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Summary Anti-Her-2/neu antibody is known to induce apoptosis in HER-2/neu overexpressing breast cancer cells. However, exact regulatory
mechanisms mediating and controlling this phenomenon are still unknown. In the present study, we have investigated the effect of anti-Her-
2/neu antibody on apoptosis of HER-2/neu overexpressing human breast cancer cell lines SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128,
HTB-130 and HTB-131 in relation to p53 genotype and bcl-2 status. SK-BR-3, HTB-24, HTB-128 and HTB-130 cells exhibited mutant p53,
whereas wild type p53 was found in HTB-25, HTB-27 and HTB-131 cells. All seven cell lines weakly expressed bcl-2 protein (10–20%). 
Anti-Her-2/neu antibody, irrespective of p53 and bcl-2 status, induced apoptosis in all 7 cell lines dose- and time-dependently and correlated
with Her-2/neu overexpression. In addition, incubation of cell lines with anti-Her-2/neu antibody did not alter p53 or bcl-2 expression. Anti-
HER-2/neu antibody did not induce apoptosis in HER-2/neu negative HBL-100 and HTB-132 cell lines. Our results indicate that within the
panel of tested breast cancer cell lines, anti-Her-2/neu antibody-induced apoptosis was independent from the presence of intact p53. © 2001
Cancer Research Compaign
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The Her-2/neu gene is a proto-oncogene from the erbB family of
receptor tyrosine kinases, located on chromosome 17q21 (Coussens
et al, 1985) and encodes for a 185 KD transmembrane glycopro-
tein containing an extracellular domain and intracellular tyrosine
kinase activity. While the extracellular domain possesses ligand-
binding activity (Lupu et al, 1990), the direct natural ligand of
Her-2/neu is still unknown. HER-2/neu gene amplification or pro-
tein overexpression was reported in various types of malignancies
including ovarian, gastric, lung cancer and in 10 to 40% of
primary human breast cancers as well as in several human breast
carcinoma cells (Kraus et al, 1987). 

Impressive results of the combination of anti-Her-2/neu antibody
termed trastuzumab with cytotoxic drugs in patients with advanced
breast cancer overexpressing Her-2/neu (Fornier et al, 1999) have
been reported (Slamon et al, 1998, 2001; Norton et al, 1999;
Burstein et al, 2001) to result in a significant increase in response
rate and duration of time elapsed to disease progression as well as
overall survival. However, also the administration of anti-Her-2/neu
antibody as a single agent in pretreated patients with Her-2/neu
overexpressing tumours was able to produce an objective response
rate of 15% of considerable duration (Cobleigh et al, 1998, 1999). 
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In vitro, anti-Her-2/neu antibody-mediated inhibition of prolif-
eration and mediation of lysis by lymphokine-activated killer
(LAK) cells has been shown to be also closely related to the over-
expression of Her-2/neu in breast cancer cell lines (Harwerth et al,
1992, 1993; Brodowicz et al, 1997). Although the underlying mole-
cular events of these interactions remain unclear, a multitude of
possibilities has been discussed (Kerbel, 1999). Apart from the
obvious immunologic interaction between Her-2/neu protein and
the antibody, anti-Her-2/neu antibody has been hypothesized to
also have properties to act as an antiangiogenic agent. 

