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Abstract

Diabetic retinopathy is a sight-threatening

complication of the retinal microvasculature.

While important environmental factors have

been clearly identified as influencing its

development, increasing evidence suggests

that diabetic retinopathy has a genetic

component. A variety of studies have explored

associations between candidate genes and

frequency and severity of retinopathy. Overall,

this review has found that the majority of

candidate genes studied exhibit weak or no

association with retinopathy status, and where

associations have been detected these results

have not been replicated in multiple

populations. This may reflect inaccurate case

definition, small subject numbers and

possibly inadequate markers for genetic

studies
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Genetic susceptibility to diabetic retinopathy

It is recognised that polymorphic variability in

the genetic make-up of an individual can

profoundly influence the expression of a gene

and its response to environmental factors.1,2

Useful clinical markers for genetic susceptibility

to a disease are either familial aggregation or a

variation in disease frequency, which are not

explained by environmental, biochemical, or

biological risk factors. Diabetic retinopathy (DR)

displays these characteristics as clinical studies

on human subjects with diabetes reveal

substantial variation in the onset and severity of

retinopathy that are not fully explained by the

known risk factors such as duration of diabetes,

level of glycaemic control, or concomitant

vascular disease.3,4 The risk of severe DR in the

siblings of affected individuals is substantially

increased,5 and the Diabetes Control &

Complications Trial has shown that retinopathy

tends to cluster in families.4 Furthermore,

differences in the frequency of disease in ethnic

populations6 also suggest that genetic

influences are operating in DR. With the

complex metabolic environment of the retina,

many risk factors have been proposed in the

past.7,8

The search for genetic factors in

multifactorial, complex late-onset human

diseases is characterised by two approaches:

genome-wide scans for markers linked to

disease and candidate genes studied

individually based on the putative function of

the gene product. In terms of DR, few studies

have employed the former method. Recently,

Imperatore et al9 undertook a genome-wide scan

for susceptibility genes to diabetic retinopathy

(and nephropathy) in families using affected

sib-pair linkage analysis. There were indications

that elements on chromosomes 3 and 9

influenced both nephropathy and retinopathy,

but no clear genomic region was designated for

retinopathy alone.9

Candidate genes for retinopathy

Association between genetic variability and

retinopathy may be because of increased

frequency or increased severity of retinopathy

within the population of interest. A large

number of candidate genes have been examined

in subjects with diabetes, but few groups have

identified a strong association between a gene

and the frequency or severity of retinopathy.

Most published studies have been based on

small patient samples, and case definitions were

not based on prospectively agreed and

standardised criteria. Moreover, selection of

genes for association studies in DR poses

particular difficulties, as many of the obvious

candidate genes are involved with the normal

function and regulation of the microvasculature

in the retina. In this review, we focus on groups
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Table 1 Summary of studies on associations between genetic markers and diabetic retinopathy

Gene Product Marker Association
with

Ethnicity Type of
Diabetes

Reference Sample size

AR2 Aldose reductase Substitutiona Retinopathy Asian 2 Kao et al15 NR=97; AR=67 (adolescents)
Microsatellite No retinopathy Multiethnic 2 Olmos et al16 AR=27

No retinopathy Asian 2 Ko et al17 NR=22; AR=22
Retinopathy Asian 2 Fujisawa et al18 NR=83; PPR=87
Retinopathy Asian 2 Ichikawa et al19 NR=30; SR=30; PPR=27
Retinopathy Asian 2 Ikegishi et al20 NR=34; PPR=27
Retinopathy Caucasian 1 Demaine et al22 NR=70; PPR=159
None Multiethnic 1 Chistyakov et al21 NR=31; PPR=19
None Caucasian 1 Heesom et al13 (Neph study) stratified for DR

HLA Region of chromosome 6p Various Retinopathy African 1 Cisse et al23 Not known
region Retinopathy Caucasian 1 Falck et al24 NR=52; AR=51 (adolescents)
genes Retinopathy Caucasian 1 Agardh et al25 NR or SR=28; PPR=28

None Caucasian 1 Stewart et al26 NR=39; AR=20 (adolescents)
None Asian 2 Hawrami et al28 NR=45; PPR=40
None Caucasian 1 Serrano-Rios et al27 AR=32

