly,
inbreeding which comes about through the occurrence of a
common ancestor more distantly removed than 5 or 6 gener-
ations will have entirely negligible genetic effects%”

This is often interpreted as follows.

Relatedness relative to a reference biological population
One defines relatedness as the total probability of coalesc-
ence between now and t*, Q̇(t*) � Σt*

t�1 cw,t (this is the first
definition of identity by descent previously considered).
Let p be the frequency of allele k in a ‘reference’ biological
population at time t*. Consider at t* the probability Q:k(t*)
that two genes are identical in state, and both of type k.
If we suppose that there is no mutation between now and
t*, then given p, the probability of identity is

Q:k(t*) � Q̇(t*)p � (1 � Q̇(t*))p2 (16)

(eg Crow and Kimura, 1970, section 3.2). This is of the
form rp + (1 � r)p2 for r = Q:k(t*).

To obtain (16), one assumes first that the ancestral
allele frequency at time t* is identical to the present allele
frequency. That is, we neglect drift in allele frequency p
(and mutation) over time span t*. This results from con-
sidering ‘infinite’ populations, for t* bounded (equation
16 is of interest only for t* bounded, since as t* → �,
Q̇(t*) → 1 so that one would have Q:k � p, a result that
contains no information about relatedness). The fraction
r of pairs of genes that have coalesced by time t* then
accounts for the term rp. Second the argument assumes
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that genes that have not coalesced by time t* are effec-
tively independent. This accounts for the term (1 � r)p2.

The assumption that such genes are ‘effectively inde-
pendent’, given they have not coalesced by time t*, is the
weak part of this argument. The comparison of distri-
butions of coalescence times is helpful in understanding
why the underlying logic is not generally correct, but is
still correct in some classical models.

Consider again Figure 1. In the finite island model, the
more demes, the lower the probability that ancestral lin-
eages meet in the same deme at time t. More precisely,
if we let the number of demes n → �, for all t the prob-
ability of identity cb,t of genes in different demes → 0 (it
is O(1/n)). This means that the probability distribution
of coalescence times of genes in different demes flattens
down on the x-axis, for all t. Thus, either genes coalesce
in the ‘recent’ past within the same deme where they are
both located, or the ancestral lineages separate in differ-
ent demes, and in the latter case, these lineages may be
considered ‘independent’ (eg Hudson, 1998). A technical
assumption underlies this reasoning. Genes in different
demes are independent if mutations occurs faster that the
coalescence of genes from different demes. For low
mutation (u → 0), this is obtained by assuming that the
number of demes n → � and that nu → �.

The argument for the computation of relatedness coef-
ficients from pedigrees follows exactly the same logic. In
an ‘infinite’ panmictic population, genes in randomly
chosen individuals have an ‘infinitely small’ probability
of coalescing in a recent past. Relatedness measures the
probability of coalescence before ancestral lineages ‘lea-
ve’ the pedigree considered. In addition the time span t*
may be identified by an exact argument (t* � �, the base
of the pedigree), and thus relatedness may be computed
from an examination of pedigrees.

By contrast, in the stepping stone case, when the num-
ber of demes n → �, there is still a positive probability
that nearby genes coalesce in a recent past (cb,t does not
decrease to 0 for all t). Thus genes in different demes
cannot be considered independent.

One remaining question is whether equation 16 is cor-
rect in cases where its previous ‘proof’ fails. More gener-
ally, we may ask whether the expected frequency Q:k�p of
pairs of genes both of type k, given allele frequency p, is
of the form

Q:k�p � rp � (1 � r)p2 (17)

for some r independent of allele frequency. It cannot be
true at extreme allele frequencies in finite populations, as
seen in the trivial case of only one copy of the allele. Then
Q:k�p � 0, so r � 0 according to the above formula. More
importantly, simulations (Figure 2) suggest notable dis-
crepancies from equation 17, which seem to persist when
the number of demes increases, for the stepping stone
model. On the other hand, discrepancies are weak in the
island model, and decrease with an increasing number of
demes (details not shown). This contrast could be
expected from the distinction we have drawn between
island and stepping stone models.