The present investigation focused upon the ability of anti-Her-
2/neu antibody to induce apoptosis in Her-2/neu overexpressing
breast cancer cells with particular emphasis upon the regulatory
molecular requirements for the proper induction of programmed
cell death. In response to DNA damage, wild type p53 has been
shown to be responsible for the regulation of the cell cycle
(Harvey et al, 1993) and to induce either cell cycle arrest in the G1
phase (Di Leonardo et al, 1994; Kastan et al, 1991) allowing for
DNA repair or apoptosis (Yonish-Rouach et al, 1991). In addition,
several target genes, encoding proteins like insulin-like growth
factor-1-binding protein 3 (Buckbinder et al, 1995), Fas/Apo-
1/CD95 (Owen-Schaub et al, 1995), KILLER DR5 (Wu et al,
1997), bax (Yin et al, 1997), reactive oxygen radicals (Johnson
et al, 1996) or PAG608 (Israeli et al, 1997), might be induced by
p53. Subsequently, these proteins can promote apoptosis by affect-
ing receptor signaling or apoptotic effector proteins. However,
additional p53-independent apoptotic pathways exist in normal as
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well as malignant cells which differ in their sensitivity towards
apoptosis-inducing agents (Thompson, 1995; Bracey et al, 1995;
Shao et al, 1995; Delia et al, 1993). Exact mechanisms involved in
p53-independent apoptosis are poorly understood. Loss of
retinoblastoma (pRb) family function with subsequent release and
deregulation of E2F-1 protein (Dyson, 1998), induction of reactive
oxygen radicals (Venot et al, 1998) and suppression of sequence-
specific transactivation-mediated growth arrest (Sionov and
Haupt, 1999) by a proline-rich domain of the human p53 might
contribute to p53-independent apoptosis. Furthermore, direct
interaction with apoptosis inducing proteins XPB and XPD (Wang
et al, 1996) or proteins, which interact with anti-apoptotic proteins
53BP2 (Naumovski and Cleary, 1996) may represent p53-inde-
pendent apoptosis inducing mechanisms. Bcl-2 prevents apoptosis
by inhibiting reactive oxygen intermediates formation (Hockenberry
et al, 1993) as well as mitochondrial apoptosis-inducing factor-
(AIF) and cytochrome C release (Dragovich et al, 1998; Susin
et al, 1999). Also p53-dependent apoptosis is repressed by bcl-2
(Chiou et al, 1994), partly due to impeding nuclear p53 import
(Beham et al, 1997). The apoptosis-regulating aspects of p53 in
the context of anti-Her-2/neu antibody were of particular interest,
as previous studies have demonstrated that growth arrest and
induction of apoptosis resulting from appropiate chemo- and/or
radiotherapeutic measures were largely dependent upon the intact
function of the p53 gene in various models (Bergh et al, 1995;
Elledge et al, 1995; Sarkis et al, 1995), and the clinical observation
that patients with malignancies exhibiting high frequency of p53
mutations exhibited resistance to cytotoxic agents (Aas et al,
1996). 

As these functional aspects have been insufficiently addressed
and not fully elucidated in the functional context of anti-Her-2/neu
antibody until now, we have studied the molecular aspects of anti-
Her-2/neu antibody-mediated induction of apoptosis in human
breast cancer cell lines SK-BR-3, HTB-24, HTB-128 and HTB-130
which exhibited mutant p53 and HTB-25, HTB-27 and HTB-131
with wild type p53. 

MATERIALS AND METHODS 

Cell cultures 

Cell lines were obtained from American Type Culture Collection
(ATCC). SK-BR-3 (human breast carcinoma) and HBL-100 (human
mammary epithelial) were cultured in McCoy’s 5A medium supple-
mented with 10% heat-inactivated fetal calf serum (FCS) (all from
GIBCO Life Technologies Ltd, Paisley, Scotland, UK), 50 units/ml
penicillin, 50 µg streptomycin and 2 mM L-glutamine (all from
HyClone, Europe Ltd, Cramlington, UK)/ml medium. The human
breast carcinoma cell lines HTB-24 (MDA-MB-157), HTB-25
(MDA-MB-175-VII), HTB-27 (MDA-MB-361), HTB-128 (MDA-
MB-415), HTB-130 (MDA-MB-436), HTB-131 (MDA-MB-453)
and HTB-132 (MDA-MB-468) were cultured in Leibovitz’s L-15
medium with L-glutamine (PAA Laboratories Gmbh, Linz, Austria)
supplemented with 10% heat-inactivated FCS (Gibco), 50 U peni-
cillin and 50 µg streptomycin (all from HyClone) per ml. Cells were
grown as monolayers (standard conditions) in T75 flasks (Falcon,
Becton Dickinson Comp., NJ, USA) at 37˚C in a humidified atmos-
phere with free gas exchange without CO2 by seeding 5 × 106 cells
in 25 ml of appropriate medium. SK-BR-3 and HBL-100 cells were
cultured in a humidified atmosphere containing 5% CO2. 
© 2001 Cancer Research Campaign
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A commercially available c-erbB-2 monoclonal mouse IgG1 anti-
body (Clone TAb 250) (Zymed Laboratories Inc., South San
Francisco, CA, USA) was used. This antibody immunoprecipitates
a protein of 185 KD from a [35S] labeled lysate of NIH3T3 cells
transfected with the c-erbB-2 gene. In addition, this antibody has
been shown to recognize the external domain of the c-erbB-2 gene
product from radiolabeled, permanently transfected CHO cells.
Furthermore, the antibody of this clone (TAb 250) exerted a Her-
2/neu specific antiproliferative impact on previously tested breast
cancer lines (Brodowicz et al, 1997). For assays of proliferation
inhibition and apoptosis 25 µg c-erbB-2 antibody was dissolved in
one ml of distilled water and subsequently diluted in appropriate
culture medium (final concentrations: 0.025 µg/ml, 0.25 µg/ml
and 2.5 µg/ml). A preparation of mouse IgG1 antibody (Serotec,
Oxford, UK) was used for control experiments. 

