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Summary The variability of tumour responses to chemotherapeutic agents is a topic of major interest in current oncology research. Advances
in the knowledge of molecular pathology of cancer make available strategies by which tumour cells can be profiled for their genetic
background in order to select anticancer agents that might selectively kill cells in a molecular context that matches the mechanism of action
of drugs. The next generation of anticancer treatments might thus be tailored on the basis of the numerous molecular alterations identified in
tumour cells of a particular patient. However, to exploit these alterations, it is necessary to understand how they influence the cellular
pathways that control the sensitivity or, conversely, resistance to chemotherapeutic agents. The aim of this article is to outline major genetic
abnormalities in non-Hodgkin lymphomas that can be used to streamline anticancer drug selection and to underscore the major role of
pharmacogenetics, which studies the interactions between genetic background and drug activity, to the prediction of likelihood of response
and identification of potential new targets for pharmacological intervention. © 2001 Cancer Research Campaign http://www.bjcancer.com
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NON-HODGKIN LYMPHOMAS: CLINICAL
RELEVANCE AND THERAPEUTIC MANAGEMENT 

Non-Hodgkin lymphomas (NHLs) represent a clinically heteroge-
neous group of malignancies arising from B, T or NK-lymphoid
cells. Approximately 50 000 new cases of NHLs are diagnosed
every year in the United States, with 20 500 estimated deaths,
representing 4% of cancer incidence and the seventh cause of
death for malignancies in the United States (Groves et al, 2000).
For clinical purposes, the division into low, intermediate- and
high-grade NHLs is commonly used. Low-grade NHLs are
initially treated with radiation therapy or single-agent chemo-
therapy, including alkylators or nucleoside analogues. However,
the treatment of advanced-stage, relapsed low-grade NHLs
requires more aggressive combination chemotherapy, including
first-generation protocols (cyclophosphamide, vincristine and
prednisone (CVP) or cyclophosphamide, doxorubicin, vincristine
and prednisone (CHOP)) (Fisher, 2000). The use of monoclonal
antibodies, targeted against selected antigens (i.e., CD20), is
associated with lower toxicity and higher response rates (Fisher,
2000). Intermediate- and high-grade NHLs are managed with 
radiotherapy and chemotherapy with CHOP, or second- and 
third-generation regimens, including MACOP-B (methotrexate,
doxorubicin, cyclophosphamide, vincristine, prednisone and
bleomycin), m-BACOD (methotrexate, bleomycin, doxorubicin,
cyclophosphamide, vincristine and dexamethasone), or ProMACE-
CytaBOM (cyclophosphamide, etoposide, cytarabine, vincristine,
bleomycin, methotrexate and prednisone), resulting in long-term
survival rates of more than 80% (Fisher, 2000). 

Despite the advances in the knowledge of molecular pathology
of NHLs, histologic criteria still represent the mainstay of classifi-
cation of NHLs and the choice of systemic chemotherapy is
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mostly empiric. However, the genetic abnormalities of NHLs will
permit in the future the outlook for individual patients to be
assessed at diagnosis and treatment may be personalised, if we will
be able to establish a relationship between gene expression,
disease-specific molecular abnormalities and drug activity.
Therefore, the present work reviews the recent advances in the
field of molecular genetics of NHLs in order to describe selected
molecular pathways involved in the response to anticancer drugs
and how pharmacogenetics is going to play a role in rational drug
choice in the future. 

