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Abstract

Purpose To evaluate the proliferation rates of

five human uveal melanoma (UM) cell lines

after treatment with amfenac, a

cyclooxygenase (COX)-2 inhibitor, and

subsequent radiation exposure.

Methods Five human UM cell lines (92.1,

SP6.5, MKT-BR, OCM-1, and UW-1) and one

human fibroblast cell line (BJ) were incubated

with amfenac. Treated and non-treated cell

lines were then exposed to various doses of c

radiation: 0, 2, 4, 6, and 8Gy. Sulphorhodamine-

B assay was used to assess proliferation rates

48 h post-radiation.

Results Treatment of UM cell lines with

amfenac prior to radiation led to a marked

reduction in proliferation rates. This difference

was statistically significant in all cell lines at

every radiation dose (Po0.005), with the

exception of 92.1 at 2Gy (P¼ 0.157). Fibroblasts

treated with amfenac showed significantly

higher proliferation rates after 2 and 8Gy, with

no significant differences at 0, 4, and 6Gy.

Conclusions The radiosensitivity of UM cell

lines was increased by the administration of

amfenac, the active metabolite of nepafenac.

There appears to be a radioprotective effect of

amfenac on human fibroblasts. The topical

administration of nepafenac may decrease

tumour recurrence and radiation-induced

complications while broadening the indications

for radiotherapy by treating larger tumours.
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Introduction

Uveal melanoma (UM) is the most common

primary intraocular malignant tumour in adults

with an incidence of seven cases per million.1

Enucleation of the affected eye was the only

available treatment for UM for most of the last

century.2 However, with the advent of more

conservative alternatives to treat the primary

tumour, enucleation rates have substantially

declined in recent years. The procedure is now

reserved for large tumours or those cases where

there is no hope of regaining vision.3

Radiation is the preferred form of treatment

for most cases of UM.4 UMs are typically treated

with a calculated apex dose of 70–85 Gy.5

Iodine-125 is the most commonly used isotope

for plaque radiotherapy of choroidal

melanomas,6 although cobalt-60, ruthenium-

106, iridium-192, strontium-90, and palladium-

103 have also been used.3 Modern techniques

for brachytherapy involve suturing a shielded

plaque containing seeds of the radioactive

isotope to the sclera. This remains in place for a

specified number of days to deliver the proper

dose of radiation. Although the rates of tumour

control are high, visual acuity is compromised

in 25–35% of cases.6 Some of the complications

associated with the treatment are neovascular

glaucoma, cataract, radiation retinopathy, and

optic nerve neuropathy.7 Thus, a substantial

number of eyes are still enucleated due to

failure of tumour control or radiation-related

complications.

There are two forms of the cyclooxygenase

(COX) enzyme, COX-1 and COX-2. While COX-1

is expressed constitutively in normal tissues,8

COX-2 is an inducible enzyme expressed in

response to a variety of inflammatory and

mitogenic stimuli.9 COX-2 expression has been

reported in a wide variety of malignant

tumours,10–12 including uveal melanoma.13 The

expression of COX-2 has been linked to various

processes, including tumour proliferation,14

immunosuppression,15 and metastasis.16,17

Specific COX-2 inhibitors are currently in use

for patients diagnosed with familial
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adenomatous polyposis, a genetic disorder, which

predisposes patients to colon cancer.18 The effectiveness

of these selective inhibitors has been investigated in a

variety of tumours and shows promise for use as an

adjuvant therapy.19

COX-2 inhibitors have also previously been shown to

increase the radiosensitivity of lung20 and breast21 cancer

cell lines. Moreover, it has been demonstrated that a

COX-2 inhibitor is capable of minimizing radiation

damage to non-neoplastic tissues.22 Nepafenac is a COX-

2 inhibitor formulated for topical administration to the

eye.23,24 The purpose of our study was to determine the

effects of amfenac, the active metabolite of nepafenac, on

the radiosensitivity of five human UM cell lines and one

human fibroblast cell line.

