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Summary The aim of this study was to identify possible failure-specific prognostic factors in non-small-cell lung cancer. Clinical outcome was
analysed in 549 patients participating in the randomized controlled trial of CHART vs conventional radiotherapy. Local failure and distant
failure with or without concurrent local relapse were subjected to a competing risk analysis using an accelerated failure-time model with a log-
logistic hazard function. Randomization to CHART (2P = 0.005), increasing age (2P = 0.036) and female sex (2P = 0.09) was all associated
with a prolonged interval to failure. Advanced clinical stage was associated with a decreased interval to failure (2P = 0.004) and a significantly
increased risk (2P = 0.009) of failing in distant rather than in local position. From this model, prognostic indices for local and distant failure
were estimated for each individual patient. Competing risk analysis allows identification of patients with different failure patterns, and may
provide a means of stratifying patients for intensified local or systemic therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Many clinical trials employing combination of treatment modal-
ities for medically or technically unresectable locally advanced
non-small-cell lung cancer (NSCLC) have evolved in recent years
(Ardizzoni et al, 1999; Ball et al, 1999). Although modest improve-
ments in outcome have been reported, the optimal combination of
these treatment modalities and the selection of patients for the
treatment options from which they are most likely to benefit
remain controversial (Stevens et al, 2000). A recent pattern of
failure study from the Radiation Therapy Oncology Group (RTOG)
for locally advanced NSCLC suggested the possibility of important
differences in failure-specific outcomes by pre-treatment character-
istics and the treatment assigned (Cox et al, 1999). The analysis of
different modes of failures (local and distant) and their relationship
to baseline variables is complicated by the presence of competing
risks (Kalbfleisch and Prentice, 1980; Kramar et al, 1987;
Arriagada et al, 1992). A competing risk is defined as an event,
which may or may not occur during follow-up but if it occurs will
prevent observing time to any other event of interest. In the case of
local control, a competing risk would be to develop a distant
metastasis; simply because patients have a short life expectancy
after distant failure and therefore are no longer at risk for local
failure. 

The purpose of this study was to apply a competing risks model
in order to identify factors associated with local and/or distant
failure in NSCLC. This way, it should be possible to identify
subgroups of patients who are more likely to benefit from either
intensified local or systemic therapy. An updated database of the
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randomized study comparing continuous hyperfractionated accel-
erated radiotherapy (CHART) and conventional radiotherapy in
locally advanced inoperable NSCLC was utilized. The CHART
schedule was introduced at Mount Vernon Hospital, UK, in 1985
aiming to improve local tumour control by increased dose inten-
sity using many small fractions and reduced overall treatment
time. Definitive results of the trial were published first in 1997 and
the mature data were analysed and published in 1999 (Saunders
et al, 1999). 

PATIENTS AND METHODS 

Study population 

The database contained information on a total of 563 lung cancer
patients from 13 centres entered into the CHART trial between
April 1990 and April 1995. The randomization procedure was
designed to produce a 60% chance of a patient receiving CHART
and a 40% chance of receiving conventional radiotherapy. Patients
eligible for the trial were those who had a WHO performance
status of 0 or 1, and presented histologically proven, inoperable
NSCLC, considered suitable for radical radiotherapy. Fourteen
patients were excluded from the analysis because they did not
have assessable T or N stages; thus information on all variables
was available in 549 patients. The covariates considered in the
modelling, the various categories and numerical scorings are
shown in Table 1. 

Radiotherapy 

The radiotherapy planning was identical for all patients regardless
of the treatment allocated. During the first phase of the radiotherapy
1113
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Table 1 Prognostic factors and their categories with numerical scores in the
analysis group (n = 549) 

Covariate Category Score No. % 

Sex 
Male 1 423 77 

Female 2 126 23 

Age Continuous 549 100 

WHO status 
(0) No restriction 1 224 41 

(1) Restriction 2 325 59 
T stage 

T1 1 47 9 
T2 2 245 45 
T3 3 139 25 
T4 4 118 21 

Nodal stage 
N0 1 268 49 
N1 2 74 13 
N2 3 192 35 
N3 4 15 3 

Clinical stage 
I and II 1 203 37 

IIIA and IIIB 2 346 63 
Histology 

Squamous 1 316 58 
Other 2 233 42 

Treatment 
CHART 1 329 60 

Conventional 2 220 40 
Irradiated area 

160 cm2 1 187 34 
161–199 cm2 2 185 34 

200 cm2 3 177 32 
a large volume was irradiated which included the mediastinum and
the primary tumour together with a 1 cm margin. The ipsilateral
hilar nodes and the paratracheal nodes but not the contralateral
hilar nodes were included in the field. In the second phase, the
small volume treated included the primary tumour and known
nodal involvement with a 1 cm margin. 

