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Abstract

Over the last decade there have been major

advances in our understanding of the

molecular pathology of inherited retinal

dystrophies. This paper reviews recent

advances in the identification of genetic

mutations underlying infantile-onset

inherited retinal disorders and considers

how this knowledge may lead to novel

therapeutic approaches.

Eye (2007) 21, 1344–1351; doi:10.1038/sj.eye.6702843

Keywords: retina; inherited; paediatric; gene

Introduction

The inherited retinal disorders are historically

classified according to natural history

(stationary or progressive), the mode of

inheritance (autosomal dominant (AD),

autosomal recessive (AR), X linked (XL), or

mitochondrial), and principal site of retinal

dysfunction (pigment epithelium, rod or cone

photoreceptor, or inner retina). Such

classification involves careful history and

examination, and detailed psychophysical and

electrophysiological assessment. Such a method

of subdividing retinal disease is however

unsatisfactory as it may not reflect the

molecular pathology of the retinal dysfunction.

Advances in molecular genetics of retinal

disease have allowed a more precise

classification based on the genetic mutations

underlying the disorders.

Rapid advances have been made in the field

of retinal molecular genetics since the discovery

of causative genes began in 1989. The database

at Retnet (http://www.retnet.org) lists over

30 identified genes of inherited retinal

dysfunction not including the syndromic forms

of retinal dystrophies. Some of these genes

encode proteins with a well characterised

function in the retina, for example

phototransduction, but other genes encode

either novel proteins or proteins that have

hitherto not been suspected to play a role in

retinal function. The discovery of these genes

has highlighted the role of new biological

pathways in retinal structure and function. The

identification of the genes underlying inherited

retinal disease is an important first step in

understanding the mechanism of retinal

dysfunction and in developing effective

treatment. It also has a more immediate impact

on clinical management in improving diagnosis

and genetic counselling.

This review aims to discuss the various

infantile-onset retinal dystrophies including

achromatopsia, blue cone monochromatism

(BCM), congenital stationary night blindness

(CSNB), and Leber’s congenital amaurosis

(LCA).

Achromatopsia

Achromatopsia is a genetically heterogeneous

group of AR stationary retinal disorders in

which there is an absence of functioning cones

in the retina.1 Affected individuals have

reduced central vision, poor colour vision,

photophobia, pendular nystagmus, and usually

normal fundi. Achromatopsia may occur in

complete (typical) and incomplete (atypical)

forms.

Complete achromatopsia (rod

monochromatism) has an incidence of

approximately 1 in 30 000. The disorder is

inherited as an AR trait. The usual presentation

is with early infantile-onset of nystagmus, poor

visual acuity, and sensitivity to light. Vision is

improved in mesopic conditions. Pupil

reactions are slow and may show paradoxical

responses (pupillary dilation to bright light).

A hypermetropic refractive error is common.

The nystagmus often improves with age, as

can the photophobia.2 Fundus examination is

generally normal; however, macular atrophy

may occasionally be present. Adults with

this disorder usually achieve a visual acuity
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of 6/60 to 6/36 and have no true colour vision,

although affected individuals may be able to distinguish

primary colours using brightness clues. Rod-specific

ERGs are normal but there are no detectable cone-

derived responses.3 Psychophysical testing reveals that

retinal function is determined by rod photoreceptors

alone.

Incomplete achromatopsia is best used to describe

individuals with AR disease where the phenotype is

a variant of complete achromatopsia. Individuals with

this variant have better acuity (6/24 to 6/60) and

retain some residual colour vision.4

Three achromatopsia genes have been identified to

date, CNGA3, CNGB3, and GNAT2. All encode

components of the cone photo-transduction cascade.

Mutations in all three genes have been reported in

association with complete achromatopsia,5–8 whereas

only mutations in CNGA3 have been identified in

incomplete achromatopsia.9

CNGA3 and CNGB3, encode the a- and b-subunits

of the cGMP-gated (CNG) cation channel in cone cells.

The cGMP levels are high in cone photoreceptors in

the dark, which enables binding to the a- and b-subunits

of CNG channels. This permits an open channel

conformation, cation influx, and cone depolarisation.