2 Serrano-Rios et al27 AR=35
IgG Immunoglobulin subclass heavy chains Allotypes Retinopathy Caucasian 1 Stewart et al26 NR=58; AR=44 (adolescents)
IgM Sm Immunoglobulin M heavy chain switch

region
Substitution Retinopathy Asian 2 Hawrami et al28 NR=45; PPR=40

GLUT1 Glucose transporter 1 Nucleotide None Caucasian 2 Guitterez et al29 NR=92; AR=68
substitution None Caucasian 1 Hodgkinson et al30 NR=44; AR=30 (neph study)

None Asian 2 Liu et al31 AR=45 (neph study)
PAI Plasminogen activator inhibitor Insertion/deletion and

nucleotide substitution
None Indian 2 Nagi et al32 NR=101; AR=70

None Caucasian 1 Tarnow et al33 (Neph study) stratified for DR
APOE Apolipoprotein E Allelic variation None Caucasian 1 Tarnow et al33 (Neph study) stratified for DR
TNF Tumour necrosis factor in MHC Microsatellite Retinopathy Asian 2 Hawrami et al34 NR=46; PPR=53
b3-AR b-3 Adrenoreceptor Substitution Retinopathy Asian 2 Sakane et al35 NR=121; NP=48; PR=46

None Caucasian 1 Vendrell et al36 NP=56; PR=12
PON1 Paraoxonase 1 Substitution Retinopathy Multiethnic 2 Kao et al37 NR=119; AR=80

None Multiethnic 2 Mackness et al39 NR=93; AR=101
a2b1I a2b1 Integrin (platelet collagen receptor) Various (silent base)

changes and
nucleotide transition

Retinopathy Asian 2 Matsubara et al39 NR=108; AR=119

Collagen
IV a1

Basement membrane protein Substitution None Caucasian 2 Alcolado et al40 PR=43

None Caucasian 1 Chen et al41 (Neph study) stratified for DR
Gb3 b-Subunit of heterotrimeric G-protein Substitution None Caucasian 1 Shcherbak and Schwartz42 NR=96; AR=76
NPY Neuropeptide Y Substitution Retinopathy Caucasian 2 Niskanen et al43 NR=46; AR=40
ACE Angiotensin-converting enzyme Insertion/deletion None Caucasian 2 Guitterez et al48 NR=92; AR=68

None Asian 2 Fujisawa et al49 Meta-analysis (18 studies)
None Caucasian 1 Nagi et al50 NP=92; PR=94
Retinopathy Asian 2 Nagi et al50 NP=186; PR=177
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of genes involved in distinct metabolic and functional

pathways known to be affected in diabetes. In Table 1, we

provide a summary of the studies undertaken to date on

the role of variability in candidate genes that have been

examined for association with retinopathy.

Aldose reductase pathway The aldose reductase pathway

has been studied in a number of population samples, and

variation in the genes expressed in this pathway may

influence microvascular susceptibility. Aldose reductase

is encoded by the aldose reductase (AR2) gene and is

involved in the conversion of glucose to sorbitol, acting

as the rate-limiting enzyme of the polyol pathway. The

protein is strongly expressed in retinal pericytes and is

also found in the vascular endothelium.10 It has been

postulated that 7q35 is a susceptibility region for diabetic

retinopathy and nephropathy by virtue of the AR2 gene

and nearby genes.11 It is still uncertain if the AR2 gene

itself is directly causative in pre-disposition to

retinopathy or protection from its development.12

Heesom et al13 investigated the role of a polymorphism

consisting of a [CA]n repeat in the 50 region of this gene

with severity of retinopathy. No obvious genetic

association was detected in subjects segregated by

retinopathy status, but a decrease in prevalence of allele

Zþ 2 was associated with nephropathy. The same group

also reported an increased frequency of the Z�2 allele in

subjects with neuropathy.14 Fujisawa et al15 postulated

that the length of the polymorphism and not the actual

repeat itself was important, concluding that shorter

alleles were associated with retinopathy. They compared

their findings with other studies on AR2 and retinopathy

and concluded that the data were consistent. Most

studies of the genetics of the AR2 gene pathway have

been conducted in subjects16–21 of Asian descent, but

recently Demaine et al22 reported a significant association

of a particular haplotype with the development of severe

retinopathy in Caucasian subjects.

MHC and immunity markers In the case of Type 1

diabetes, the strongest genetic risk component is

localised within the major histocompatibility complex

(MHC) and is designated IDDM I. This locus contains the

HLA-DQ genes and other MHC-encoding genes that

contribute to risk of Type 1 diabetes depending on the

ethnic population investigated. This HLA region, that is

located on 6p21, has also been implicated as a genomic

region of interest for susceptibility to retinopathy in both

Type 123–27 and Type 227,28 diabetes. However, the results

appear to vary based on retinopathy classification (see

Table 1) and ethnicity, and could be clarified by

replication in large samples of adult patients.