Methods

Cell culture

Four previously characterized human UM cell lines (92.1,

SP6.5, MKT-BR, OCM-1), one transformed human uveal

melanocyte cell line (UW-1) and one human fibroblast

cell line (BJ, American Type Culture Collection, USA)

were incubated at 371C in a humidified 5% CO2-enriched

atmosphere.25 The cell lines used have previously been

graded in terms of proliferative and invasive abilities and

metastatic potential.25 The UM cell lines were cultured in

RPMI-1640 medium (Invitrogen, Burlington, ON,

Canada), supplemented with 5% heat inactivated fetal

bovine serum (FBS), 1% fungizone, and 1% penicillin–

streptomycin purchased from Invitrogen (Burlington,

ON, Canada). The fibroblast cell line was cultured in

DMEM medium (Invitrogen, Burlington, ON, Canada),

supplemented with 10% heat-inactivated FBS, 1%

fungizone, and 1% penicillin-streptomycin purchased

from Invitrogen (Burlington, ON, Canada). Cells were

cultured as a monolayer in 25 cm2 flasks (Fisher, Whitby,

ON, Canada) and observed two times weekly, at every

media change, for normal growth by phase contrast

microscopy. The cultures were grown to confluence and

passaged by treatment with 0.05% trypsin in EDTA

(Fisher) at 371C and washed in 7 ml RPMI-1640 media

before being centrifuged at 120 g for 10 min to form a

pellet. Cells were then suspended in 1 ml of medium and

counted using the Trypan Blue dye exclusion test for use

in all subsequent assays.

The UM cell lines 92.1, SP6.5, and MKT-BR were

established by Dr Jager (University Hospital Leiden, The

Netherlands), Dr Pelletier (Laval University, Quebec,

Canada) and Dr Belkhou (CJF INSERM, France),

respectively. Dr Albert (University of Wisconsin-

Madison, USA) established the OCM-1 and UW-1 cell

lines.26,27

Irradiation

Prior to radiation, each cell line was seeded at a

concentration of 500 000 cells per ml in micro petri dishes

and incubated overnight with a 150 nM concentration of

amfenac (Alcon Laboratories Inc., Fort Worth, TX, USA),

the active metabolite of nepafenac. The concentration of

150 nm was the recommended 50% inhibitory

concentration (IC50) of COX-2 activity.28 On the following

day, the cells were exposed to graded doses of g
irradiation: 2, 4, 6, and 8 Gy (137Cs source, g Cell 1000).

Controls consisted of cell lines exposed to radiation

without prior incubation with amfenac.

Post radiation, all micro petri dishes containing

500 000 cells/plate were trypsinized using 0.05% Trypsin

in EDTA, then washed in 5% FBS RPMI solution, and

centrifuged for 5 min at 3000 g. The cells were then

diluted to a concentration of 50 000 cells/ml in 5% FBS

RPMI solution. These dilutions were seeded in a 96-well

plate format at a concentration of 5000 cells per well and

left to incubate at 371C for 48 h to adhere to the bottom of

the wells. After 48 h, we could already see colonies

formed. Thus, to guarantee exponential growth, we

chose to run the proliferation assay at this time point. The

proliferation assay was done in triplicate per exposure

condition.

Sulphorhodamine-B assay

The Sulphorhodamine-B assay kit (TOX-6, Sigma-Aldrich

Co., St Louis, Missouri, USA) was used to measure total

cell material as described previously.29 Each of the

treated and non-treated cell lines were seeded into wells

at a concentration of 5� 103 cells per well, with a

minimum of three wells per cell line/radiation dose. The

cells were then allowed to incubate for 48 h at 371C.

Following the incubation period, the cells were fixed to

the bottom of the wells using a solution of 50%

Trichloroacetic acid for 1 h at 41C. The plates were then

rinsed with distilled water, to remove trichloroacetic acid

and medium, and later air dried. The Sulphorhodamine-

B dye solution was next added to each well and allowed

to stain for 25 min. The Sulphorhodamine-B solution was

subsequently removed by washing with a 10% acetic acid

solution and once more allowed to air dry. The dye that

had become incorporated into the fixed cells at the

bottom of the wells was solubilized in a 10 mM solution

of Tris. The absorbance of the solute was measured using

a microplate reader at a wavelength of 510 nm.