Detection of Her-2/neu by immunofluorescence 

After harvesting and 3 washes with HBSS (Gibco Life Technologies
Ltd, Paisley, Scotland, UK) cell lines (106 cells/sample) were prein-
cubated with 20% human AB-group serum for 20 min at room
temperature. Afterwards cells were washed and incubated with
50 µl of appropriately diluted anti-Her-2/neu antibody for 30 min
on ice. Isotype matched mouse antibodies were used as controls
(Immunotech, Marseille, France). After washing cells were incu-
bated with fluorescein isothiocyanate (FITC) labeled goat anti-
mouse IgG antibodies (Immunotech, Marseille, France) for 30 min
on ice. Cells were then washed three times and resuspended in 300 µl
staining buffer supplemented with 7 amino-actinomycin-D (7-AAD)
(final concentration: 1 µg/ml) (Sigma, Steinheim, Germany) to allow
exclusion of dead cells. Subsequently, cells were analysed by flow
cytometry on a FACScan (Becton Dickinson, CA, USA). 

p53 Sequence analysis 

Total genomic tumor DNA was extracted from 2 × 107 cells using
standard phenol–chloroform extraction methods. Exons 2 to 11 of
the p53 gene were amplified separately using oligonucleotide
primers placed in the adjacent intron regions as described previ-
ously (Lehmann et al, 1991; Brodowicz et al, 1999). PCR products
were controlled for purity, quantity and quality by subjecting 5 µl
of PCR products to pre-cast 6% acrylamide/bis-acrylamide gels
(Novex, San Diego, CA, USA) using the pBR322 DNA-Msp I
digest as reference standard (Clontech Lab.Inc., Palo Alto, CA,
USA). To remove residual single-stranded primers, 5 µl of PCR
products were enzymatically treated with combination of exonu-
clease I and shrimp alkaline phosphatase (United States Bio-
chemical, Cleveland, OH, USA). Pretreated PCR products were
then directly sequenced using the Cycle Sequencing Kit (Roche
Molecular Systems Inc., Branchburg, NJ, USA), utilizing Ampli
TaqR DNA Polymerase and α35 S labeled dATP (DuPont NEN,
Brussels, Belgium). For each reaction (for the four nucleotides),
0.5 µl of the thermostable DNA polymerase provided in the kit
were added at last to the reaction mix containing 2 µl reaction
buffer, 2–4 µl of enzymatically pretreated PCR product, 0.5 pmol
unique primer (separate reaction for each exon) and water to adjust
total volume to 20 µl. After running, the 6% acrylamide/bis-
acrylamide gels are dried for 90 min at 70˚ and directly subjected
to autoradiography against the Bio Max-MR film (Kodak, New
British Journal of Cancer (2001) 85(11), 1764–1770
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Haven, CT, USA). Mutations found were confirmed by at least one
complete reanalysis. 

p53 Immunohistochemistry 

p53 protein staining was performed with a mouse monoclonal
IgG2a antibody (Clone: DO-1; Immunotech, Marseille, France;
diluted 1:20) directed against wild type and mutant p53 protein.
Cytocentrifugates were fixed with Merckofix fixation spray (Merck,
Darmstadt, Germany). After blocking with horse serum, samples
were incubated with the primary antibody for 1 h. Further immuno-
histochemical staining was performed according to the ABC-
method, using products from Vector Laboratories (Burlingame, CA,
USA). Briefly, after incubation with the primary antibody and incu-
bation with a biotinylated secondary-antibody, incubation with the
ABC complex for 45 min followed. The reaction product was devel-
oped with 3,3′-diaminobenzidine tetrahydrochloride. Finally, slides
were counterstained with Gill’s haematoxylin. All steps of incuba-
tion were performed at room temperature. A cell line was scored
negative when nuclear staining was rare (<10%) or absent
(Kandioler-Eckersberger et al, 2000). 