At photopic levels, activated photopigments initiate a

cascade producing increased cGMP-phosphodiesterase

activity. As a result, the level of cGMP is reduced in

the photoreceptor, which leads to closure of CNG cation

channels and cone hyperpolarisation. Mutations in

CNGA3 and CNGB3 account for the majority of cases

of achromatopsia10–12 There are over 50 disease-causing

mutations in CNGA3 that have been identified in

patients with achromatopsia13,14 with the majority being

missense sequence variants. The CNGA3 gene is highly

conserved in evolution and it appears that there is little

tolerance for substitutions with respect to the function

of the channel polypeptide. Four mutations (Arg227Cys,

Arg283Trp, Arg436Trp, and Phe547Leu) account for

approximately 40% of all mutant CNGA3 alleles.,15 By

comparison, approximately only 12 mutations have been

identified in CNGB3,16–18 with the majority being

nonsense variants. The most frequent CNGB3 mutation

to date, a 1 base-pair frameshift deletion 1148delC

(Thr383fs), accounts for 80% of CNGB3 mutant disease

chromosomes.19,20

A third gene, GNAT2, which encodes the a-subunit

of cone transducin, has also been implicated in

achromatopsia.21,22 In cone cells, light-activated

photopigment interacts with transducin, a three

subunit guanine nucleotide binding protein, stimulating

the exchange of bound GDP for GTP. The GNAT2

mutations result in premature translation termination

and in protein truncation. GNAT2 mutations are thought

to be responsible for less than 2% of patients affected

with achromatopsia.

The three genes,CNGA3, CNGB3, and GNAT2 together

account for the majority of cases of achromatopsia, but it

is likely that there are one or more genes that account for

a minority of cases. Uniparental isodisomy of

chromosome 14 has been reported in association with

an achromatopsia like phenotype23 suggesting that

there may be an additional achromatopsia gene on

chromosome 14. However, recently a homozygous

mutation in CNGB3 has been identified in the original

patient with the chromosome 14 rearrangement

indicating that it is unlikely that there is a further

locus on chromosome 14.24

Blue cone monochromatism

Blue cone (S-cone) monochromatism affects less than one

in 100 000 individuals; it is characterised by absence of

L and M cone function.25 There is normal rod and short

wavelength sensitive cone function . BCM presents in

infancy with reduced visual acuity, pendular nystagmus,

and photophobia.26 The nystagmus often reduces with

time. Affected individuals are usually myopic and

best-corrected visual acuity is usually in the range of

6/24 to 6/60. Fundus examination is usually normal, but

macular atrophy is seen in some older individuals. BCM

may be distinguished from achromatopsia by the mode

of inheritance, the presence of a myopic rather than

hyperopic refractive error and by the results of detailed

psychophysical and electrophysiological testing. The

photopic ERG is profoundly reduced in both disorders,

but the S cone ERG is normal in BCM.27 Psychophysical

testing in BCM shows evidence of normal S-cone

function in comparison to rod monochromats where

there is either completely absent cone function or in

incomplete forms some residual L- or M-cone function.

In clinical practice it is important to use colour vision

tests that probe the tritan colour axis as well as the protan

and deutan to distinguish RM and BCM; residual tritan

discrimination suggests the latter diagnosis.28,29

The normal human visual system compares the rate

of quantum catches in three classes of cones; the short (S)

wavelength sensitive, middle (M) wavelength sensitive,

and long (L) wavelength sensitive to light at 430, 535,

and 565 nm respectively. The L (red) and M (green)

pigment genes are located on the X chromosome and the

S cone (blue) pigment is encoded by a gene located on

chromosome 7.30 The L and M opsin genes consist of a

tandem array of two or more repeat units of 39 kb on

chromosome Xq28 that are 98% identical at the DNA

level31,32 Mutations in the L and M gene array underlie

the molecular pathology of BCM.33 Such mutations are

of two main types. In the first group, the locus control
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region (LCR) (which is common for both normal L and M

pigment gene arrays), upstream of the L pigment gene is

deleted. The deletion abolishes transcription of all genes

in the pigment gene array and inactivates L and M

cones.34 In the second group of mutations, the LCR is

preserved, but changes within the L and M pigment gene

array lead to loss of functional pigment production. The

commonest genotype is a single inactivated L/M hybrid

gene. The first step in this second mechanism is unequal

crossing over reducing the number of genes in the array

to one, followed in the second step by a mutation that

inactivates the remaining gene. A thymine to cystosine

transition at nucleotide 648, resulting in a cysteine to

arginine substitution at codon 203 (Cys203Arg), is the

most frequent inactivating mutation.35 This change

disrupts the folding of cone opsin molecules via an

absent disulphide bond between two extracellular

opsin loops.36 A third molecular genetic mechanism

has been described in a single family of BCM where

exon 4 of an isolated red pigment gene has been

deleted.37 Approximately 40% of blue cone monochromat

genotypes are due to a one-step mutational pathway

that leads to deletion of the LCR, with the remaining

cases comprising a heterogeneous group of multistep

pathways.38–43 A minority of subjects are not found to

have disease-causing changes to the opsin array, which

raises the possibility that there may be a further genetic

mechanism causing this disorder.

