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Abstract

Purpose This paper briefly reviews current

explanations for corneal transparency and uses

a well-developed model to try to explain the

increased light scattering either accompanying

corneal swelling or following

phototherapeutic keratectomy (PTK).

Methods The direct summation of fields

(DSF) method was used to compute light

transmission as a function of wavelength. The

method requires input of a number of

structural parameters. Some of these were

obtained from electron micrographs and

others were calculated from X-ray diffraction

data.

Results By swelling sections of stroma cut

from different depths in the tissue, we have

shown that fluid entering the cornea causes

more swelling in the posterior lamellae than in

the anterior lamellae. Furthermore, posterior

lamellae can reach a higher final hydration

than anterior lamellae. Collagen-free regions

(‘lakes’) exist in corneas swollen in vitro and

in Fuch’s dystrophy corneas, many of which

may be caused by the death of cells. The DSF

method shows that local fibril disordering,

increased refractive index mismatch, and

increased corneal thickness together can

account for a 20% increase in light scattering in

a Fuch’s dystrophy cornea at H¼ 5.8 compared

to the normal cornea. Additional scattering is

probably caused by ‘lakes’. The DSF method

applied to PTK rabbit stroma with high levels

of haze suggests that the newly deposited

collagen is not the cause of the increased light

scattering.

Conclusions Fluid is not uniformly

distributed within the corneal stroma when

the cornea swells. Increased hydration of

posterior lamellae may be because of known

differences in the glycosaminoglycans

between the anterior and posterior stroma.

Lamellar interweave in the anterior stroma

probably limits the extent to which the

constituent lamellae can swell. The DSF

method can be used to account for increased

light scattering in oedematous corneas but

cannot account for haze following PTK.
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Introduction

One of the most remarkable properties of the

cornea is its ability to transmit almost all the

incident light in the visible part of the spectrum.

The reasons for corneal transparency have

occupied scientists for many decades and

despite considerable advances in our

understanding, to date there is still no

universally accepted explanation. Even more

perplexing are the causes of increased light

scattering in the cornea during wound healing

or in some pathological situations.

In this paper, we briefly review some of the

theories put forward to explain corneal

transparency and use the most well tested of

these to try to model the light scattering

expected from oedematous corneas and from

corneas following phototherapeutic

keratectomy (PTK).

Corneal transparency

Any system where the attenuation of light is

only caused by scattering (in other words there

are no other losses such as might be due, for

example, to absorption) can be described by

Ft ¼ expð�astÞ ð1Þ

where Ft is the percentage of the incident light

transmitted without scattering, as is the

scattering attenuation coefficient, and t is the
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thickness in the direction of the light path. In the case of a

corneal lamella consisting of parallel collagen fibrils, the

scattering attenuation coefficient can be written as the

product rs, where r is the number of fibrils per unit area

in a cross-section (often called the bulk fibril number

density or simply the number density) and s is the

scattering cross-section. Over the years there have been

many models put forward to explain transparency; the

difference between these models essentially depends on

the mathematical formulation of the scattering cross-

section term. Here we describe the most important of

these models. All must consider the structure of the

cornea, that is, the size and shape of the stromal

constituents and their refractive indices since each of

these factors influences the amount of light scattered by

the structure. In particular, the refractive index of the

collagen fibrils, the refractive index of the extrafibrillar

material, and the ratio of these two refractive indices, all

play a major role in determining the extent of light

scattered by the stroma.

The simplest model1 proposes that all corneal

components have a uniform refractive index (which is

equivalent to a zero value for the scattering cross-

section). This essentially means that light cannot

distinguish between fibrils and the material between

them, hence it can propagate directly through the tissue

unscattered. This model is generally rejected, partly

because it fails to explain two important properties of the

cornea, birefringence and transparency loss when the

structure is distorted. Also, recent X-ray diffraction data

have unambiguously confirmed earlier evidence for a

difference in the refractive indices of the collagen fibrils

and of the extrafibrillar material.2

Most modern models are based on the lattice theory

put forward by Maurice.3 By approximating the collagen

fibril to perfect, infinitely long cylinders, an estimate of

the scattering from an individual fibril can be calculated.

The refractive index difference between the fibrils and

interfibrillar matrix means that each fibril scatters a small

amount of light. However, if the fibrils are packed in a

lattice arrangement, correlation in their relative positions

leads to destructive interference of light scattered away

from the forward direction, all the light energy going into

the constructive interference in the forward direction.