In some formulations, one can consider a local
relatedness statistic, where p is an allele frequency in
some local sample rather than in the total population (eg
Ritland, 1996; Lynch and Ritland, 1999; Weir, 2001). A
discrepancy from equation 17 may also be observed

Figure 2 The relationship between identity and frequency in the
total population. If equation 16 is valid then (Qj:k�p − p2)/(p(1 − p)) =
(Qj:k − E[p2])/(E[p(1 − p)]). Therefore, discrepancies with equation
16 are shown by plotting estimates of (Qj:k�p − p2)/(p(1 − p)) (dots)
vs (Qj:k −E[p2])/(E[p(1 − p)]) (straight lines), for two values of j (0
and 5), in a one-dimensional stepping stone model with n = 200
demes of 10 haploid individuals. The dispersal rate was m = 0.2,
and a two allele model with mutation rate u = 10−5 was considered.

when a local allele frequency is considered, as shown in
Figure 3 for p̃ � 0.1 or p̃ � 0.9.

Another interpretation of the reference population
There is an alternative, much less common, interpretation
of the reference population and of allele frequency in this
population. Here the concept of ‘population’ refers to an
infinite number of replicates of the mutation-drift pro-
cess considered.

The values of probabilities of identity Q or Q̇, pre-
viously considered in equations 1 and 7, refer to such a
concept of population, in the same way that the expec-
tation of a Normal random variable is the average value
in an infinite number of samples from a Normal distri-
bution. Likewise, allele frequency in this ‘population’ is
the expected frequency �k of allele k in the process con-
sidered. For example, in a two-allele model with sym-
metrical mutation rate between the two alleles, the
expected frequency �k of each allele is 1/2, while the real-

Figure 3 The relationship between identity and frequency in a local
sample. In contrast to Figure 2, p is here the allele frequency in a
sample of 1000 genes. A two-dimensional stepping-stone popu-
lation of 100 × 100 demes of 10 haploid individuals was considered,
and an exact coalescent algorithm (R Leblois and FR, unpublished
results) was used to generate more than 400000 samples of 1000
genes on a square of 10 × 10 demes. The one-dimensional dispersal
rate was m = 0.2, and a two allele model with mutation rate u = 5
10−6 was considered.
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is a random variable with expectation 1/2 (Cockerham
and Weir (1987) used the notation p for what is �k here).
In considering replicates of the process, the probability
that two independent genes are both of type k is �2

k, not
the expectation E[p2

k]. E[p2
k] would arise when considering

random sampling of two genes from one biological popu-
lation, hence such genes are not independent in that they
both depend on events that led to a given allele frequency
pk in the biological population.

In this way, the relationship between identity and
allele ‘frequency’ may be intuitively understood as fol-
lows. Either the genes are identical by descent as defined
by equation 7 (with probability Q̇j for some specific class
j of pair of genes, as above) or they are not (with prob-
ability 1 � Q̇j) and then they are considered ‘inde-
pendent’, that is, both of type k with probability �2

k. One
may then write

Qj:k � Q̇j�k � (1 � Q̇j)�2
k ⇒ Q̇j �

Qj:k � �2
k

�k � �2
k
, (18)

where Qj:k is the probability that two genes from some
specific class j are both of type k. This result is not strictly
correct, but almost so. For example in a symmetrical two-
allele model the exact value of (Qj:k � �2

k)/(�k � �2
k) is the

value of identity by descent in a model with a two-fold
mutation rate, whatever the model of population struc-
ture (eg Tachida, 1985).

Equation 18 is of the form r�k � (1 � r)�2
k for r � Q̇j,

which suggests that Q̇j is a relatedness measure. In the
infinite island model, this result may be obtained for low
mutation (u → 0), by assuming that the number of demes
n → � and that nu → �. As previously noted, the latter
assumption means that mutations occur faster that the
coalescence of genes from different demes. It ensures
that Q̇w � 1 and that Q̇b � 0 in the limit, so that Ḟ �
Q̇w. This supports the computation of relatedness, r, as
identity by descent, Q̇w. A similar argument can be made
for pedigree relatedness in panmictic populations. How-
ever, these are the exceptions. More generally, the low
mutation limit of Q̇j is 1, which bears no information
about the genealogical relationships of different individ-
uals.