Congenital stationary night blindness

CSNB is characterised by variable non-progressive visual

loss, night blindness, and usually normal fundi, although

some patients have pale or tilted optic discs. Inheritance

may be AD, AR or XL with XL inheritance being most

common. In XL and AR patients, the clinical presentation

is usually in infancy with nystagmus, moderate to high

myopia, strabismus, reduced central vision, and

occasionally paradoxical pupil responses.44 In contrast

AD disease usually presents with nyctalopia but

normal visual acuity; this subtype will not be

considered further here.45

XL CSNB is subdivided clinically into complete and

incomplete forms. Both subdivisions demonstrate a

negative ERG, with a selective reduction in the inner

nuclear-derived b-wave, so that it is smaller than the

a-wave. In complete CSNB, the rod-specific ERG is

usually non-recordable.46 Cone ERGs reveal subtle

abnormalities consistent with ON bipolar pathway

dysfunction. In incomplete CSNB, there is a detectable

rod-specific ERG, and cone ERGs are more abnormal than

in the complete form. This is due to the involvement of

both ON and OFF bipolar pathways. XL and AR disease

are very similar clinically and on ERG investigation.

Two genes, CACNA1F and NYX, have been implicated

in XL CSNB. Incomplete CSNB is associated with

mutations in CACNA1F. This gene encodes the retina-

specific a1F-subunit of the voltage-gated L-type calcium

channel; it is expressed in the outer and inner nuclear

layer and the ganglion cell layer.47,48 Most of the

mutations reported are inactivating truncation sequence

variants. The loss of functional channels impairs the

calcium flow into photoreceptors, which is required

to sustain neurotransmitter release from presynaptic

terminals. The retina remains in a partially light-

stimulated state owing to the inability to maintain

transmembrane potentials across bipolar cells. Patients

are therefore unable to respond to changes in light

levels. Most XL CSNB is non-progressive, but in a

Japanese family with a retinal disorder caused by a

CACNA1F mutation, affected individuals developed

progressive loss of visual function and eventually

an unrecordable ERG.49

Mutations in NYX are associated with complete CSNB.

The NYX gene encodes nyctalopin, a proteoglycan with

leucine-rich repeats, which are thought to be essential

for protein interactions.50 Nyctalopin is additionally

thought to be involved in the development and structure

of the ON pathway.

One form of AR CSNB is associated with mutations

in GRM6; this gene encodes the glutamate receptor

mGluR6.51 Rod and cone receptors mediate synaptic

transmission to ON bipolar cell dendrites via this

receptor. More recently, AR CSNB has been associated

with homozygous or compound heterozygous mutations

in CABP4, a member of the calcium binding protein

(CABP) family.52 CABP4 is located in synaptic terminals

and directly associated with the C-terminal domain of

the calcium channel Cav1.4. The Ca2þ influx through

Cav1.4 triggers the continuous release of glutamate from

the photoreceptor synapse in the dark.53

Leber’s congenital amaurosis

LCA, first described by Theodor Leber in 1869,54 is a

severe, generalised retinal dystrophy that presents at

birth or soon after with nystagmus and severe visual

impairment. The disorder accounts for 3–5% of

childhood blindness in the developed world55 and has

an incidence of 2–3 per 100 000 live births.56 It is

associated with non-recordable or substantially abnormal

rod and cone ERG.57,58 The pupils react sluggishly to

light and, although the fundus appearance is often

normal, abnormal retinal changes including peripheral

white dots at the RPE level, macular atrophy, retinal

pigmentation, and vascular attenuation may be seen.

Other findings include the oculodigital sign,

microphthalmos, enophthalmos, strabismus,
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keratoconus,59 high refractive error,60 cataract, and optic

disc swelling.