MOLECULAR DETERMINANTS OF DRUG
SENSITIVITY AND RESISTANCE 

Drug metabolism 

The nucleoside analogues fluradabine, gemcitabine, 2-
chloro-deoxyadenosine and cytarabine have significant activity
in the treatment of NHLs. These prodrugs are phosphorylated by
the rate-limiting enzyme deoxycytidine kinase to generate
metabolites that inhibit ribonucleotide reductase, resulting in a
decrease of endogenous deoxynucleotides with enhanced forma-
tion of active drug metabolites and incorporation into the DNA
(Dumontet et al, 1999). Drug inactivation may occur by dephos-
phorylation of active metabolites by cellular 5′-nucleotidase, a
major nucleoside dephosphorylating enzyme (Dumontet et al,
1999) or by deamination by cytidine deaminase, whose overex-
pression confers drug resistance in vitro to CD34 + haematopoi-
etic progenitor cells (Schröder et al, 1996). Prolonged exposure
to fluradabine, gemcitabine, 2-chloro-deoxyadenosine and
cytarabine resulted in the selection of human leukaemia K562
cells displaying a high degree of cross-resistance to all deoxynu-
cleotide analogues, depending on strong increase in cellular 5′-
nucleotidase activity and deoxycytidine kinase down-regulation,
resulting in poor accumulation of triphosphate metabolites
1425
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Figure 1 Relationship between metabolism of the nucleoside analogues
gemcitabine (dFdC), cytarabine (ARA-C), fludarabine (F-ara) and 2-
chloro-deoxyadenosine (2-CdA) in a lymphoma cell and cytotoxicity.
Nucleoside analogues (NA) are prodrugs that are sequentially activated to
the mono-(NAmP), di- (NAdP) and triphosphate (NAtP) metabolites. The
anticancer effect of the drugs may be dependent in part on the amount of
phosphorylated metabolites produced by deoxycytidine kinase (dCK), the
rate-limiting enzyme of nucleoside phosphorylation, whose activity is
functionally antagonized by 5′-nucleotidase (5′-NT), a cellular
dephosphorylating enzyme and by cytidine deaminase (CydDa) 
(Dumontet et al, 1999). Furthermore, ribonucleotide reductase
and cytidine deaminase activities were strongly increased in the
gemcitabine-resistant leukaemia K562 cells (Dumontet et al,
1999). CCRF-CEM cell line resistant to hydroxyurea displayed
enhanced sensitivity to gemcitabine, due to increased drug uptake
and incorporation into DNA as a consequence of enhanced expres-
sion of nucleoside transporters (Wong et al, 1999).

In patients with B-CLL resistant to chlorambucil, an increased
activity of DNA-dependent protein kinase (DNA-PK), a nuclear
serine/threonine kinase that functions in DNA double-strand break
repair, was found, suggesting that DNA-PK affects the cellular
response to chlorambucil and is involved in the development of
nitrogen mustard-resistant disease (Muller et al, 1998). In 20% of
anaplastic large cell lymphomas, the fusion of the NH2-terminus of 5-
aminoimidazole 4-carboxamide-ribonucleotide formyl-transferase/
IMP cyclohydrolase (ATIC), a bifunctional homodimeric enzyme
of de novo purine nucleotide biosynthesis, with the intracellular
portion of ALK (anaplastic lymphoma kinase), generates the
ATIC-ALK 87 kD chimeric protein, with decreased ATIC activity.
This genetic alteration renders lymphomas more sensitive to
methotrexate and its analogues, as antifolates inhibit ATIC (Ma
et al, 2000). An overview of the metabolic factors affecting drug
activity is presented in Figure 1. 

Cellular targets and resistance factors 

Follicular lymphomas express the B-cell antigen CD20 on the cell
surface (Fisher, 2000); this antigen is the target of the anti-CD20
monoclonal antibody rituximab. Monitoring for the presence of
cells harbouring the bcl-2/JH (heavy-chain joining region) gene
rearrangement before and after rituximab administration, demon-
strated that successful treatment was associated with disappear-
ance of bcl-2/JH rearrangement in cells from bone marrow and
peripheral blood (Fisher, 2000). The topoisomerase I inhibitors
topotecan and irinotecan have shown activity in NHLs; assessment
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of expression of topoisomerase I gene can be informative in planning
a chemotherapeutic regimen. High levels of topoisomerase I are
associated with increase in drug sensitivity; on the contrary, drug
resistance of CCRF-CEM cells to topoisomerase I inhibitors
results from point mutations of the gene sequence and reduction in
the content of nuclear topoisomerase I (Fujimori et al, 1995).
Likewise, drug resistance to topoisomerase II inhibitors, including
anthracyclines and epipodophyllotoxins, is dependent on point
mutations and gene deletions of topoisomerase IIα as well as low
expression and alterations in subcellular distribution of the
enzyme, as shown in CLL cells (Valkov and Sullivan, 1997). 