Data analysis

The Student’s t-test was used to compare proliferation

results between treated and non-treated cell lines after
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various doses of radiation. A value of Po0.05 was

considered statistically significant.

Results

The results of the Sulphorhodamine-B proliferation assay

for each cell line are presented in Figure 1. The actual

values, SD, and P-values are shown in Table 1. The effect

of radiation was significantly more pronounced in the

UM cell lines treated with amfenac. The difference in the

proliferation rates between treated and non-treated cell

lines was statistically significant in all cell lines at all

radiation doses (Po0.05), except for the 92.1 cell line

exposed to 2 Gy (P¼ 0.157).

The effect of amfenac on different doses of radiation is

seen in Figure 2. The proliferation rates of the treated cell

lines are represented as a percentage of the untreated

controls. A positive value means that the proliferation

rate was higher after the addition of the drug, thus

suggesting a radioprotective effect. In contrast, a negative

value means that the cell line proliferated less when the

compound was added, indicating that the effects of

radiation were enhanced. The effect of amfenac on the

radiosensitivity of all UM cell lines was more

pronounced with increasing doses of radiation. The

synergism between amfenac and radiation was more

pronounced in the MKT-BR, OCM-1, SP6.5, and UW-1

cell lines than in the 92.1 cell line.

A human fibroblast cell line was used to test the effect

of amfenac on the radiosensitivity of a non-neoplastic cell

type. The results of the Sulphorhodamine-B proliferation

assay did not show a statistically significant difference

for radiation doses of 4 and 6 Gy. Amfenac demonstrated

a radioprotective effect, in terms of statistically

significant higher proliferation rates, in the treated

fibroblasts after 2 and 8 Gy of radiation.

Discussion

There is increasing evidence that COX-2 inhibitors may

work as radiosensitizing agents.30 Systemic COX-2

inhibitors are being used in clinical trials for lung cancer

and the results are promising.20,31 To the best of our

knowledge, this is the first time that a drug has been

shown to increase the radiosensitivity of UM cell lines.

Furthermore, we demonstrated that no such synergistic

effect was seen in a non-neoplastic human fibroblast cell

line, that was, on the contrary, protected by the addition

of amfenac. The finding that the fibroblasts were actually

protected from the radiation damage provides in vitro

support to the findings of Liang et al.22 The authors

observed that mice treated with a COX-2 inhibitor

showed less damage to the surrounding tissues than the

control animals, after receiving 50 Gy of radiation.

Although it was proposed that the protective mechanism

would involve the reduction of cytokines and

chemokines, our in vitro results show that there is an

intrinsic effect not related to tissue inflammation or other

host-related factors.

Figure 1 Graphical representation of the effect of amfenac and radiation on cell lines. The absorbance level detected by the
Sulphorhodamine-B proliferation assay is seen on the y axis, while the doses of radiation are shown on the x axis. The solid and dashed
lines correspond to the non-treated and treated cell lines, respectively. A significant reduction on the proliferation rates was seen only
in the uveal melanoma cell lines.
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UM is known to be a radioresistant tumour. In vitro

studies have shown that downstream defects in the p53

pathway may be involved in resistance to apoptosis,

even though the radioresistance of UM is unlikely to be

attributed to a single genetic defect.32 UM cell lines show

a wide range of radiosensitivity, which may be explained

by varied induction of apoptosis, and cell cycle

disruption.33 The mechanism underlying the synergistic

effect of COX-2 inhibitors and radiation remains elusive.

