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Abstract

We review proposed models and

psychophysical and electrophysiological tests

performed in many studies for early age-

related maculopathy (ARM). We suggest that

ischaemia is the trigger for impaired retinal

pigment epithelium function causing

imbalance of secretion of vascular growth

factors, reduced disc degradation capability

and reduced metabolic activity and possible

inflammatory response. This results in

increased deposition of cell debris, such as

drusen and thickens Bruch’s membrane

causing even more ischaemia of the overlying

neurosensory retina. The photoreceptors are

more resistant to ischaemia given their

proximity to the choroid. Furthermore, being

‘upstream’ from the inner retinal layers, they

act as an oxygen sink depriving retinal layers

further from the choroid. Postreceptoral cell

layers and especially parts of the inner nuclear

layer that are located in the watershed zone

between two sources of blood supply are

preferentially vulnerable to ischaemia. Based

on psychophysical and electrophysiological

findings we propose that most of the function

impairment in early ARM starts

postreceptorally.
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Introduction

Age-related maculopathy (ARM) has become a

major public health issue in developed

countries, as it is the leading cause of blindness

in people aged over 65 years.1 The management

and treatment of ARM remain an ongoing

challenge.2–4 Its pathogenesis is still unclear

and a genetic background together with

environmental factors have been discussed.5–7

Photoreceptor death and vision loss result from

subretinal choroidal neovascularization (CNV),

from retinal pigment epithelium (RPE)

detachment, or from central geographic atrophy

in late ARM. These appear to occur in response

to deposition of abnormal material within

Bruch’s membrane, which accumulate during

the early course of ARM.8–13 Current treatment

options for ARM are limited, but they can be

effective at slowing progression of the disease if

applied early.14–18 It is important to investigate

the early stage of ARM as defined by drusen

and RPE abnormalities,19 where there is hardly

any subjective vision function loss to better

understand the pathogenesis and the

mechanisms underlying ARM.

It is still not clear whether functional deficits

in early ARM measured with various

psychophysical tests are primarily caused by

reduced sensitivity of photoreceptors,20–23 by

postreceptoral damage21,24,25 or by damage to

other tissues involved in ARM such as the

RPE/Bruch’s membrane complex10,11,26 or the

choroid.27–31 Knowledge of the primary retinal

site affected by ARM would be helpful in

targeting the application of future treatments,

such as pharmaceuticals, retinal transplants,

or computer chips. Earlier detection and

diagnosis of retinal changes would improve

the efficient implementation of treatments and

reduce the number of years individuals live

with visual disability and subsequent costs

to society, and perhaps lead to preventative

treatments.
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Psychophysical and electrophysiological function tests

in ARM

An extensive overview of the subjective and objective

cone- and rod-mediated function tests has been

published recently.32,33 The functional results of

these tests cannot be given in detail but all show an

impairment of cone- or rod-mediated function (or

both) in early ARM. In addition, there is preferential

vulnerability of the S-cone34,35 and rod pathway36–42 in

early ARM over the L- and M-cone pathway. Curcio43 has

demonstrated that parafoveal rods were the first to die in

early ARM and the last surviving photoreceptor in late

ARM was a cone. Most studies have explained their

functional findings as being due to an alteration at the

photoreceptor level (abnormal orientation or shape or

photoreceptor loss) and/or by the kinetic

model.21,25,34,41,44,45 In contrast to a structural abnormality

or loss of photoreceptors that might result in decreased

photopigment and photosensitivity, the kinetic model

suggests slowed regeneration of photopigment owing

to slowed transfer of vitamin A to the retinoid cycle

through a thickened Bruch’s membrane. The kinetic

model proposes that cones and rods have abnormal

adaptation and therefore altered recovery dynamics

caused by the dysfunction in the photopigment

regenerative capacity. This hypothesis would suggest

that the amount of abnormal deposits and thus drusen

would correlate with poorer recovery dynamics. In fact,

the contrary has been shown in a number of studies

which report poor correlations between drusen and

kinetic measures such as dark-adaptation or glare

recovery.46–48 Elsner and Burns20 hypothesized that

decreased photosensitivity did not imply primary

damage to Bruch’s membrane. They used colour match

techniques and demonstrated that decreased

photosensitivity of the cone photopigment was not

correlated with slowed regeneration kinetics in early

ARM. They suggested that the kinetic model does not

explain all functional deficits in ARM and that there must

be other factors possibly relating to microenvironmental

alterations.