Rather, we may recover the interpretation of inbreed-
ing coefficients in terms of �, as follows. With probability
1 � � (which corresponds to the area below the dotted
line in Figure 1b), the probability of identity of pairs of
genes ‘within’ is the same as the probability of identity
of genes ‘between’, and with probability � (the ‘initial
area’) the coalescence event has occurred recently in a
common ancestor, which was of allelic type k with prob-
ability �k. Then

Qw:k � ��k � (1 � �)Qb:k ⇒ Qw:k � Qb:k

�k � Qb:k
� � (19)

where Qw:k and Qb:k are probabilities of identity, both
genes being of allelic type k, ‘within’ and ‘between’
classes of genes as above. Summing this expression over
alleles, one has

Qw � (1 � �)Qb � � ⇒ Qw � Qb

1 � Qb
� �, (20)

Equation 19 may simply be viewed as a generalization of
equation 18 where almost any probability of identity Qb

Heredity

may be considered, instead of the probability of identity
�2

k of ‘independent’ genes.

Discussion

Coherent definitions
Relatedness and identity by descent are often identified
to each other. This identification seems supported by a
number of efficient computation techniques based on
them. On the other hand, it leads to inconsistencies which
are easily resolved by using alternative definitions. For
example, inconsistencies arise whenever relatedness is
defined as a probability of identity by descent, and an
(unbiased) estimator of it is defined, such that the aver-
age estimated relatedness among all sampled individuals
is null (as for example some estimators of Queller and
Goodnight, 1989; Ritland, 1996; Lynch and Ritland, 1999).
This would imply that the average relatedness parameter
among all sampled individuals is null, and therefore that
the ‘probability of identity by descent’ is negative for
some pairs of individuals.

Actually, these estimators may be understood as fol-
lows. The estimated ‘relatedness’ between individuals x
and y may be written (Q̃xy � Σkp̃2

k)/(1 � Σkp̃2
k) (eg Ritland,

1996), where Q̃xy is the observed frequency of identical
alleles between the two individuals, and p̃k is the fre-
quency of allele k in the sample. Σkp̃2

k is identical to the
frequency of pairs (sampled with replacement) of genes
in the sample, which we may interpret as an estimator
of the average probability of identity in state among pairs
of genes, Q̄, given the sampling design. Hence these esti-
mators may be understood as estimators of a ratio of
probabilities of identity in state, (Qxy � Q̄)/(1 � Q̄),
which approximate the equivalent ratio of probabilities
of identity by descent, (Q̇xy � Q̄̇)/(1 � Q̄̇). Such coef-
ficients measure how much higher (or lower) the prob-
ability of recent coalescence is for the pair x, y relative to
the average probability for all pairs considered.

Other, sometimes trivial, inconsistencies abound. For
example, definitions of relatedness as ‘identity by
descent’ are also not general enough to include negative
correlations between genes, such as heterozygote
excesses (negative FIS). This problem also arises when
defining inbreeding coefficients as ratios of expected
mean squares in an analysis of variance (eg Weir and
Cockerham, 1984; Cockerham and Weir, 1987). Actually,
inbreeding coefficients of the form F bear a more complex
relationship with expected mean squares (Rousset, 2001).
It is also well-recognized that in various models, F-‘stat-
istics’ approach their equilibrium values, after temporal
variations in demographic parameters, faster than gene
diversities (Takahata, 1983; Slatkin, 1994; Pannell and
Charlesworth, 1999). This again shows a difference
between F-‘statistics’ and probabilities of identity.

These distinctions are blurred in the infinite island
model (and for pedigree relationships in infinite panmic-
tic populations), where the identity by descent in differ-
ent demes may be considered null in a limit case (given
the implicit technical assumption nu → �, detailed
above). In this case the ratio of differences of probabilities
reduces to a single probability of identity by descent,
which is also the probability that genes lineages coalesce
before a dispersal event occurs. This is very helpful in
obtaining approximations based on such models, but this
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does not logically establish the approximation used (eg
identity by descent) as a coherent definition of the quan-
tity approximated (eg relatedness in a finite population).