Cell proliferation assay [3H]Thymidine incorporation
assay 

Cells were plated in 96-well microtiter plates (Costar, Cambridge,
MA, USA) at a density of 5 × 104 cells/well. Subsequently, anti-
Her-2/neu preparations in varying concentrations were added to
cell lines (see above), which had adhered for 1 h, and subsequently
cultured for 24, 48, 72 and 96 h at 37˚C in a humidified atmo-
sphere under the appropriate conditions ( = with or without 5%
CO2). [

3H] Thymidine (Amersham International Life Science, PLC,
Buckinghampshire, UK), at a concentration of 0.5 µCi/well, was
included for the final 16 h. The incorporation of [3H]Thymidine into
DNA was measured by a Direct Beta Counter-Matrix 96 (Packard,
Groningen, Netherlands) after the cells were harvested with the
Harvester Micromate 196 (Packard, Groningen, Netherlands) onto
Glass Fiber Filters (Packard, Groningen, Netherlands). Experiments
were always done in triplicate. Data is presented as a percentage of
proliferation of untreated cells for each respective time point.

DNA fragmentation assay analyzed by flow cytometry 

The 3′OH termini in DNA breaks were measured by attaching
fluorescent tagged deoxyuridine triphosphate nucleotides FITC-
dUTP, in a reaction catalyzed by terminal deoxynucleotidyl trans-
ferase (TdT) using the Apo-Direct™ Kit (Phoenix Flow Systems,
San Diego, CA, USA) purchased from Pharmingen, San Diego,
CA. The amount of incorporated fluorescein was detected by flow
cytometry. 

Cell lines (1 × 106 in T-25 flasks) were incubated with anti-Her-
2/neu antibody (final concentrations: 0.025 µg/ml, 0.25 µg/ml) for
24, 48, 72 and 96 h, respectively. Untreated and treated cells were
harvested, washed twice in phosphate buffered saline (PBS), fixed
in 1% (w/v) paraformaldehyde in PBS (pH 7.2), for 15 min on ice.
After sedimentation and two more washing steps, cells were resus-
pended in ice-cold 70% (v/v) ethanol and stored at –20˚C until
further use (maximum: 3 weeks). According to the manufacturer’s
instructions, cells were washed twice in wash buffer, resuspended
in 50 µl staining solution (10 µl reaction buffer, 0.75 µl TdT, 8 µl
British Journal of Cancer (2001) 85(11), 1764–1770
FITC-dUTP and 32 µl distilled water) and incubated for 1 h at 37˚C.
Afterwards, 1 ml rinsing buffer was added. Cells were centrifuged
(1000 × g) and rinsed again. Subsequently, cells were resuspended
in one ml PI/RNAse solution and incubated in the dark at room
temperature for 30 min. Subsequently, cell samples were analysed
by flow cytometry on a FACScan (Becton Dickinson, CA, USA). 

Morphological evaluation of apoptosis 

Cell morphology was performed by staining with May-
Gruenwald-Giemsa. For this reason cells were cultured in chamber
slides (‘Lab-Tek Chamber Slide w/cover Glass Slide 2 Well’)
(Nalge Nunc International, Naperville, USA). Treated and
untreated cells were stained with May-Gruenwald (Merck,
Darmstadt, Germany) for 5 min. Subsequently cells were washed
with distilled water (Leopold Pharma, Graz, Austria) for 5 min and
stained with May-Gruenwald-Giemsa (Merck, Darmstadt,
Germany; diluted 1:10) for 20 min. After a final wash with
distilled water, samples were viewed under light microscopy. Cells
were considered to be apoptotic according to the criteria intro-
duced by Kerr et al (1972) which included: compaction of the
nuclear chromatin, fragmentation of nuclei, condensation of the
cytoplasm and separation of the cell into apoptotic bodies. 