Patients randomized to conventional radiotherapy received a
daily dose of 2 Gy on 5 days per week; the large volume was given
44 Gy and the small volume 16 Gy so that the total dose was 60
Gy in 30 fractions. Those randomized to CHART, received an
individual dose of 1.5 Gy, given 3 times per day on each of 12
consecutive days with an interval of at least 6 hours between treat-
ments. The large volume received 37.5 Gy in 25 fractions
followed by 16.5 Gy in 11 fractions to the small volume so that the
total dose was 54 Gy in 36 fractions. 

Follow-up and endpoints 

Assessments were made weekly for the first 6 weeks starting from
the beginning of the treatment, then at 8 and 12 weeks.
Subsequently, patients attended 3 monthly until 2 years, 6 monthly
to 5 years and annually thereafter. At every visit a chest X-ray was
taken and the tumour status was recorded; at 6 months computer-
ized tomography (CT) of the chest was performed. In previous
publications from the CHART trial local tumour control was
defined as either (a) complete disappearance of all abnormalities
in a chest X-ray or CT scan, or (b) when any residual abnormality
observed at 6 months remained stable for a further 6 months or
more. In a competing risks analysis, this definition causes some
British Journal of Cancer (2001) 85(8), 1113–1118
problems. First, patients with residual abnormalities at 6 months
who are not followed for 12 months or more are in effect not
evaluable according to the above definition. Second, patients with
residual disease after radiotherapy are considered to have failed
locally at time zero. This creates a mathematical discontinuity at
this point in time, which is not well modelled by a parametric
survival time model as the one we use here. In the present study,
time to local progression was used as an endpoint and this was
defined as progression of the primary tumour within the irradiated
volume detected on a chest X-ray or CT scan. Distant failure was
defined as appearance of metastatic disease outside the irradiated
volume. 

In each patient, the time to first failure and its position (local or
distant) were recorded, or, in patients without clinical progression,
the time of the last follow up was used as input data (censored
cases) for the analysis. All times were calculated from the date of
randomization. Patients with synchronous distant and local failure
were classified as failing distantly in order to be able to focus on
the efficacy of the intensified local treatment. 

Competing risks 

Competing risk analysis was performed using an accelerated
failure-time model with a log-logistic hazard function. For each
covariate, 3 hypotheses were tested: 

Hcomb: this is the combined hypothesis that covariate has no
influence on either type of or time until failure. 

HFT: the covariate has no influence on failure type. 
Hcond: the conditional hypothesis that the covariate does not

influence time to failure given that it does not
influence type of failure.

After identification of the relevant prognostic variables, a prog-
nostic index (PI) for each individual patient for a specific failure
type (FT) was calculated as: 

PIFT = βFT sex. I(sex = female) + βFT.trl. I(trt = conventional)
+βFT.stage. I(stage = III) + βFT.age.age

Where the β’s are the regression coefficients for the various prog-
nostic factors for the specific failure type and ‘I’ is the indicator
function, which can take the values 1 and 0, depending on whether
a given characteristic is present or not. 

The prognostic indices for each individual patient for distant
and local failure were used to estimate the log-logistic (LL) failure
time distribution for the patient: 

FFT(t) = 1–SFT(t) = 1–
1

1+(exp(–αFT – PIFT)t)ψ.

Where α is a constant and ψ is a shape parameter for the specific
failure type (ψ is 1/σ where σ is the scale parameter in the output
from the BMDP software package) (BMDP User’s Guide,
1992a). 