Proteins encoded by the multi-drug resistance mdr1 and mdr
associated (mrp) proteins induce chemoresistance in cancer cells
to a large number of anticancer agents, including topoisomerase II
inhibitors (anthracyclines and epipodophyllotoxins), and vinca
alkaloids but not to platinum compounds or alkylating agents. On
the contrary, mdr1-positive cells are more sensitive or as sensitive
as non-mdr cells to cytarabine and fludarabine (Michelutti et al,
1997). Patients exposed to high doses of P-glycoprotein trans-
portable drugs show high tumour expression of mdr1 and mrp, as a
result of selective pressure of the drugs (Webb et al, 1998). In this
setting, chemosensitivity may be restored by P-glycoprotein
antagonists, including cyclosporine A and PSC833 (valspodar),
although myelosuppression at the bone marrow precursor cell
level may be enhanced, as observed with etoposide and
cyclosporine A (Lum et al, 2000). 

Bryostatin 1, a macrocyclic lactone isolated from the marine
bryozoa Bugula neritina, is an inhibitor of protein kinase C
endowed with antitumour, immune-modulating and differentiating
effects on B-cell NHLs. Bryostatin 1 improves the antitumour
activity of vincristine in a murine model of diffuse large cell
lymphoma, possibly through the down-regulation of mdr1/P-
glycoprotein and bcl-2 gene expression and up-regulation of p53
(Al-Katib et al, 1998). 

It has been demonstrated that the down-regulation of p53 in
human leukaemia/lymphoma cell lines resistant to vincristine,
may influence mdr1 overexpression via up-regulation of Wilms
tumour gene 1 (WT-1) (Hirose and Kuroda, 1998). In patients with
NHLs given bifunctional alkylating agents, a significant correla-
tion was observed between complete response to chemotherapy
and low expression of glutathione-S-transferase (GST)-α (Ribrag
et al, 1996). On the contrary, in patients with CLL, similar levels
of GST-α, -µ and -π have been found in normal and neoplastic
cells, but patients with low GST-π showed enhanced response to
chlorambucil (Ribrag et al, 1996). Increased GST-α and -π isoen-
zyme expression was reported in CLL resistant to CHOP regimen,
compared to CLL sensitive to chlorambucil, while no correlation
was found between GST-π expression and P-glycoprotein posi-
tivity in CLL (Ribrag et al, 1996). Finally, low levels of the DNA
repair enzyme O6-alkylguanine-DNA alkyltransferase in neoplastic
T lymphocytes from patients with mycosis fungoides may be
predictive of improved clinical response to the new alkylating
agent temozolomide, while increased expression and activity of the
enzyme represents a marker of resistance (Dolan et al, 1999). 

Oncogenes and regulators of cell cycle – The Bcl-2
family 

Chronic lymphocytic leukaemia cells display higher levels of bax,
bcl-2 and mdm-2 than normal B cells (Johnston et al, 1997).
Following incubation of CLL cells with 2-chloro-deoxyadenosine,
© 2001 Cancer Research Campaign
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fludarabine and chlorambucil, an increase in p53 and mdm-2
occurs in cells with wild-type p53, but not in p53-mutated cells
highly resistant to chlorambucil and nucleoside analogues, while
dexamethasone and vincristine had no effect on mdm-2 (Johnston
et al, 1997). Therefore, 2-chloro-deoxyadenosine, fludarabine and
chlorambucil induce cytotoxicity in chronic lymphocytic
leukaemia cells through a p53-dependent pathway, whereas
dexamethasone and vincristine do not (Johnston et al, 1997). This
finding may be explained taking into account that p53-dependent
induction of apoptosis occurs as a consequence of DNA damage
induced by nucleoside analogues and chlorambucil, while
vincristine targets microtubules and dexamethasone affects gene
transcription (Johnston et al, 1997). An overview of genetic factors
involved in drug response is presented in Table 1. 