Beyond the logical consistency of definitions, we may
also question the claim that the probability that two
genes are of a given allelic type can be written as rp �
(1 � r)p2, where p is the allele frequency in a ‘reference
population’ and r is a ‘relatedness’ measure independent
of p. As we have seen, there may not be any reference
biological population such that this relationship is satis-
fied. Hence, interpreting p as frequency in an ‘ancestral
reference population’ (equation 16) is not generally valid.
It is again essentially correct in infinite panmictic (for
pedigree analyses) and infinite island populations, but
not in other cases, particularly with localized dispersal.

Such conclusions emphasizes the relevance of a statisti-
cal framework in which none of these conceptual
ambiguities arise. We have simply distinguished between
random variables (allele frequencies in a biological
population) and their expectations (their expected value
under the effects of drift and mutation). The distinction
between frequencies in biological populations and their
expectations is not the one between sample values and
values in a biological population. Allele frequencies in a
population are often random variables in theoretical
models of interest (such as the neutral models of popu-
lation structure). Thus, in a classical statistical perspec-
tive, they should not appear in the definition of
parameters; only their expectations should. The motiv-
ation for this statistical framework is simply that, if we
are to make inference about the parameters of a process
characterized by (say) subpopulations of size N and a dis-
persal rate m among them, the statistical inferences must
deal with functions of N and m but not of a random vari-
able such as p or a relatedness ‘parameter’ that would be
a function of p (Nagylaki, 1998).

Relatedness in kin selection theory
The distinctions made here are relevant to assess the val-
idity of uses of ‘relatedness’ in some other contexts. The
reference population framework underlies Hamilton’s
(1964, 1970) development of kin selection theory. The
‘regression definition of relatedness’ (eg Grafen, 1985) is
a reformulation of this framework. It defines relatedness
r from an assumed relationship between the frequency q
of allele k in some individual related to a ‘focal’ individ-
ual, the allele frequency X in this ‘focal’ individual, and
the allele frequency p in the biological population. This
relationship is:

E(q�p) � rX � (1 � r)p. (21)

Here E(q�p) is the expectation of q conditional on allele
frequency p in the population, and r is assumed inde-
pendent of p. Consider for example a subdivided haploid
population. We can compute the probability Q:k�p of ident-
ity in state (both genes being of the allelic type k) between
a focal individual and its neighbors in the same deme,
conditional on an allele frequency p in the population.
Q:k�p is the product of the probability that a gene from a
neighbor is of type k when a focal individual is of type
k (which is r � (1 � r)p from the above expression), times
the probability that a focal individual bears allele k
(which is the allele frequency in the population, p). That
is, Q:k�p � (r � (1 � r)p)p, which is equation 16 if r �
Q̇(t*). Thus the domain of validity of the ‘regression

definition’ is the same as the domain of validity of equ-
ation 16. This formulation was appropriate for Hamil-
ton’s original model, but recognizing its shortcomings
motivates a more general approach to modelling selec-
tion in subdivided populations (Rousset and Billiard,
2000), where generalized relatedness measures take the
form of ratios such as F, considered in the low
mutation limit.

Estimation of relatedness
The implications for estimators of inbreeding coefficients
are less clear. The infinite island model is not at issue
here. In this model, relatedness may be interpreted as the
probability of coalescence before migration of any ances-
tral lineage. This is useful for constructing likelihood
methods under island models (eg Wakeley and Aliacar,
2001), and can be generalized to other models where the
genes within units (demes or individuals) coalesce at a
faster time scale than genes in different units (Nordborg,
1997; Nordborg and Donnelly, 1997).

Some well-known estimators of F-statistics, such as
‘Weir and Cockerham’s (1984) estimator, are not based
on equation 16. However, estimators that weight alleles
according to their frequencies differently from Weir and
Cockerham‘s one, might in principle be affected. Equ-
ation 17 is also used for computing the likelihood of
matches of genotypes of different individuals (eg in for-
ensic applications, Weir, 2001). The computer simulations
(Figure 3) suggest that these computations would be
affected under localized dispersal, when using highly
polymorphic markers with several ‘rare’ alleles. The
resulting bias may be small, and more realistic simula-
tions would be required to evaluate it.