The performance of the model was first tested using standard
Kaplan–Meier (KM) and log-rank methods. Further validation of
the model was carried out by the calculation of the modelled
failure rates at 3 years for each group and comparison of the results
to the 1-KM estimates graphically by time. 
© 2001 Cancer Research Campaign
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Figure 1 Local progression-free rate in the two arms of the CHART
bronchus trial. The log-rank P value was 0.015 

Table 3 Results of hypotheses testing 

Hcomb HFT Hcond

Covariate P value P value P value 

Sex 0.211 0.661 0.088 
Age 0.078 0.398 0.036 
Treatment 0.005 0.116 0.005 
Clinical stage 0.004 0.009 0.041 
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RESULTS 

Isolated local failure was the first failure in 264 patients and
distant failure with or without local failure was the first failure
type in 201 patients. The number of censored patients was 84.
There were 252 (74%) local failures in the CHART arm and 176
(78%) local failures in the conventional arm. Local progression-
free survival at 4 years was 14% for the CHART arm and 11% for
the conventional arm, which is a statistically significant difference
(P = 0.015). The local progression-free rate is shown in Figure 1. 

Nonsignificant variables (P > 0.05) were excluded from the
analysis in a stepwise manner and the final reduced model
included only 4 variables: age, sex, clinical stage and treatment.
The influence of the significant covariates on the 2 types of fail-
ures is presented in Table 2. Female gender and increasing age
were associated with a prolonged time to failure. Patients
receiving conventional radiotherapy failed earlier compared to the
patients in the CHART arm and advanced clinical stage was asso-
ciated with a relatively earlier failure. 

The results of hypothesis testing are shown in Table 3 where the
Hcomb was significant for both the treatment arm (2P = 0.005) and
the clinical stage (2P = 0.004), whereas a borderline significance
was observed for age (2P = 0.08). The analysis of HFT and Hcond

reveals that treatment arm had a significant influence on time to
failure but was not selective for the failure type. However
advanced clinical stage was associated with a decreased interval to
failure (2P = 0.004) and a significantly increased risk (2P = 0.009)
of failing in distant rather than in local position. 

The final model was used to construct prognostic indices and
specific failure rates at 2 years were used to identify 4 prognostic
© 2001 Cancer Research Campaign

Table 2 Failure-specific coefficients of prognostic variables in the final
model 

Type of failure 

Distant failure Local failure 

Covariate Coefficient Standard Coefficient Standard 
error error 

Sex 0.1096 0.1799 0.2056 0.1241 
Age 0.0168 0.0090 0.0076 0.0060 
Treatment –0.0448 0.1545 –0.3379 0.1049 
Clinical stage –0.5455 0.1656 –0.0316 0.1080 
groups. The scatter plot of the local and distant failure rates of
individual patients is shown in Figure 2. The median values of the
estimated failure rates at 2 years were used to define 4 prognostic
groups with different risks for local and distant failure: groups
with differing failure profile, Group 1 (n = 173): low risk of both
types of failures; Group 2 (n = 103): low risk of distant metastasis,
high risk of local failure; Group 3 (n = 100): high risk of distant
failure, low risk of local failure; Group 4 (n = 173): high risk of
both types of failures. 

The performance of the model was first tested by standard
methods and failure specific-free rates were compared using log-
rank test and the results are shown in Figures 3 and 4. The local
failure-free rates were 0.45 for group 1 and 0.44 for group 3 where
it was only 0.32 and 0.28 for groups 4 and 2 at 2 years respectively.
The log-rank P value was 0.05 for local failure-free rate between
4 groups. The model was much more powerful for the distant
metastasis-free rates, where the P value was 0.0005 and groups 1
and 2 had distant failure-free rates of 0.58 and 0.60 at 2 years,
respectively. 