The human pre-B leukaemia cell line 697 overexpressing bcl-2
exhibited strikingly prolonged survival and markedly reduced
apoptotic DNA fragmentation when exposed to a large number of
drugs, including dexamethasone, methotrexate, cytarabine, etopo-
side, vincristine, cisplatin and cyclophosphamide (Reed et al,
1994). In addition to this, bcl-2 overexpression induces resistance
to nitrogen mustards and camptothecin (Walton et al, 1993), while
up-regulation of bcl-xl is associated with resistance to bleomycin,
cisplatin, etoposide and vincristine in FL5.12 prolymphoid human
cell line (Minn et al, 1995), despite the different mechanisms of
action of each agent. In FL5.12 lymphoid cells transduced with
bcl-xl and bcl-2, both members provided similar protection against
vincristine and vinblastine, whereas bcl-xl was more effective than
bcl-2 in preserving cells against etoposide, teniposide, methotrexate,
fluorouracil, hydroxyurea and cisplatin cytotoxicity (Simonian et al,
1997). These results indicate that bcl-xl and bcl-2 provide a differen-
tial protection against chemotherapy-induced cell death. Finally, the
myeloma cell lines 8226, IM-9 and U266 overexpressing bcl-2 are
able to survive to doxorubicin and etoposide and resume their prolif-
eration after the drugs are removed (Tu et al, 1996). 

Fludarabine down-regulates the expression of bcl-2 in peripheral
blood malignant lymphocytes from patients with CD5+ B-chronic
lymphocytic leukaemia and mantle cell lymphoma; in vitro, drug-
induced bcl-2 down-regulation and apoptosis predicted an objec-
tive response to fludarabine (Gottardi et al, 1997). Moreover, high
bcl-2/bax ratios may be predictive of a drug-resistant phenotype in
B-CLL cells and modulation of these proteins by fludarabine is
essential for the induction of cell death (Pepper et al, 1999). 

In patients with CLL and hairy cell leukaemia (HCL), who were
consecutively selected for treatment with fludarabine and 2-
chlorodeoxyadenosine, respectively, bcl-2 oncoprotein expression
was evaluated in marrow leukaemia cells before treatment. All
samples were found to be bcl-2 positive; 83% of CLL and 100% of
HCL patients were responsive to purine analogues. These findings
show that bcl-2 is overexpressed in almost all cases of CLL and
HCL and that bcl-2 overexpression does not predict a poor
response to purine analogues in these diseases (Zaja et al, 1998). 

Paclitaxel and docetaxel induce bcl-2 phosphorylation, which in
turn results in increased levels of free proapoptotic bax protein,
and apoptosis in follicular and Burkitt lymphomas, docetaxel
being 100-fold more potent than paclitaxel. Both drugs are able to
kill tumour cells, even if they express high levels of bcl-2, provided
they are in G2–M cycle phase; however, phosphorylation of bcl-2
and apoptosis do not occur in resting CLL cells (Haldar et al, 1997).
H9 cells derived from a T-cell lymphoma selected for resistance to
high concentrations of azidothymidine (250 µM) displayed overex-
pression of bcl-2 and were 2 to 10-fold less sensitive to the toxic
© 2001 Cancer Research Campaign
effects of cisplatin, vincristine, doxorubicin and etoposide, when
compared to parental H9 cells, while they retained sensitivity to
nucleoside analogues, including cytarabine (Cinatl et al, 1998). 

High levels of the antiapoptotic proteins mcl-1 and bag-1 (a bcl-
2-binding protein that inhibits apoptosis) have been related to
failure to achieve complete remission in patients with chronic
lymphocytic leukaemia treated with chlorambucil, fludarabine and
2-chloro-deoxyadenosine (Kitada et al, 1998). In vitro experiments
with combinations of cyclophosphamide, fludarabine and mitox-
antrone demonstrated that a decrease in mcl-1 and increase in
p53 levels correlated with apoptosis in B-chronic lymphocytic
leukaemia cells, while the levels of bcl-2 and bax were not modi-
fied (Bellosillo et al, 1999). The down-regulation of egr-1 (early
growth response gene-1), c-myc, bcl-xl and NF-kB by curcumin, a
phenolic extract of the spice turmeric, causes inhibition of cell
proliferation of BKS-2 neoplastic B cells (Han et al, 1999).
Microenvironmental factors, including activating anti-CD40 anti-
body, vascular cellular adhesion molecule-1 (VCAM-1), are epige-
netic determinants of resistance to etoposide in JLP119 Burkitt
lymphoma cells in vitro. Indeed, the activation of surface protein
CD40 and interleukin 4 (IL-4) increases bcl-xl protein levels,
while cell signalling mediated by VCAM-1 and IL-4 diminished
conformational changes in bax protein and prevented the etopo-
side-induced release of bax from the constitutive bax–bcl-xl
complex and occurrence of apoptosis (Taylor et al, 2000). These
interactions provide a paradigm for epigenetically induced drug
resistance in lymphoma. Overexpression of bax protein in Burkitt
lymphoma cells accelerates cell death induced by camptothecin,
etoposide, and vinblastine but is without effect on cisplatin and
paclitaxel. These results suggest that cell death by selected anti-
cancer drugs correlates with bax expression (Schmitt et al, 1998). 