Glucose transporters Another potential candidate gene is

the glucose transporter 1 (GLUT1), which encodes a
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protein that facilitates transport of glucose into cells. It

has been implicated as a susceptibility factor for Type 2

diabetes itself and in the development of microvascular

complications. In the three studies listed in Table 1, no

association between polymorphisms in the GLUT1 gene

and retinopathy status was found.29–31

Cell communication and the extracellular matrix A number

of other candidate genes involved in cellular

communication and the extracellular matrix have also

been investigated for genetic association with

retinopathy including plasminogen-activating factor

(PAI-1),32,33 APOE,33 tumour necrosis factor alpha

(TNF-a),34 b-3 adrenergic receptor gene (b-3AR),35,36

Paraoxonase 1 (PON1),37,38 a2b1 integrin,39 collagen IV

a1,40,41 G-protein b-3 subunit42 and neuropeptide Y.43

However, in some cases, there were no consistent

associations with frequency or severity of retinopathy,

and, in others, significant associations have not been

replicated in additional patient groups.

Endothelins and nitric oxide synthases There is

incontrovertible evidence that endothelium-mediated

vasoregulation is defective in diabetes mellitus and is a

precursor to pathological alterations in retinal blood

flow.44–46 The complex interactions between vasodilator

and vasoconstrictor modulation of blood flow in the

retinal microcirculation are unclear, and the longitudinal

influence of diabetes on this interplay is even less well

understood. What is clear, however, is that over a period

of time, in diabetes, the retinal vasculature undergoes a

series of irreversible pathological changes culminating in

a severe retinopathy.47

A variety of molecules with potent vasoactive

functions are produced and released by the vascular

endothelium. These include the nitric oxide synthases

(NOS) that mediate vasodilation and the endothelins

(ETs) that are vasoconstrictors. Angiotensin-converting

enzyme (ACE), which converts angiotensinogen to

angiotensin, is another important mediator of

vasoconstriction and homeostasis; however, studies to

date on genetic markers of members48–56 of this signalling

pathway have not shown definitive evidence of direct

genetic risk (see Table 1).

NOS catalyse the formation of the potent vasodilator

gaseous molecule NO from the substrate L-arginine.57

There are three isoforms of NOS, each of which is

encoded by a distinct gene. NOS1 is constitutively

expressed in the brain and thus termed neuronal NOS.

The NOS3 gene is expressed constitutively in the

endothelium of blood vessels (endothelial NOS) and is

responsible for the normal dilator tone. NOS2A is not

expressed in any tissue under normal conditions.

However, upregulation of NOS2A in a variety of tissues

by cytokines can result in a sudden burst of NO synthesis

leading to severe vasodilation and circulatory collapse.

The ETs are a class of long-acting vasoconstrictor

peptides with marked similarity to snake venom,

sarafotoxin. There are three different endothelin

peptides, ET-1, ET-2, and ET-3, encoded by the EDN1,

EDN2, and EDN3 genes, respectively, which are located

on different chromosomes. All three EDN genes translate

a large precursor, which is cleaved by an endothelin-

converting enzyme (ECE) to the active peptide. The most

potent vasoconstrictor peptide produced and released

from the endothelium is ET-1 where ECE1 cleaves the

inactive precursor peptide, big ET-1, to the active ET-1

peptide,58 and is critical in controlling the production of

ET-1.59,60 The ETs are vasoconstrictors and are mitogens

for vascular smooth muscle.61 Expression of ECE1 is

widespread in human tissues, but particularly high

in vascular endothelial cells. NOS and ET are

counterregulatory and the NO/ET pathway is crucial to

the state or tone of the vasculature, which is delicately

controlled by the balance in their expression. A number

of studies have identified perturbations of the NO/ET

pathway in most vascular beds including that of the

retina in the early stages of diabetes. There has been

substantial interest in the polymorphic variability of NOS

and ET genes as potential markers for vascular disease.

In studies from our laboratory, we identified

microsatellite polymorphic markers in members of the

ET and NOS families as well as those of the ECE1 gene.