LCA is usually inherited as an AR disorder, and to date

nine genes (GUCY2D,61 AIPL1,62 RPE6563,64 RPGRIP165,66

CRX67,68 TULP169–71 CRB1,72 RDH12,73,74 and

CEP29075and a three further loci (LCA3,72 LCA5,76 and

LCA977) have been reported to cause LCA. Mutations

in the same genes are also responsible for early

childhood-onset severe rod–cone dystrophies, and the

term early-onset severe retinal dystrophy (EOSRD) may

be a better term to describe a group of disorders

including LCA that present in infancy and early

childhood. In addition, mutations in two other genes

(LRAT78 and MERKT79) are associated with a similar

EOSRD. These genes account for 20–50% of LCA cases,80

and the true extent of genetic heterogeneity in this

condition remains an area of active research. The

relationship between genotype and phenotype has

been the subject of several recent reviews and

therefore will not be considered further here.80,81

Management of infantile-onset retinal dystrophies:

current treatment and future therapies

There is currently no specific treatment for any of these

rare infantile-onset retinal dystrophies. However, it is

important that the correct diagnosis is made in order to

provide accurate prognostic information, and to offer

informed genetic counselling, and educational and

occupational advice. It is also important to maximise the

use of residual vision by the provision of appropriate

spectacle correction and low vision aids. Photophobia

is often a problematic symptom in cone dysfunction

syndromes, and red tinted lenses have been suggested

to improve comfort and vision.82 Patients may report

some improvement with magenta lenses in BCM,

which prevent rod desaturation.83 In complete

achromatopsia, red lenses allow low luminous

efficiency wavelengths to be transmitted to the rod

photoreceptors.84 However, red brown lenses are

more effective in incomplete achromatopsia, which

have a wider spectral transmission thereby preserving

residual colour discrimination.85

Given the evidence from some animal models that

exposure to light can accelerate photoreceptor cell loss,86

it is prudent to avoid exposure to bright lights in children

with progressive retinal dystrophy.87 A number of

possible therapeutic approaches have been suggested for

LCA/EOSRD including gene therapy, stem cell

treatment, retinal transplantation, and pharmacological

approaches such as the use of growth factors or synthetic

retinoids.88–93 Gene therapy currently appears to be the

most promising approach, and the first clinical trials are

likely to take place in patients with EOSRD associated

with RPE65 mutations. Gene therapy has proved

effective in both the LCA Briard dog,91 which has a

naturally occurring 4 base-pair deletion in the RPE65

gene, and the RPE65�/� mouse.88 In the dog model, eyes

treated with subretinal injections of adeno-associated

virus containing cDNA of canine RPE65 showed

significant signs of improvement after treatment in all

electrophysiological parameters, pupillometry, and

behavioural testing.91 Uveitic responses to the novel

protein developed in 75% of trans-gene-treated eyes, but

only one eye (8%) was refractory to treatment.92 These

results are grounds for optimism that gene therapy may

be equally effective in children with retinal disease due

to mutation in RPE65.

Retinal cell transplantation stem cell therapy and the

use of neuroprotective agents are other potential

therapies. They have the advantage that they are not

mutation specific and, in the case of stem cell therapy,

could be performed later in the disease process.

Approaches to treatment of retinal dystrophies in animal

models have included cell transplantation including

ARPE19 cells,94 Schwann cells,95 brain-derived stem

cells,96 marrow-derived neural stem cells,97 and retinal

progenitor cells.98 However, preventing tissue rejection

and enabling host retinal integration remains a major

challenge. Much basic scientific clinical research needs to

be carried out before clinical trials of stem cells or

transplantation can get underway.

Various neuroprotective substances, including

neurotrophic factors, growth factors, cytokines, or

combinations of these, have prevented or delayed

photoreceptor cell loss in animal models.99–104 The most

promising of these is CTNF, which has been shown to

slowdown photoreceptor degeneration in a large animal

model.105 CTNF may however induce unwanted changes

in retinal structure and function leading to reduced ERG

responses106 This may limit the therapeutic effect of this

approach in the longer term. Phase one clinical trials of

CTNF in advanced retinitis pigmentosa in man have

been completed.107 In this study, human ciliary

neurotrophic factor (CNTF) was delivered into the

vitreous by cells transfected with the human CNTF gene.

The cells were encapsulated in a semipermeable

membrane and surgically implanted in the vitreous.

There were no serious complications after 6 months of

treatment. Phase 2 trials are underway and the results are

eagerly awaited.

Much progress has been made in characterising the

various forms of infantile-onset retinal dystrophies, and

many of the causative genes have been identified; it is

likely that the remaining genes will be identified over the

next few years. There is increasing optimism that

effective therapies will be developed for at least some of

these severe disorders.
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