Another approach to explain the functional deficits

might be related to perfusion abnormalities and

ischaemia. Arterial hypertension, atherosclerosis, and

hypercholesterinaemia that increase vascular rigidity and

their effects on the ocular circulation and Bruch’s

membrane have been hypothesized to increase the risk

for developing ARM.49 Vascular deficits have been

identified in early and late ARM using fluorescein and

indocyanine green angiography, laser Doppler

flowmetry, and colour Doppler imaging.31,50 Pauleikhoff

et al51 demonstrated that prolonged choroidal filling

seen on fluorescein and indocyanine green angiography

is a clinical marker for diffuse deposits in Bruch’s

membrane. Grunwald et al50 found that eyes with

more advanced ARM fundus features such as drusen,

RPE abnormalities, and CNV in the fellow eye tended

to show more pronounced decrease in choroidal

blood flow. Together with other authors52,53 they

hypothesized that thickening of the RPE/Bruch’s

membrane complex would increase the distance

that oxygen must travel from the choriocapillaris to

the retina and that this would reduce the availability

of oxygen and important metabolites to the outer

retina. A haemodynamic model of ARM has been

proposed by Friedman et al27 who hypothesized a

progressive decrease in the compliance of the sclera

and choroidal vessels, which is initiated by the

deposition of lipid in the sclera and Bruch’s membrane.

This might result in a higher intravascular pressure

with decreased ocular perfusion.

The perfusion abnormalities and the haemodynamic

model together with the kinetic model suggest that the

primary insult causing functional deficits in ARM is

caused by lipid deposition within Bruch’s membrane.

However, we hypothesize a new mechanism in ARM

that includes these previous models, but is driven by

ischaemia and might explain most of the functional

findings; we describe it in a new model (Figure 1a–e).

Ischaemia is defined as an imbalance between

perfusion and demand for oxygenated blood.54 It is

characterized not only by insufficiency of oxygen, but

also reduced availability of nutrients and inadequate

removal of metabolites.54 We propose that the primary

insult causing functional deficits in early ARM is reduced

ocular blood flow27,31 (Figure 1a) resulting in chronic

ischaemia of the overlying tissues.50,52 Reduced ocular

blood flow might cause imbalance of vascular growth

factors such as vascular endothelial growth factor

(VEGF) with diminution of VEGF from the RPE. An

extensive review of growth factors involved in ARM

has been given elsewhere.53,55 VEGFs have important

roles in vascular permeability angiogenesis, and

lymphangiogenesis and have neurotrophic and

proinflammatory functions.55 VEGF depletion induces

choroidal atrophy55–57 that might cause a further delay

in perfusion. Impaired perfusion might also result in

impaired function of the RPE with decreased

degradation of photoreceptor disc membranes, reduced

antioxidant capacity, and deposition of abnormal

extracellular matrix58 and abnormal debris, the basal

linear and basal laminar deposits59 possibly triggering

an inflammatory response.60 Consequently, increased

resistance of the choroid to blood flow by deposition

of lipids in the sclera and in Bruch’s membrane as

hypothesized in the haemodynamic model27 might occur

(Figure 1b). The postulation of Bruch’s membrane being
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a barrier has not only been demonstrated

morphologically61,62 but also functionally in early

ARM.63 A thickened Bruch’s membrane61,62 may lead not

only to reduced diffusion of oxygen50,53 and thus

pronounced ischaemia distal to the membrane but also to

an impaired transport capacity of important metabolites

to the retinoid cycle (such as vitamin A, trans-retinol).