Segregation of the alleles was assessed for diabetic

retinopathy in two separate populations of patients

recruited from two distinct geographical locations

(Northern Ireland and Liverpool, England).62 Subjects

with no retinopathy despite 15 years or more of diabetes

(controls) and any subject with severe retinopathy

regardless of duration (ETDRS level 50 or worse) were

prospectively recruited into these studies. None of the

polymorphisms studied in the NOS1 (unpublished data)

or NOS363 genes was significantly associated with cases

or controls. However, studies on the NOS2A gene

showed that a 14-repeat allele of a pentanucleotide

polymorphism in the 50UTR of the NOS2A gene was

protective (OR¼ 0.21) against developing diabetic

retinopathy in both patient populations.62 Further in vitro

studies using constructs of the NOS2A gene showed that

this polymorphism influenced cytokine-induced NOS2A

transcription.62 Increasing allele size resulted in better

transcription, with peak transcription occurring in

constructs containing the 14-repeat allele. Further

increases in allele size (15, 16, and 17 repeats) did not

improve transcription.62 When similar experiments were

conducted in the presence of high concentrations of

glucose mimicking a diabetic state, there was inhibition

of NOS2A transcription, but this inhibition effect was
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minimal in constructs containing the 14-repeat allele.62

These findings suggest a plausible mechanism for the

protective effects seen with the 14-repeat allele, and this

is in agreement with published studies on the expression

of NOS3 and NOS2A in high glucose. The level of

expression of NOS3 is reduced in the retinal vascular

endothelial cells in vivo64 and in vitro65 in a diabetic

milieu. There is evidence to suggest that when NOS3

expression is low, induction of NOS2A may occur in an

attempt to achieve homeostasis.66 Inducibility of NOS2A

may be crucial in preventing or delaying pathological

alterations in the microcirculation in diabetes. It is

noteworthy that specific alleles of the NOS2A were

associated with the absence of retinopathy suggesting

that vascular damage is the inevitable consequence of a

prolonged high glucose environment unless genetic

variation confers protection.

A recent review has highlighted the importance of the

ET system and the impact of perturbations in this system

on vascular complications67 in diabetes. Evidence from

EDN1 genetic mutants shows that ET and its converting

enzyme are necessary for correct vascular development

in the embryo.68–70 Huang et al71 reported that the EDN1

gene was directly involved in hypertension, and

polymorphisms in the gene encoding ET receptor-A have

been shown to be associated with essential hypertension

testifying to the necessity of balance within the system

for normal functioning in vascular tissues.72

While we have reported on the importance of ET-1

expression in retinal microvasculature in high glucose,73

there appears to be a lack of association between a

polymorphism in the EDN1 gene and diabetic

retinopathy after correction.63 There is also a similar lack

of association between the ECE1 gene and retinopathy

status after correction (data in preparation).

Conclusions

The loci summarised in Table 1 have been logical choices

for candidate genes to investigate potential genetic

contribution to diabetic retinopathy. A number of these

loci showed modest associations with either lack of

retinopathy or severe retinopathy, indicating the

presence of genetic determinants for resistance or

susceptibility to vascular complications. However, there

appears to be an inability to replicate findings of either

positive or negative associations (ie association or lack

thereof) in multiple population groups. These

inconsistencies may reflect variation in (a) case

definition, (b) standardisation of grading of severity of

retinopathy, (c) delineation of duration of disease, and (d)

accurate recording of other associated risk factors. In

addition, there is a tendency for the studies to be

relatively small, and often they were undertaken in

specific ethnic groups. Thus the role of ‘genetic influences’

in diabetic retinopathy has been difficult to define.

It is increasingly obvious that there are distinct

morphological manifestations in diabetic retinopathy

with some subjects showing exudative changes only in

the macula (maculopathy) and others showing much

more extensive retinal vascular disease. To date, the

factors that determine the evolution of the clinical picture

of retinopathy have not been identified and it is unclear

whether the different morphologies represent distinct

pathogenetic mechanisms. Future studies should

undertake a more accurate and defined phenotype with

respect to retinopathy status, to ensure that subsequent

recategorisation can be undertaken if necessary. Agreed

international standards for data collection, particularly

agreement on a minimum data set for the phenotyping of

retinopathy in subjects with diabetes, would permit the

pooling of data from the many studies with enhanced

power to detect associations. Among the various

pathways that have been explored in the association

studies thus far, variations in the genes involved in the

NOS/ET pathway and the aldose reductase (AR2)

pathway represent a fruitful area for further study.
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