However, both electron microscopy and X-ray diffraction

do not show the presence of this regular packing of

collagen fibrils.4,5

Table 1 shows these two models alongside the other

main models, which are all based on Maurice’s early

work. Hart and Farrell4 showed that only short-range

order in the positions of the collagen fibrils is necessary

for the required destructive interference of scattered

photons. Results from X-ray diffraction showed that the

type of short-range order in the packing seen in electron

micrographs is indeed what is found in the tissue.5 Feuk6

developed a long-range order model based on small,

random displacements of the fibrils from ideal lattice

sites. Twersky,7 assuming that the fibrils were arranged

as in a two-dimensional fluid, expressed the distribution

explicitly in terms of the volume fraction occupied by the

fibrils. Benedek8 considered the problem from the point

of view of fluctuations in the fibril number density. These

concepts were explored quantitatively by Vaezy and

Clark,9 who examined fluctuations in the spatial

arrangement of the collagen fibrils using Fourier

methods. Recently, Ameen et al10 used photonic band

structure methods to explain light transmission through

corneal lattices. Space is too limited to go into these

models in greater detail, so, for a fuller account, the

reader is directed to reviews by Farrell and McCally11

and Freegard.12 A more generalised mathematical review

of transparency in biological tissues is by Tuchin.13

By way of a summary, it has been pointed out by

Farrell and McCally11 that all currently viable

transparency theories agree with three points:

1. each fibril is an ineffective scatterer;

2. despite this, the large number of fibrils requires

that destructive interference of scattered light must

occur; and

3. the cornea is thin.

Direct summation of fields method

In 1986, Freund et al14 published a method to compute

light scattering from the cornea, following on from the

theoretical principles previously advanced by Hart and

Farrell.4 The technique can be used to predict

transmission by an arbitrary short-range order

distribution of different-sized fibrils. A full account of the

approach, called the direct summation of fields (DSF)

method, is found in the original papers.14,15 It is a

statistical technique in which the scattering from each

individual fibril is computed, then the effects of

interference are included and summed for the whole

tissue using a method called ensemble averaging. It is

worth mentioning at this stage that, in this method,

transmission is computed as a function of wavelength,

ignoring the lamellar structure of the stroma and also the

Table 1 Models to explain corneal transparency

Perfect crystal lattice Maurice (1957)3

Uniform refractive index Smith (1969)1

Short-range order Hart and Farrell (1969)4

Average area/fibril=correlation area Benedek (1971)8

Perturbed lattice Feuk (1971)6

Hard-core fibrils with PG coating Twersky (1975)7
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presence of stromal cells. With these assumptions

in mind, however, the DSF method has been tested

and found to give reliable results in a number of

situations.16–18

In order to use DSF to compute the expected light

transmission, it is necessary to measure a number of

structural and physical properties of the stroma. The

refractive index of the hydrated collagen fibrils, the

refractive index of the interfibrillar matrix, and the ratio

of these have previously been obtained using X-ray

diffraction measurements in a number of different

species.2 The relative positions of the individual fibrils,

and the diameter of each fibril, are obtained from

electron micrographs. There is a problem in using

measurements from electron microscopy in that it has

been shown that a number of microscope preparation

protocols result in considerable shrinkage of fibril

diameters and, particularly, interfibril spacings.19 To

overcome this problem, we have used X-ray diffraction

(a technique where corneas can be examined without the

need for any processing20) to measure the mean values of

these parameters in the same tissue as used for

microscopy, and then scaled the data from electron

micrographs so as to compensate for this shrinkage.

Table 2 gives the values for several of these parameters

for human corneas. The corneas were obtained from the

Eye Bank in culture medium, and were dehydrated to

close to physiological hydration using polyethylene

glycol.21 It should be noted that the value for the fibril

number density is lower than previously reported, partly

owing to the scaling procedure.

Fibril diameters and spacings were measured by image

analysis of selected electron micrographs where collagen

fibrils were sectioned in cross-section. The positions and

diameters of collagen fibrils in a human cornea were

obtained after image analysis of these micrographs and

scaled using X-ray data from the same samples as

described above. By taking the corneal thickness as

0.52 mm and combining these data with the refractive

index data in Table 2, the DSF method was used to

predict the transmission as a function of wavelength. As

expected (Figure 1), transmission was predicted to

exceed 90% throughout most of the visible spectrum.