Detection of bcl-2 by immunofluorescence 

Cells (1 × 106 in T-25 flasks) were incubated with anti-Her-2/neu
antibody (final concentrations: 0.025 µg/ml, 0.25 µg/ml and
2.5 µg/ml) for 24, 48, 72 and 96 h, respectively. After harvesting
and 3 washes with PBS cells were fixed and permeabilized with
the fix & perm cell permeabilization kit (An der Grub, Bio
Research Gmbh, Kaumberg, Austria). According to the manufac-
turer’s instructions, 106 cells/sample were resuspended in 100 µl
fixation medium and incubated for 15 min at room temperature.
Afterwards, 5 ml PBS were added. Cells were centrifuged (5 min
at 300 g) and subsequently resuspended in 100 µl permeabiliza-
tion medium and 10 µl FITC-conjugated monoclonal mouse IgG1

anti-human bcl-2 antibody (clone 124; DAKO, Glostrup,
Denmark), vortexed at low speed for 2 s and incubated for 15 min
at room temperature. After one more washing step, cells were
analyzed by flow cytometry on a FACScan (Becton Dickinson,
CA, USA). 

RESULTS 

Her-2/neu protein expression 

As assessed by FACS analysis using a FITC-conjugated anti-Her-
2/neu monoclonal antibody preparation, Her-2/neu expression
ranged from 83–100% in cell lines SK-BR-3, HTB-24, HTB-25,
HTB-27, HTB-128, HTB-130 and HTB-131, whereas no Her-
2/neu protein was found on HTB-132 and HBL-100 cell lines (data
not shown). 

p53 Genotype (Table 1) and protein expression 

p53 genotype was analysed by sequence analysis in eight breast
cancer cell lines and one human mammary epithelial cell line. As
shown in Table 1, wild type p53 was present in cell lines HTB-25,
HTB-27, HTB-131 and HBL-100, whereas mutations in the p53
© 2001 Cancer Research Campaign
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Table 1 p53 gene mutations characterised in human breast cancer cell
lines 

Cell line Base change EXON/CODON Amino acid change 

SK-BR-3 CGC to CAC 5/175 Arg-His 
HTB-24 26 bp del 4/87–96 frameshift 
HTB-128 TAC TGC 7/236 Tyr-Cys 
HTB-130 7 bp Ins 6/204 frameshift 
HTB-132 CGT to CAT 8/273 Arg-His 
HTB-131 wild type 
HTB-27 wild type 
HTB-25 wild type 
HBL-100 wild type 
(human mammary epithelial) 
gene were found in SK-BR-3, HTB-24, HTB-128, HTB-130 and
HTB-132 cells. Immunohistochemistry for p53 revealed intense
nuclear staining in SK-BR-3 (Figure 1), HTB-128 and HTB-132
cells, whereas HTB-25 (Figure 2), HTB-27, HTB-131, HBL-100,
HTB-24 and HTB-130 cell lines showed no nuclear staining.
Thus, the p53 mutation of HTB-24 and HTB-130 cells was prob-
ably associated with loss of protein staining. 
© 2001 Cancer Research Campaign

Figure 1 Immunohistochemistry of SK-BR-3 cells for p53 protein showed
intense nuclear staining 

Figure 2 Immunohistochemistry of HTB-25 cells for p53 protein showed no
overexpression of p53 
Inhibition of cell proliferation by anti-Her-2/neu
antibody (Figure 3) 

As shown in Figure 3, the monoclonal anti-Her-2/neu antibody dose-
and time-dependently inhibited the growth of Her-2/neu-positive
cells, whereas the Her-2/neu-negative cell lines HTB-132 and
HBL-100 remained unhindered. The maximum inhibition of cell
proliferation was obtained with a final antibody concentration of
2.5 µg/ml after 96 h of incubation, as compared to untreated cells.
Control experiments using non-specific mouse IgG1 antibody did
not show any influence upon cell proliferation (data not shown). 