Therefore, the photoreceptor circulation current is altered

as synthesis of 11-cis retinal is slowed in the RPE as

proposed in the kinetic model43 (Figure 1b). It is likely

that the photoreceptors (Figure 1c) are more resistant

to ischaemic insults than postreceptoral sites64–66

(Figure 1d) owing to their proximity to metabolic

reserves available in the RPE and the choriocapillaris,66

and this is reflected in less functional alteration. The

postreceptoral region is proposed to be particularly

vulnerable to ischaemia as it is at the watershed zone

between two sources of blood supply; the choroid and

the central retinal artery (Figure 1e). It is likely that

L- and M-cone pathways are more resistant to hypoxia

than S-cone and rod-pathways.67–71

Discussion

We suggest that in early ARM, the cone- and rod-

mediated postreceptoral pathways are primarily affected

by chronic ischaemia, before the photoreceptors.

Ischaemia might have an effect at the postreceptoral

levels as photoreceptors and especially rods act as an

oxygen sink66,71 and the postreceptor region is the

watershed zone between two sources of blood supply

(choroid and central retinal artery).
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Figure 1 (a–e) Schematic representation of ischaemia postreceptoral model in early ARM.
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Sarks et al (unpublished data) demonstrated that

delayed choroidal perfusion on fluorescein angiography

corresponded to focal loss and attenuation of the

choroidal capillaries. In addition, regions of choroidal

capillary dropout relate to diffuse deposits beneath the

RPE histologically.72 Sarks and Sarks59 have shown

(using electron microscopy) that the RPE cannot exist

without the choriocapillaris, and when the RPE

degenerates, the first retinal layers affected are the

outer plexiform layers and the inner nuclear layer.73

The choroid supplies the overlying retina to a depth of

130 mm including the outer parts the inner nuclear layer

(and thus bipolar cells),74 is very susceptible to hypoxia

and is thought to regulate oxygen tension poorly.75,76 It

has been suggested that during hypoxia a compensatory

increase in choroidal blood flow does not occur and a

deficit on the choroidal site is not made up by increased

supply from the retinal circulation.77 Yu and Cringle65

and Cringle et al66 showed that there is a high rate of

oxygen consumption in the outer and inner plexiform

layers where there is high synaptic activity (Figure 1d, e)

in animal models. A study involving the rat retina has

indicated that there is higher oxygen uptake under light

adapted conditions in the inner plexiform layer whereas

dark adapted conditions increase oxygen consumption in

the outer retina leaving the inner retina unaffected.66

Although there is reduced blood flow in the central

retinal artery in ARM27 the inner retinal oxygen tension is

better regulated during hypoxia76 with compensatory

vasodilatation and increase in blood flow.78 This might be

the reason why ganglion cells are better preserved in

early ARM.79 However, in more advanced stages of ARM

a loss can be also found (Figure 29, p. 571 in Sarks et al73).

Bui et al64 have investigated acute hypoxia with

electrophysiological measures such as the full field

electroretinogram (ERG) and found an immediate

postischaemic postreceptoral b-wave loss, whereas

photoreceptor responses were more gradually affected.