In their original paper4 and later16,15,11 Farrell and co-

workers made only limited reference to how changes in

the individual parameters might affect transparency in

abnormal conditions. It is of interest to examine the

theoretical effects of changing each of these parameters,

keeping the rest constant, so as to gauge to which

parameters light transmission is most sensitive. It should

be remembered that here we are testing a single model

for transparency, which has certain implicit assumptions

about the tissue. Note also that this is a theoretical

situation; in practice, many of the parameters are related,

and a change in one is often accompanied by a change in

one or more of the others. With these caveats, Figure 2a

shows that increasing the fibril radius to 20 nm reduces

transmission, particularly in the blue end of the

spectrum, whereas reducing the radius has the opposite

effect. So why not have small collagen fibrils in humans,

as is found in fish? The answer is probably down to

tissue mechanics F larger fibrils mean a stronger cornea.

The independent effect of the fibril number density on

light scattering is difficult to assess, as altering the fibril

number density by increasing the separation of the fibrils

simultaneously changes the effects of interference.

However, we find that keeping the relative positions

of the fibrils constant but moving the fibrils apart

(Figure 2b) leads to less scattering (greater transmission).

An important point to realise, however, is that, contrary

to what is often asserted, increased interfibril spacings

(for example, when the cornea swells) are not per se

responsible for the increased light scattering that

accompanies oedema.

From Equation (1) it is clear that light scattering will

increase with increased corneal thickness (assuming the

increased thickness is because of extra tissue mass rather

Figure 1 The summation of scattered fields method was used
to predict transmission (Ft) as a function of wavelength in the
human cornea. Data on corneal fibril positions and sizes were
obtained from electron micrographs and were scaled to account
for shrinkage during specimen preparation. Other data were
taken from Table 2.

Table 2 Data from normal human cornea (relevant parameters
were used in the direct summation of fields method to predict
light transmission (Figure 1))

Average fibril diameter 30.870.8 nm
Refractive index of fibrils 1.41170.001
Refractive index of extrafibrillar matrix 1.36570.003
Refractive index ratio 1.03370.002
Number density 292770mm2
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than oedema). However, Figure 2c shows that this effect

is relatively small, the corneal thickness could almost

double without seriously increasing scattering. This

presumably accounts for why, for example, a bovine

cornea has similar transparency to a thinner human

cornea.

Light transmission through the cornea is very sensitive

to an increased mismatch in the refractive indices of the

collagen and the extrafibrillar matrix. Theoretically, there

are two ways of varying their ratio, either keep the

refractive index of the fibrils constant and vary that of the

matrix, or vice versa. Both have a similar effect (Figure

2d). If the ratio is one, there is total transmission

throughout the spectrum. This is the uniform refractive

index condition. As we increase the ratio, transmission

reduces, once again, particularly at the blue end of the

spectrum.

In conclusion, the DSF method can be used to

demonstrate that light scattering in the cornea will

increase if:

1. order in the spatial arrangement of the fibrils is

destroyed;

2. fibril diameters increase;

3. fibril number density increases;

4. there is an increased refractive index imbalance

between the hydrated fibrils and the extrafibrillar

matrix;

5. corneal thickness increases.

So far, we have imagined the cornea as a structure

made only of collagen fibrils and extrafibrillar matrix. Of

course, there are a large number of keratocytes in the

stroma, which gradually reduce in density from the

anterior to the posterior stroma.22,23 Maurice3 believed

that there were insufficient of these to contribute

significantly to scattering. Besides, they are relatively

thin in the direction of the light path through the cornea.

More recently, Jester et al24 have suggested that these cells

contain special proteins called corneal crystallins, which

produce a uniform refractive index in the cells and may

match the refractive index of the cytoplasm to that of the

surrounding matrix. This, together with the dimensions

of the cells, renders them weak scatterers (except for their

nuclei, which are readily visible in the confocal

microscope). However, if keratocytes change their shape

Figure 2 Theoretical effects of varying individual parameters as predicted by the summation of scattered fields model. The predicted
transmission of light (Ft) is plotted against wavelength. The number by each curve represents the values of the parameters being
varied, in units of nm (a), mm�2 � 10�2 (b), and mm (c).

Transparency, swelling, scarring in corneal stroma
KM Meek et al

930

Eye



or spill their contents, a different situation ensues, and

they are capable of becoming very efficient scatterers.25,26

Cornea oedema

An understanding of structure and transparency changes

when the cornea swells is dependent on our knowledge

of where imbibed water is situated, both at the level of

the tissue as a whole and within the lamellae themselves.