Conclusion
We have compared different definitions of inbreeding
coefficients and of relatedness, and emphasized that
definitions of inbreeding coefficients as ratios of differ-
ences of probabilities of identity in state are always well-
formulated and broadly applicable. They do not
constrain one to think in terms of the models to which
less general definitions may apply, such as the infinite
island model. These alternative definitions relieve us
from the ambiguities of the concepts of ‘reference popu-
lation’ and ‘unrelated individuals’. They do not approxi-
mate a probability of identity by descent but rather a
ratio of differences of probabilities of identity by descent.
Nevertheless, we can recover from such definitions the
classical rules for computing relatedness as ‘identity by
descent’, either from a pedigree in a panmictic popu-
lation, of in infinite island models.
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Appendix

Migration matrix and other models of population
structure
In many models of population structure without demo-
graphic fluctuations, identity by descent obeys
expressions of the form

Q̇ � �(AQ̇ � Āc) (A.1)

where Q̇ is a vector of stationary probabilities of identity
by descent, � � (1 � u)2, A and Ã are two matrices (A
is further irreducible), and c is a vector expressing the
gain in identity due to coalescence events – typically it
contains elements ci either null or of the form (1 �
Q̇i)/Ni. In the island and isolation by distance models, A
� Ã. See Maruyama and Tachida (1992) for a detailed
example. See Rousset (1999) for models with A � Ā (eg
spatially- and age-structured populations).

Equation A.1 can also be written in terms of a matrix
G, previously considered by Hill (1972), as

Q̇ � � (GQ̇ � Ā
) (A.2)

where all elements gij of G are the sum of the factors of
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Q̇j in the ith elements of AQ̇ and of Āc, and Ã� is the
remaining term of Ãc where � is a vector of elements
either null, or of the form 
i � 1/Ni if ci was of the form
(1 � Q̇i/Ni. It follows that

Q̇ � (I � �G)�1 �Ā�. (A.3)
Let e1, %, ek be the right eigenvectors of G, each being
the column vector ej (ej1, %, ejk). The eigenvalues �i asso-
ciated with each ei obey 1 � �1 � �2 	 % 	 �k (from the
Perron-Frobenius theorem for irreducible non-negative
matrices; see Horn and Johnson, 1985, section 8.4.4). The
vector Ã� may be written as 
jajej for some aj’s so that

Q̇ � �
j

�ajej

1 � ��j
� ��

t�1

�k

j�1

�t�t�1
j ajej (A.4)

which shows that the probability of coalescence is ci,t �

j�

t�1
j ajeji. Note that all e1i’s are nonzero (this also follows

from the Perron-Frobenius theorem) and that
lim
t→�

cw,t/cb,t � e1w/e1b (A.5)

where the indices w and b are used as in the main text.
The function g(t) of the main text may then be written

g(t) = cw,t − (1 − �)cb,t = �k

j�2

�t�1
j aj(ejw − (1 − �)ejb). (A.6)

When the dimension of the matrix increases indefi-
nitely with the number of demes, as for models of iso-
lation by distance, it is not obvious that limt→� cw,t/cb,t is
defined (the fact that it is for each model with a finite
number of demes is not sufficient when the limit is
approached more and more slowly as the number of
demes increases). However for lattice models of isolation
by distance, limt→� cw,t/cb,t follows from an expression
given by Sawyer (1976) for cr ,t in these models, where the
index r is here used from genes at distance r on the lat-
tice. In Sawyer’s notation, cr ,t is Pr[M � t�Z0 � r] and is
given by his equation 4.29. From this equation, one has
eg � � limt→� c0,t/cr ,t � N/[N � b(r)] where N is the num-
ber of haploid adults per deme and b(r) is the ‘recurrent
potential’ whose definition is given by Sawyer, equation
4.3. For example in a one-dimensional lattice

b(r) �
1
� ��

0

(1 � cosrx)�2(eix)
1 � �2(eix)

dx (A.7)

where � is the characteristic function of dispersal dis-
tance. With N haploid adults per deme, one has limu→0

Ḟ/(1 � Ḟ) � b(r)/N (Rousset, 1997, equation A10), hence
limu→0 Ḟ � N/[N � b(r)] � �.
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