Modelled failure time distributions were compared graphically
with 1-KM estimates over time in order to validate the model.
There were close agreement between the modelled failure time
distributions and 1-KM estimates in all 4 groups and Figures 5–8
show the comparison in group 1 and 4 as examples. 
British Journal of Cancer (2001) 85(8), 1113–1118
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Figure 2 Scatter plot of the estimated local and distant failure rates at 2
years for each individual patient. The median values of failure rates were
used to define 4 prognostic groups with different failure pattern. Each star
represents a single patient 
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Figure 3 Local failure-free rates compared between 4 prognostic groups
using KM estimates and log-rank test. Groups 1 and 3 have higher local
failure-free rates than the other 2 groups as expected from the modelling 
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Figure 4 Distant failure-free rates compared between the 4 prognostic
groups using KM estimates and log-rank test. Groups 1 and 2 have higher
distant failure-free rates than the other 2 groups as expected from the
modelling 
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Figure 5 Modelled distant failure rate distribution in group 1 (dashed line)
compared graphically with 1-KM estimates over time 
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Figure 6 Modelled local failure rate distribution in group 1 (dashed line)
compared graphically with 1-KM estimates over time 
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Figure 7 Modelled distant failure rate distribution in group 4 (dashed line)
compared graphically with 1-KM estimates over time 

0
0 1 2

Follow-up (years)

3

model
1-KM10

20

30

40

50

Lo
ca

l f
ai

lu
re

 (
%

)

60

70

80

90

100

Figure 8 Modelled local failure rate distribution in group 4 (dashed line)
compared graphically with 1-KM estimates over time 
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DISCUSSION 

Competing risks analysis has been developed theoretically for
more than 2 decades and is available in some of the standard statis-
tical software packages (S-Plus, 1991; SAS, 1993). Nevertheless,
this type of analysis has found relatively limited practical use in
prognostic studies in cancer research. The conceptual advantage of
competing risks analysis is that it takes both the type of failure and
the time of failure into account. In patients with inoperable
NSCLC both local and distant failures are very common. These are
obviously competing events because the occurrence of either one
of them is likely to lead to the death of the patient and thereby to
termination of the time at risk for developing the other failure type.
The aim of the present study was to evaluate how disease, patient
and treatment characteristics influence the time to local and distant
failure in NSCLC. Although many studies of prognostic factors
have been conducted in NSCLC, they have not analysed failure-
specific outcomes in the competing risks setting (Albain et al,
1991; Takigawa et al, 1996). 

We applied the competing risk analysis first proposed by
Lagakos (Lagakos, 1978) as implemented in the BMDP statistical
software package (BMDP User’s Guide, 1992b). This is an accel-
erated failure time model where the effect of a statistically signifi-
cant covariate will be to prolong or shorten the time until failure
depending on the sign of the regression coefficient (see Table 2).
These signs must be considered in relation to the scoring of covari-
ates shown in Table 1. A positive regression coefficient means that
increasing values of the covariate will increase time to failure and
a negative regression coefficient means that increasing values of
the covariate will decrease the time to failure. (This convention for
the signs is in contrast to the convention used with the Cox
Proportional Hazards Model, where a positive regression coeffi-
cient indicates a negative effect on failure times with increasing
values of the corresponding covariate.) A recent study, using the
accelerated failure time model with a log-normal failure time
distribution, is the analysis of failure patterns in primary breast
cancer by Chapman and colleagues (Chapman et al, 1999). Here,
we used a log-logistic failure time distribution, which is similar to
the log-normal distribution but has the computational advantage
that the cumulative distribution function has a simple analytic
form (Bentzen et al, 1989). 

In the present analysis, the time to failure increased with
increasing age (continuous variable) as shown by the positive
regression coefficient (Table 2). Another example is treatment
which was coded CHART = 1 and CONV = 2. Here, the patients
receiving conventional radiotherapy failed earlier than those
receiving CHART, for both types of failures. This effect was more
pronounced for local rather than distant failure as seen from the
magnitude of the 2 regression coefficients (Table 2). 

The competing risks analysis applied here also provides a
framework for testing 3 hypotheses concerning the importance of
each covariate for specific failure types. The results of these tests
are shown in Table 3. HFT tests whether the regression coefficients
for local and distant failure are significantly different. Take the
effect of patient’s age as an example. Looking at the regression
coefficients in Table 2, age is seen to prolong the time to both
distant and local failure. The magnitude of these regression coeffi-
cients should be seen in relation to their standard errors. Clearly,
these 2 regression coefficients are not statistically significantly
different and this is reflected by the P value for rejecting HFT,
which is 0.4 (Table 3). In this case, the conditional hypothesis,
© 2001 Cancer Research Campaign
Hcond, that age has no influence on time to failure given that it has
no influence on type of failure, is relevant to test, and this can be
rejected with P = 0.036 in the present analysis. Thus, increasing
age prolongs the time to failure but has a similar effect for the 2
competing failure types. HFT could only be rejected for clinical
stage (2P = 0.009), which means that this factor had a significantly
different effect on distant and local failure times. In this case,
the conditional hypothesis, Hcond, is clearly not relevant. The
combined hypothesis, Hcomb, could be rejected (2P = 0.004), i.e.
clinical stage is associated with a decreased time to failure and
discriminates between the 2 failure types. None of the other
covariates were significantly associated with a specific type of
failure, although from the regression coefficients it is seen, that
patients receiving CHART had a numerically larger prolongation
of the time to local failure than the time to distant failure. 