B-chronic lymphocytic leukaemia cells expressing mcl-1, X-
linked inhibitor of apoptosis (antiapoptosis protein-XIAP), bag-1
and bcl-2 are highly sensitive to the cyclin-dependent kinase
inhibitors, flavopiridol and 7-hydroxystaurosporine. Flavopiridol
and 7-hydroxystaurosporine strongly decreased the expression of
antiapoptosis genes; on the contrary, expression of the proapop-
totic proteins bax and bak was not affected by flavopiridol (Kitada
et al, 2000). Flavopiridol-induced decrease in X-linked inhibitor of
apoptosis and mcl-1 precedes apoptosis and occurs independently
of caspase activation. Finally, in vitro studies on human chronic
lymphocytic leukaemia cells incubated with theophylline, a
methylxanthine derivative and phosphodiesterase inhibitor, as well
as 2-chloro-deoxyadenosine and chlorambucil, demonstrated that
bcl-2 was down-regulated and apoptosis was induced by inhibition
of intracellular cyclic adenosine monophosphate (cAMP) degrada-
tion (Byrd et al, 2000). 

Retinoids are able to modulate cell growth and differentiation in
a wide variety of human tumour cells. All-trans retinoic acid
(ATRA) inhibits proliferation of NHL-B cells; after ATRA expo-
sure, a 50% reduction in the expression of bcl-2 protein was
observed, while bax protein levels were up-regulated in ATRA-
sensitive NHL-B cells (Sundaresan et al, 1997). 

Cell-cycle-related factors 

p53 gene mutations are associated with decreased sensitivity of
human lymphoma cells to DNA-damaging agents (see Table 1).
Burkitt lymphoma and lymphoblastoid cell lines, treated with
etoposide, nitrogen mustards and cisplatin are arrested in G1 phase
if a wild-type p53 is present, while the same agents fail to induce
British Journal of Cancer (2001) 85(10), 1425–1431
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Table 1 Genetic abnormalities in non-Hodgkin lymphomas affecting drug response 

Genetic abnormality Drug sensitivity References Drug resistance References 

p53 mutations VCR, DEX (B-CLL) Johnston et al, 1997 VP-16, HN2, CDDP (BL) Fan et al, 1994 
Paclitaxel, VCR (BL) Fan et al, 1998 CLB, F-ara, CPTs (B-CLL) Silber et al, 1994 

2-CdA, F-ara, CLB (B-CLL) Johnston et al, 1997 

p53 deletions / / F-ara, 2-CdA (B-CLL) Döhner et al, 1995 
DOX, CTX (BL) Schmitt et al, 1999 

INK4a/ARF / / CTX (BL) Schmitt et al, 1999 
mutations

ras DEX, VP-16 (Thymic lymphoma) Kobzdej et al, 2000 / / 
overexpression

ras mutations / / DEX, DOX, melphalan (MM) Rowley et al, 2000 

bcl-2 Paclitaxel, docetaxel (FL, BL) Haldar et al, 1997 Nitrogen mustards, CPT (FL, B-DLCL) Walton et al, 1993 
overexpression F-ara (B-CLL, MCL) Gottardi et al, 1997 DEX, MTX, ARA-C, VP-16, VCR, CDDP, CTX (FL, B-DLCL) Reed et al, 1994 

ATRA (FL, B-DLCL) Sundaresan et al, 1997 DOX, VP-16 (MM) Tu et al, 1996 
F-ara, 2-CdA (B-CLL, HCL) Zaja et al, 1998 VCR, VLB (FL, B-DLCL) Simonian et al, 1997 

CDDP, VCR, DOX, VP-16 (T-cell lymphoma) Cinatl et al, 1998 
DEX (Thymic lymphoma) Kobzdej et al, 2000 

Mcl-1 F-ara, CTX, DHAD (B-CLL) Bellosillo et al, 1999 CLB, F-ara, 2-CdA (B-CLL) Kitada et al, 1998 
overexpression