In many animals, the anterior stroma is less ordered,15

less hydrated,27–29 has a higher keratocyte density,22,23

has a lower keratan sulphate (KS) to chondroitin/

dermatan sulphate (DS) ratio,28 and is less easily

swollen29–31 than the posterior stroma. We have

examined four frozen human corneas (two at

physiological hydration and two swollen in culture

medium). These were sectioned at 100 mm intervals from

the anterior to posterior using a Mikrom sliding

microtome. All sections were weighed and then placed in

dH2O. At fixed intervals, each section was reweighed

and then returned to the dH2O to continue swelling until

a constant weight was reached. The hydration of each

section was calculated for both the physiological and the

swollen corneas. The results (Figure 3) confirm results

from other species27–29 and show that hydration increases

with tissue depth in both the physiological and the

swollen human corneas. This may be related to the

gradual increase in the KS/DS ratio with depth, since KS

is known to show greater water absorption than DS.32,33

However, as Bron34 has pointed out it is possible that

there is a differential loss of proteoglycans between

anterior and posterior stroma as the cornea swells and

this, if it happens, would affect the swelling at different

stromal depths.

The corneal sections were immersed in distilled water

until they essentially stopped swelling. The final

hydrations achieved were plotted as a function of tissue

depth (Figure 4). We found that the maximum achievable

hydration increases as a function of depth. This means

that the posterior stroma is capable of swelling much

more than the anterior. It is likely that anterior swelling is

limited by lamellar interweaving and insertions into

Bowman’s layer, a phenomenon that may have

considerable importance in maintaining the correct shape

of the cornea.31,34

Information on the distribution of imbibed water

within the lamellae has been obtained using X-ray

diffraction methods. When the denuded cornea swells,

there is a linear relation between the fibril separation

squared and the hydration.35 Interfibrillar centre-to-centre

spacings were determined for bovine corneas as a

function of hydration using X-ray diffraction, and the

results are shown in Figure 5 (line a). By extrapolating

this line to H¼ 0, it is possible to plot a theoretical graph

of the expected interfibril spacing on the assumption that

all the water entering the stroma has gone towards

separating the constituent fibrils.5,21 This theoretical plot

is shown in Figure 5 (line b). The shading around the

theoretical plot is the uncertainty owing to the

uncertainty in determining the spacing at H¼ 0 from the

experimental data. The interesting point is that at a given

hydration, the interfibril spacing is lower than it should

be considering the amount of water in the stroma. This

must mean that some of the water is not between fibrils,

and thus must be in fibril-free regions. Some of these

regions are probably places occupied by cells that have

died post mortem. If we assume that keratocytes occupy
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15% of the stromal volume, we can take this into

account in the theoretical calculation, and the match

between theory and experiment becomes much better

(Figure 6).

So it appears that fibril-free regions (‘lakes’) form in

swollen corneas, and that when cells die, the spaces

previously occupied by them might themselves become

‘lakes’ that could contribute to an increase in light

scattering.

Light scattering in oedematous corneas

A full survey of the literature probing the causes of

scattering when the cornea swells is beyond the scope of

this article. From a theoretical standpoint, ‘lakes’ would

add a term to the total scattering cross-section that

would vary as B/l2.37,38 By measuring transmission as

corneas swelled, Farrell et al were able to compute

the scattering cross-section and demonstrated that it

has a 1/l2 dependence, as predicted by the presence of

‘lakes’.35 Lakes are not seen in the normal human cornea,

but they are present in bullous keratopathy and Fuch’s

dystrophy corneas.39 Some fibril-free regions appear to

be because of matrix disorder (Figure 7), while others

might reflect the presence of dead cells. The question is,

to what extent does the intralamellar disordering lead to

light scattering?

In principle, the summation of scattered fields

approach could again be used to compute the theoretical

effects of disordering and/or lakes. The required

structural information (fibril positions, diameters,

number density) can be obtained from electron

micrographs scaled according to the X-ray diffraction

measurements as described previously. However,

as the cornea swells, the extra water will change the

refractive indices of the interfibrillar matrix and also,

possibly, of the collagen fibrils themselves. However,

we know from previous studies21 that collagen fibrils do

not swell appreciably above physiological hydration,

so their refractive index is independent of tissue

hydration and stays constant at 1.416. As water or

electrolyte enters the interfibrillar matrix, it dilutes it and

the refractive index falls. The amount by which it falls

can be estimated by measuring the change in the

refractive index of the stroma as a function of tissue

thickness or hydration (Figure 8) and then applying

Gladstone and Dales’s law of refractive indices to the

system.2 Since the imbibed fluid does not enter the fibrils

themselves,21 this fall in the refractive index as the

stroma swells leads to an increase in the ratio of the

refractive index of the fibrils to that of the interfibrillar

matrix and to a corresponding increase in light

scattering. We found that between physiological

hydration and H¼ 3.8, there was a 0.15% reduction in the

refractive index of the matrix and a corresponding 0.1%

increase in the ratio of the refractive indices of the fibrils

and the matrix (S Khan, S Dennis, and K Meek,

unpublished results). Between physiological hydration

and H¼ 5.8, these percentages were 0.59% and 0.58%,

respectively.
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Armed with this quantitative information, it is now