One of the proposed mechanisms is the accumulation of

cells in the G2S/M phase of the cell cycle, which is most

sensitive to ionizing radiation.34 Aside from the intrinsic

effect of COX-2 inhibition in cancer cells, the anti-

angiogenic properties of COX-2 inhibitors may further

facilitate induction of apoptosis in vivo and hinder

tumour growth.21

Nepafenac has a unique prodrug structure and

exhibits superior ocular bioavailability properties

compared to diclofenac, another NSAID available for

topical administration. Nepafenac is an inactive form

that requires intraocular bioactivation to become the

effective prostaglandin H synthase inhibitor, amfenac.35

Little hydrolytic conversion of nepafenac is seen during

transit. Following penetration, nepafenac diffuses

through the anterior and posterior chambers of the eye

and is accumulated and bioactivated in vascularized

tissues: iris, ciliary body, retina, and choroid.36 The end

result is a prolonged suppression of COX activity, which

is a distinct advantage over an NSAID with a free

carboxylic acid function. Nepafenac was the only topical

anti-inflammatory medication shown to inhibit the

blood–retinal barrier breakdown in an animal model of

ocular inflammation.24 Thus, it is believed that nepafenac

is the only topical NSAID to reach therapeutic levels in

the posterior segment of the eye. Concentration of the

drug achieves its highest peaks in ocular tissues 30 min

after topical administration.24

Complications secondary to treatment by plaque

radiotherapy occur in up to 70% of patients, especially

when treating larger tumours.7 Radiotherapy does not

affect only the neoplastic tissue in the eye.

Histopathological studies show increased necrosis,

inflammation, fibrosis, and tumour blood vessel damage

in irradiated eyes.37 The combination of COX-2 inhibitors

and radiation is a promising emerging therapy since

COX-2 inhibition can selectively enhance the

radiosensitivity of a tumour while allowing non-

neoplastic tissues to be spared.30 The concept that an eye-

drop, without significant side effects,38 can deliver the

drug to an intraocular UM is even more appealing since

the systemic complications related to COX-2 inhibition

can be circumvented.20

In light of our preliminary results, we would

encourage the use of nepafenac as an adjunct to

radiotherapy in the treatment of UM. However, further

studies are needed to characterize the exact mechanism

behind the observed synergism. Animal studies would

also be valuable before the institution of clinical trials in

humans.

In summary, we showed that the radiosensitivity of

UM cell lines could be increased by the administration of

amfenac, the active metabolite of a commercially

available anti-inflammatory topical eye medication. The

administration of such a drug to uveal melanoma

patients, before radiotherapy, may increase success rates

regarding local tumour treatment and control.

Table 1 Proliferation rates of five uveal melanoma and
fibroblast cell lines after radiation measured by the Sulpho-
rhodamine-B assay kit

Radiation
dose (Gy)

Without Amfenac
(absorbanceþ SD)

With Amfenac
(absorbanceþSD)

P-value

92.1
0 1.11±0.08 0.92±0.01 0.002
2 0.82±0.04 0.76±0.05 0.157
4 0.84±0.09 0.67±0.02 0.036
6 0.72±0.05 0.54±0.03 0.009
8 0.49± 0.07 0.3±0.01 0.007

MKT-BR
0 1.69 1.44 0.013
2 1.39 1.19 0.017
4 1.38 0.63 o0.001
6 0.8 0.33 o0.001
8 0.05 0.005 o0.001

OCM-1
0 1.42 1.26 0.017
2 1.15 0.69 o0.001
4 0.93 0.43 0.007
6 0.42 0.12 0.047
8 0.18 0.009 0.029

SP6.5
0 1.7 1.66 0.42
2 1.59 0.95 o0.001
4 0.86 0.31 o0.001
6 0.3 0.16 0.003
8 0.22 0.03 o0.001

UW-1
0 0.63 0.66 0.01
2 0.55 0.43 0.003
4 0.48 0.15 o0.001
6 0.43 0.04 o0.001
8 0.36 0.02 o0.001

Fibroblast (BJ)
0 0.46 0.48 0.555
2 0.31 0.47 o0.001
4 0.34 0.32 0.411
6 0.31 0.31 0.825
8 0.29 0.31 0.014
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