Bag-1 / / CLB, F-ara, 2-CdA (B-CLL) Kitada et al, 1998 
overexpression

Bcl-xl / / BLM, CDDP, VP-16, VCR (FL, B-DLCL) Minn et al, 1995 
overexpression VCR, VLB, VP-16, VM-26, MTX, hydroxyurea, CDDP, Simonian et al, 1997 

fluorouracil (FL, B-DLCL)
VP-16 (BL) Taylor et al, 2000 

bax ATRA (FL, B-DLCL) Sundaresan et al, 1997 CDDP, paclitaxel (BL) Schmitt et al, 1998 
overexpression CPT, VP-16, VBL (BL) Schmitt et al, 1998

c-myc HN2 (BL) O’Connor et al, 1991 / / 
overexpression Rapamycin (BL) Muthukkumar et al, 1995

ATIC-ALK translocation MTX (ALCL) Ma et al, 2000 / / 

ALCL: anaplastic large cell lymphoma; B-CLL: B-chronic lymphocytic leukaemia; BL: Burkitt lymphoma; B-DLCL: B-diffuse large cell lymphoma; FL: follicular lymphoma; MCL: mantle cell lymphoma; HCL: hairy cell
leukaemia; MM: multiple myeloma; ARA-C: cytarabine; ATRA: all-trans-retinoic acid; BLM: bleomicin; 2-CdA: 2-chloro-deoxyadenosine; CDDP: cisplatin; CLB: chlorambucil; CPT(s): camptothecin(s); CTX:
cyclophosphamide; DEX: dexamethasone; DHAD: mitoxantrone; DOX: doxorubicin; F-ara: fludarabine; HN2: mechloretamine; MTX: methotrexate; VCR: vincristine; VLB: vinblastine; VM-26: teniposide; VP16:
etoposide. 
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G1 arrest in cells containing a mutant p53 gene (Fan et al, 1994).
The degree of G1 arrest observed with these agents correlated with
the rate of p53 and p21Waf1/Cip1 protein accumulation; etoposide
induced rapid increase of both p53 and p21Waf1/Cip1, while nitrogen
mustards and cisplatin induced slow accumulation of p53 and
no substantial changes in p21Waf1/Cip1 levels (Fan et al, 1994).
Regardless of the differences in G1 arrest and kinetics of p53 or
p21Waf1/Cip1 accumulation, all agents induced apoptosis to a greater
extent in the wild-type than in the mutant p53 cells (Fan et al,
1994). An inverse relationship between chemosensitivity to
nitrogen mustards/cisplatin and etoposide was observed in the
mutant p53 lines and this finding correlated with topoisomerase II
mRNA levels in the cells (Fan et al, 1994). 

The INK4a/ARF locus encodes 2 tumour suppressor genes,
designated p16INK4a and p19ARF, which are upstream regulators
of the retinoblastoma (Rb) and p53 genes (Schmitt et al, 1999).
INK4a/ARF null lymphomas display low p53 expression despite
the presence of a wild-type p53 gene; they are highly aggressive
and resistant to cytotoxic agents, including cyclophosphamide and
doxorubicin, although high drug doses might induce p53-
independent apoptosis in vitro (Schmitt et al, 1999). Lymphocytes
from patients with B-chronic lymphocytic leukaemia with p53
gene mutations and increased expression of the ERCC1 gene
(excision repair cross complementing-1) are able to repair drug-
induced DNA-damaged genes and are cross-resistant to chloram-
bucil, fludarabine, and camptothecins in vitro (Silber et al, 1994).
p53 gene deletion is involved in the lack of response to purine
analogues, including fludarabine and 2-chloro-deoxyadenosine,
and poor survival in B-chronic lymphocytic leukaemia (Döhner
et al, 1995), while paclitaxel and vincristine are capable of
inducing apoptosis independent of p53 status in human
lymphoblastoid cell lines (Fan et al, 1998). 