Induction of apoptosis: DNA fragmentation, analysis of
cell-cycle position and DNA content (Table 2) 

In summary, anti-Her-2/neu antibody was able to induce apoptosis
dose-dependently in all HER-2/neu positive breast cancer cell
lines irrespective of their p53 status with an optimal duration of
incubation with 0.25 µg/ml anti-Her-2/neu antibody for 96 h.
Thus, anti-Her-2/neu antibody-induced apoptosis was seen in
similar degrees in cell lines with wild type p53 as well as in those
with p53 mutations. No apoptosis was found in Her-2/neu negative
cell lines HTB-132 and HBL-100 during an incubation period of
up to 96 h. Control experiments with non-specific mouse IgG1

antibody did not induce apoptosis within the panel of tested cell
lines (data not shown). 
British Journal of Cancer (2001) 85(11), 1764–1770
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Figure 3 Proliferation of SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128, HTB-130, HTB-131 and HTB-132 (all breast cancer) and HBL-100 (human mammary
epithelial) cells during incubation with anti-HER-2/neu antibody in varying concentrations (0.025 µg/ml, 0.25 µg/ml, 2.5 µg/ml) for 24, 48, 72 and 96 h 
(3H-thymidine incorporation assay). Data are presented as relative counts per minute of untreated cells (100%) for each respective time point 

Table 2 Percentage of apoptotic breast cancer cells after incubation with
anti-Her-2/neu antibody (0.25 µg/ml) for 96 h 

Cell line % apoptotic cells 

SK-BR-3 97 
HTB-24 53 
HTB-25 95 
HTB-27 95 
HTB-128 76 
HTB-130 68 
HTB-131 83 
HTB-132 0 
HBL-100 0 
(human mammary epithelial) 

~I II 11 I 
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In order to analyse cell cycle position, global DNA content was
measured with PI counterstaining: treatment of Her-2/neu positive
cell lines with anti-Her-2/neu antibody was associated with some
G1-S arrest. In detail, the percentages of apoptosic cells after incu-
bation with 0.25 µg/ml anti-Her-2/neu antibody for 96 h in corre-
lation with cell cycle positions were 97% (G1: 72%; G2 & S: 25%)
for SK-BR-3, 53% (G1: 40%; G2 & S: 13%) for HTB-24, 95% for
HTB-25 (G1: 81%; G2 & S: 14%), 95% (G1: 64%; G2 & S: 31%)
for HTB-27, 76% (G1: 48%; G2 & S: 28%) for HTB-128, 68%
(G1: 57%; G2 & S: 11%) for HTB-130 and 83% (G1: 50%; G2 &
S: 33%) for HTB-131 cells, respectively. No apoptosis was
measured in HTB-132 and HBL-100 cells. 

The lower concentration of anti-Her-2/neu antibody (0.025 µg/
ml) was unable to induce apoptosis in either cell line after any
length of incubation (24–96 h). 

In addition, morphologic evaluation of cells shown to undergo
apoptosis by flow cytometry was carried out. Within this context
morphology of respective cells exhibited typical apoptotic features
such as nuclear-chromatin compaction, cytoplasma condensation
around the nucleus, cell shrinkage and apoptotic ‘bodies’ (data not
shown). 

bcl-2 Protein expression 

All nine native cell lines weakly expressed bcl-2 protein (10–20%).
Treatment of these cell lines with anti-Her-2/neu antibody (final
British Journal of Cancer (2001) 85(11), 1764–1770
concentrations: 0.025 µg/ml, 0.25 µg/ml) for 24, 48, 72 and 96 h,
respectively, did not modify the expression of bcl-2 protein (data
not shown). However, in order to assess the influence of anti-Her-
2/neu antibody on bcl-2 expression appropriately, inclusion of cell
lines with variable bcl-2 expression would probably provide more
accurate information in this regard. 