They suggested that the acute selective postreceptoral

loss was due to impaired glutamatergic

neurotransmission or failure of glutamate recycling.64

It is known that acute ischaemia causes massive damage

to the entire retina histopathologically.80 This is reflected

in a postreceptoral-mediated b-wave amplitude loss and

possibly amacrine cell-mediated reduction in oscillatory

potentials electrophysiologically.80–83 Chronic (as

opposed to acute) ischaemia is less likely to cause

massive damage to retinal tissue and a delay in implicit

times has been reported.64,80 For example in diabetes,

a chronic ischaemic disease, delayed multifocal

electroretinogram (mfERG) peak implicit times but

no amplitude loss are seen; these findings predict the

onset of diabetic retinopathy before ophthalmoscopically

visible changes in subjects with diabetes.84 Sandberg

et al85 found delayed implicit times in the focal ERG

associated with prolonged choroidal perfusion in

ARM eyes at risk, where the fellow eye had developed

chorioretinal neovascularization. The authors suggested

that delayed implicit times rather than amplitudes

reflected chronic retinal ischaemia.85

A postreceptoral involvement of rod pathways as

found in studies with the mfERG in early ARM38–40

is supported by Hood et al86 who compared the rod-

mediated mfERG with the full-field rod ERG. They

suggested that the rod-mediated mfERG responses

are like the full-field rod ERG with mainly bipolar cell

responses and a very small photoreceptor contribution.86

The blue–yellow functional loss in early ARM might

also reflect ischaemic conditions at postreceptoral

levels.69 A selective early loss of S-cone postreceptoral

pathways has been shown in other ischaemic diseases

such as, for example, in diabetes with69,87 or without

retinopathy.87,88 Additional evidence of primary

postreceptoral involvement might be reflected by

impaired high contrast-, low contrast-, low luminance

(SKILL) visual acuity and contrast sensitivity as

demonstrated in other studies in early ARM.21,89

Although these are mainly L- and M-photoreceptor

properties, a loss of these functions is thought to relate

to decreased efficiency in lateral inhibitory mechanisms

that are mediated by horizontal and amacrine cells at

the postreceptoral level (Figure 1d and e).90,91

Most recently Arden et al71 have proposed a hypothesis

based on a similar vicious cycle caused by ischaemia

in ARM but mainly driven by the high oxygen

consumption of the rods. The preferential vulnerability

of rod pathways in ARM is supported by various

psychophysical and electrophysiological

studies.36,38,39,44,92 Arden et al71 suggested a primary

defect in the RPE causes diminution of VEGF to the

choriocapillaris which results in its atrophy. Also,

Schlingemann53 suggested a disturbance of the paracrine

relationship between the RPE and choriocapillaris.

However, it is unclear which event occurs first, a primary

defect at the RPE level53,71 or reduced ocular blood flow

as suggested in our model. Nevertheless they all suggest

an inevitable cycle driven by ischaemia. In the longer

term chronic ischaemia that is caused by reduced oxygen

supply to the choroid and reduced oxygen delivery to

the retina might result in an upregulation of VEGF93

and well known consequences causing late ARM with

chorioretinal neovascularization.94 Expression of some

growth factors is stimulated by hypoxia, and their

localization within choroidal neovascular membranes

suggests that hypoxia may be an aetiologic factor for

CNV. In studies of autopsy eyes, VEGF levels were found

to be elevated in the RPE and choroidal blood vessels

of maculae with age-related macular degeneration.95,96
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Most recent and promising clinical trials with anti-VEGF

aptamer97 and anti-VEGF antibody98,99 show improve-

ment of vision and therefore demonsterate that there

is a strong link to ischaemia in ARM.

Recent work suggests that a chronic inflammatory

response and complement factor H (a major regulator

of the alternative complement pathway and defence

system against inflammation) play important roles in the

pathogenesis of ARM.7,100–102 It has been demonstrated

that a polymorphism in the complement factor H gene

makes a substantial contribution to ARM susceptibility.

Cigarette smoke influences the plasma levels of factor H

and has been shown to inhibit its activity. The

relationship between smoking and ischaemic

diseases103,104 and between smoking and ARM105 is

well established. It could be hypothesized that

chronic ischaemia in combination with genetic

predisposition7,100,101,106 might trigger ARM and

chronic inflammation.

We hypothesize that early function changes in ARM

are initiated by chronic ischaemia of postreceptoral

layers such as inner nuclear and possibly inner plexiform

layers. This ischaemia affects primarily S-cone and

rod-mediated postreceptoral pathways first owing to

their lower resistance to ischaemia compared to L- and

M-cone pathways. Although cone- and rod-mediated

impairment at photoreceptor level, as speculated

from the psychophysical results found in other

studies,21,36,37,41,107,108 cannot be excluded, our model

would suggest that this happens later in the course of the

disease, possibly when ischaemia becomes prolonged

and insufficient Vitamin A is provided through the

thickened RPE/Bruch’s membrane complex.

Conclusion

Early detection of impaired postreceptoral function

before there is severe photoreceptor involvement and

vision loss could lead to early commencement of

treatment. However, whether an approach in the

treatment of early ARM might include supplemental

oxygen still needs to be investigated. There is some

support for such an approach; improvement of diabetic

cystoid oedema after oxygen therapy, as measured with

the optical coherence tomography has recently been

demonstrated.109 Use of supplemental oxygen as a

treatment for ARM is not new110,111 but large clinical

trials have never been initiated to show its possible

beneficial effect.
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