Protein kinase C inhibitors suppress cell proliferation and are
useful in overcoming drug resistance by inhibiting mdr-mediated
drug efflux. They increase the cytotoxicity of DNA-damaging
agents, including platinum complexes, by interfering with cellular
repair mechanisms. 7-Hydroxystaurosporine (UCN-01) is a
protein kinase C inhibitor that blocks cells in G1 phase by
promoting accumulation of dephosphorylated retinoblastoma Rb
protein as a consequence of inhibition of cyclin-dependent kinases
and increase in the expression of cyclin-dependent kinase inhibitor
proteins. Moreover, UCN-01 induces the expression of apoptosis-
related surface markers such as annexin and Fas (CD95). UCN-01
prevents the G2 checkpoint arrest in human lymphoma CA46 cells
lacking normal p53 function and sensitises cells to the effects of
DNA-damaging agents, including cisplatin, etoposide, cyclophos-
phamide, doxorubicin, as well as prednisone and vincristine
(Wilson et al, 2000). Finally, UCN-01 increases fludarabine-
induced mitochondrial damage, caspase activation, apoptosis, and
suppresses clonogenic survival in bcl-2 overexpressing human
leukaemia U937 cells by altering bcl-2 phosphorylation (Harvey
et al, 2001). 

Cells of thymic lymphoma overexpressing ras/raf genes, devel-
oped resistance to dexamethasone as a consequence of the overex-
pression of bcl-2, while retaining their sensitivity to p53-dependent
apoptosis by etoposide (Kobzdej et al, 2000). This finding
suggests that glucocorticoid-induced apoptosis involves bcl-2
pathway but not p53 activity. The IL-6-dependent myeloma cell
line ANBL6 is sensitive to dexamethasone, doxorubicin, and
melphalan. IL-6-driven cell proliferation involves ras-signalling
pathways; however, N- or K-ras mutations at codon 12 (N-ras12
© 2001 Cancer Research Campaign
and K-ras12) lead to a constitutively active ras protein and IL-6
independent growth and protect ANBL6 cells from apoptosis
induced by dexamethasone, doxorubicin and melphalan (Rowley
et al, 2000). 

Overexpression of c-myc is associated with induction of apop-
tosis by mechloretamine in the JLP116 Burkitt cell line (O’Connor
et al, 1991) and by the immunosuppressive drug rapamycin in the
immature B cell lymphoma BKS-2 (Muthukkumar et al, 1995).
Finally, fludarabine, is able to target non-dividing cells through a
specific decrease in the expression of STAT

1 (signal transducer and
activator of transcription), a key mediator of cellular responses to
cytokines and oncoproteins (Frank, 1999). 

CONCLUSIONS 

The developments in molecular medicine suggest that pharmaco-
genetics will influence the decisions concerning the treatment of
selected diseases. With the available information, the likelihood of
response to fludarabine of a NHL might be dependent, at least in
part, on the following pharmacogenetic profile: (1) low bcl-2/bax
ratio (Pepper et al, 1999); (2) high cellular deoxycytidine kinase
and low 5′-nucleotidase activities (Dumontet et al, 1999); and (3)
wild-type p53 (Feng et al, 2000), while a favourable profile
predicting response to CHOP regimen would include the
following: (1) wild-type p53 (Navaratnam et al, 1998); (2) pres-
ence of bcl-2 translocation, in particularly if CHOP is associated
with rituximab (Vose et al, 2001); and (3) presence of NPM/ALK
chimeric protein (Meguerian-Bedoyan et al, 1997). 

Today’s specialized techniques of bioinformatics are likely to
become routine diagnostic tools in the near future to predict the
likelihood of response based on the genome-wide profiling of
disease and to select anticancer agents based on genetic abnormal-
ities of the neoplasm to be treated. This prospective implies that
the classic approach of standard drug combinations for the treat-
ment of a specific tumour, irrespective of its molecular characteris-
tics, may be abandoned in the future in favour of individually
tailored cancer chemotherapy, based on the genetic pattern of
disease. Novel technologies provide new avenues of investigation,
including real-time PCR and cDNA microarray, and offer
powerful tools to elucidate the in vivo molecular events involved
in the development and progression of NHLs. Other intriguing
issues will be the identification of the optimal drug sequence of
treatment in combination regimens and the pharmacological moni-
toring of drug disposition to prevent possible drug–drug interac-
tions and unexpected toxicities due to polymorphism in
drug-metabolizing enzymes. It may be thus hypothesized that
bioinformatics may help in the future clinicians in the integration
of multiple variables, including disease-specific factors and the
mechanism of action of drugs, in the formulation of optimized
chemotherapeutic protocols. 
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