possible to apply the summation of scattered fields

method to Fuch’s dystrophy corneas. The result is shown

in Figure 9. It can be appreciated that the intralamellar

disruption in the spatial arrangement of fibrils, the

increased mismatch in the refractive indices, and the

increased thickness of the stroma together lead to the

overall reduction in light transmission.

Phototherapeutic keratectomy

It is well known that haze develops following laser

ablation to the anterior stroma. The definition of haze is

difficult because of the different methods used to

measure it, and even less certain is the origin of the

haze.40 Various authors have ascribed the observed haze

to irregularities in the epithelium,41,42 to subepithelial

deposits,43 to the presence of vacuoles,44 to the deposition

of poorly organised collagen,45,46 or to the presence of

activated keratocytes.25,26 However, none of these

suggestions have been experimentally or theoretically

shown to account for increased light scattering. We have

used PTK in rabbits to predict the percentage

transmission of visible light through the newly deposited

collagen using the DSF method and hence to see if this

collagen could account for the observed haze. All

experimental procedures were carried out in accordance

with the ARVO Resolution on the Use of animals in

Ophthalmic and Vision Research.
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PTK took place at St Thomas’ Hospital London using

an Omnimed excimer laser (Summit Technology, Boston,

MA, USA) with a wavelength of 193 nm. The pulse

energy resulted in a radiant exposure of 180 mJ/cm2 at a

pulse frequency of 10 Hz. The beam shape was circular

with a fixed diameter of 6.0 mm. Wounds were allowed

to heal for up to 19 months. We used an objective

measurement for corneal haze developed by Lohmann

et al47 in which haze was determined using a slit-lamp-

mounted charged-coupled device (CCD) system. The

results of the haze measurements are shown in Figure 10

and confirm that both a transitory haze (which peaks

after a month) and a more persistent or late developing

haze (which remains for many months) occur. The

question we address here is to what extent the persistent

haze can be ascribed to the nature of the newly deposited

collagen.

After 8 months of healing, the rabbit corneas had laid

down a layer of newly deposited collagen that had

almost compensated for the amount removed

(approximately 100 mm). Apart from the most superficial

layer, most of this collagen had formed a lamellar

structure, although the order in the fibril packing was

visibly poor. Micrographs were taken at different depths

and typical ones were used in the DSF method to

predict light transmission. In this case, however, we

had no information about refractive indices in the new

matrix, so we made the assumption that these were

normal.

Figure 11 shows that despite the fact that the fibril

diameters and organisation had not returned to normal,

only a very small drop in light transmission is predicted.

This is probably due, in large part, to the fact that the

newly deposited layer extended to only about 100 mm.

The thinness of this collagenous layer, therefore,

counteracts the increased scattering caused by the poor

organisation of the new collagen. It appears, therefore,

that newly deposited collagen is not the cause of

persistent haze following PTK. Electron microscopy of

our rabbit corneas showed a qualitative correlation

between haze, the number of activated keratocytes, and

the smoothness of the subepithelial basement lamina. We

therefore believe that either or both of these contribute

more to post-PTK persistent haze than does the newly

deposited collagen.

Conclusions

Despite the considerable effort that has been put into

understanding corneal transparency, there is still no

universally accepted explanation and no model that has

been thoroughly tested. Some progress has been made,

particularly with respect to our understanding of what

factors govern corneal fibril size49,50 and organisation,

including the roles of the ambient ions51 and of

proteoglycans. The recent availability of gene-targeted

mice with null mutations for selected proteoglycans52–54

now makes it possible to correlate the structural effect of

selected deletions with tissue transparency. For example,

it is interesting that lumican-null mice have cloudy

corneas,52 decorin-null mice have clear corneas,53 and

keratocan-null mice have mostly clear corneas.54 These

and similar tissues open the possibility to greatly

increase our understanding of the causes of light

scattering from abnormal corneas in the near future.
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