DISCUSSION 

In the present paper, we report on the ability of anti-Her-2/neu
antibody to induce apoptosis and inhibit proliferation of various
Her-2/neu protein overexpressing breast cancer cell lines. In
contrast, Her-2/neu negative control cell lines were not influenced
either in their proliferative ability nor did they become apoptotic
following exposure to anti-Her-2/neu antibody. These observa-
tions corroborate previous observations by other investigators
(Harwerth et al, 1992, 1993; Brodowicz et al, 1997). In an attempt
to further analyse the underlying molecular pattern resulting in
these findings, the sequence of p53 was analysed and put into rela-
tion with the above results building upon previous insights on wild
type p53 representing a regulator of appropriate inhibition of
proliferation and induction of apoptosis following DNA damage
(Brown and Wouters, 1998). It was surprising to find that anti-Her-
2/neu antibody induced both, proliferation inhibition and apoptosis
independently from p53 status. Thus, incubation of cell lines with
anti-Her-2/neu antibody resulted in proliferation inhibition and
apoptosis in a similar degree in all cell lines, and was solely depen-
dent from Her-2/neu overexpression, but not from the presence of
wild type p53. Although p53-mutated SK-BR-3, HTB-128 and
HTB-132 cells showed intensive nuclear staining by immunohis-
tochemistry, the p53 mutated HTB-24 and HTB-130 cells showed
no nuclear staining. The p53 mutation in HTB-24 and HTB-130 cell
lines was probably related to a loss of protein staining (Aas et al,
1996) due to a miss of the antibody binding site of the mutated
protein or a complete absence of the protein (Thor et al, 1992).

p53 Has been shown to either induce inhibition of proliferation
or apoptosis in the case of DNA damage and does so in collabora-
tion with other regulators of cellular homeostasis including bax
(Zha et al, 1997), bcl-2 (Reed, 1994; Kroemer, 1997) as well as
p21 (Xiong et al, 1993; Harris, 1996), p27 (Harris, 1996) and
cyclin E (Harris, 1996). It is interesting to note that bcl-2 which
© 2001 Cancer Research Campaign
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acts as an inhibitor of apoptosis was obviously not involved in the
generation of the current results, as all native cell lines expressed
bcl-2 protein at very low levels. The fact that anti-Her-2/neu anti-
body exerted the biologic activity described above in a p53-
independent manner puts it into line not only with cytotoxic agents
including paclitaxel and vinca alkaloids, but also with death
ligands such as tumour necrosis factor, Fas ligand and Apo2L
which all have been shown to act independently from intact p53 in
their ability to induce apoptosis (reviewed in Reed, 1999). Thus,
the only variable obviously responsible for the efficacy of anti-
Her-2/neu antibody in the present model was the fact of overex-
pression of Her-2/neu protein on target cells. This is in accordance
with previous data obtained both in vitro (Harwerth et al, 1992)
and in vivo (Harwerth et al, 1993) elaborating on the immunologic
background of the activity of the agent and its necessity to identify
an appropriate target for the initiation of its function. 

Our data lend support to observations made in vivo on the effi-
cacy of combined chemotherapeutic treatment with anti-Her-2/neu
antibody in patients with breast cancer overexpressing Her-2/neu
protein by alluding to the possibility of additive efficacy in target-
ing possibly various malignant cell populations by the combined
approach. It is interesting to note in the present context that clin-
ical results with paclitaxel have been substantially improved by
the addition of anti-Her-2/neu antibody (Slamon et al, 1998, 2001;
Norton et al, 1999) and both agents obviously act in a similar, p53-
independent manner to achieve apoptosis of malignant cells (Wahl
et al, 1996). Furthermore anti-Her-2/neu antibody was adminis-
tered in combination with cisplatin (Pegram et al, 1998), adri-
amycin (Slamon et al, 2001) and navelbine (Burstein et al, 2001)
in metastatic breast cancer patients. In contrast to paclitaxel, these
drugs have been shown to act in a p53-dependent manner: sensi-
tivity of several different cell lines to cisplatin correlated with
wild-type p53 (O’Connor et al, 1997). In patients with advanced
breast cancer clinical response to neoadjuvant anthracycline-
containing chemotherapy was found to be dependent on normal
p53 status in the respective breast tumors (Kandioler-Eckersberger
et al, 2000). Thus, anthracyclines seem to trigger p53-dependent
apoptosis within this context (Kandioler-Eckersberger et al, 2000).
In the presence of mutant p53, a decreased sensitivity of cell lines
to vinca alkaloids has been described (Zhang et al, 1998).
However, with respect to antimitotic activity of vinca alkaloids, a
p53 independent impact upon various cell lines was also described
(O’Connor et al, 1997). 

We conclude that anti-Her-2/neu antibody constitutes a valuable
tool for the induction of p53-independent apoptosis in Her-2/neu
overexpressing cells and might therefore, represent an important
therapeutic modality for the translation of the present in vitro find-
ings into the clinical setting. 
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