The final model was used to construct prognostic indices and
specific failure rates at 2 years and these were used to identify 4
groups with different failure pattern. The scatter plot of the local
and distant failure rates of individual patients are shown in Figure
2 where each patient is represented by a star. The ‘streaky’ appear-
ance of the patients’ predicted failure rates results from the contin-
uous age parameter. 

Failure rates in the 4 prognostic groups were evaluated by KM
estimates using the log-rank test for comparison of groups and the
4 groups were shown to vary in the risk of the 2 failure types.
Group 3 and 4 had a higher risk of failing distantly and the distant
failure-free rates were significantly lower (2P = 0.0005) than in
the other 2 groups. Likewise, group 2 and 4 had a higher risk of
failing locally and again local failure-free rates were significantly
lower (2P = 0.05) than in the other two groups (Figures 3 and 4). 

An informal test of the model fit to the data was performed
graphically by plotting the 1-KM estimates and the failure rates
estimated from the log-logistic model as a function of time. These
plots showed a close agreement between the model and the empir-
ical estimates as shown by the examples given in Figures 5–8. 

Classification of patients according to a prognostic index
combining multiple prognostic factors has been used extensively
with the Cox model (e.g. Bentzen et al, 1988). In patients with
NSCLC, Wigren recently applied this type of index to discriminate
between patients with a poor and a relatively good survival
(Wigren, 1997). We have generalized this idea in a failure-type-
specific competing risks setting. This is potentially a powerful
method for further stratification of patients into groups requiring
different therapeutic strategies. 

Three recent papers from the RTOG group (Scott et al, 1997;
Komaki et al, 1998; Werner-Wasik et al, 2000) used recursive
partitioning analysis (RPA) for defining prognostic subgroups of
patients with locally advanced inoperable NSCLC. The RPA
method creates branches of the prognostic factors from the stem of
all patients (Ciampi et al, 1988). The entire patient population is
partitioned into subclasses according to the variable producing the
most significant survival difference to form final prognostic
classes. One of these studies was concerned with patterns of failure
and aimed to identify groups of patients with different failure rates
(Komaki et al, 1998). Four RPA classes were constructed from
Kaplan–Meier survival estimates. For each of these, the frequency
distribution of the site of first failure was presented. Clearly, this is
not a competing risks approach, and in fact the 4 RPA classes
showed an almost counterintuitive trend towards more disease fail-
ures in the best prognostic class. In the worst prognostic group,
58% of the patients died without disease progression as compared
British Journal of Cancer (2001) 85(8), 1113–1118
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with 27% in the best group. It could seem that patients with a long
life expectancy survived long enough to have a detectable disease
progression. However, it is difficult to interpret the findings of this
analysis in terms of failure patterns. 

In conclusion, we used a competing risks model to assess the
effects of clinico-pathological factors on different types of first
recurrence after radical radiotherapy for locally advanced NSCLC.
We have shown that for stage III disease, distant failure rates are
relatively higher than the local failure rates. Thus, intensified local
treatment may not suffice to improve therapeutic outcome in this
group of patients. While the present analysis identified 4
subgroups with significantly different failure pattern, there is still a
high failure rate at both local and distant position in patients with
inoperable NSCLC. 

The literature is rapidly expanding in the field of biological
markers and their potential role as prognostic or predictive factors
remains to be tested (Sørensen and Østerlind, 1999). It is possible
that further biological characterization of these tumours in a
competing risk analysis would enable us to predict the risk of
specific types of failure with improved precision. This in turn
could form a rational basis for individualization of treatment
prescription. 
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