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Summary The present study was performed to gain insight into the role of p53 on the cytotoxicity of tubulin-binding agents (TBA) on cancer
cells. Drug sensitivity, cell cycle distribution and drug-induced apoptosis were compared in 2 lines derived from the mammary
adenocarcinoma MCF-7: the MN-1 cell line containing wild-type p53 (wt-p53) and the MDD2 line, containing a dominant negative variant of
the p53 protein (mut-p53). The MDD2 cell line was significantly more resistant to the cytotoxic effects of vinblastine and paclitaxel than the
MN1 cell line. MN1 cells, but not MDD2 cells, displayed wt-p53 protein accumulation as well as p21/WAF1 and cyclin G1 induction after
exposure to TBA. Both cell lines arrested at G2/M after drug treatment. However exposure of MN1 cells to TBA resulted in a stronger variation
in mitochondrial membrane potential, associated with cleavage of PARP, and more apoptosis, as measured by annexin V expression. After
exposure to vinblastine, Raf 1 kinase activity was reduced in MDD2 cells but not in MN1 cells. Addition of flavopiridol to vinblastine- and
paclitaxel-treated cells reversed the MDD2-resistant phenotype by inducing G1 cell cycle arrest and inhibiting endoreduplication. We conclude
that the p53 status of cancer cells influences their sensitivity to TBA cytotoxicity. This effect is likely to involve differences in the apoptotic
cascade. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Tubulin-binding agents (TBA), currently represented in the clinic
by vinca alkaloids and taxanes, are unique among antimitotic
agents in that they do not target nucleic acids. Vinca alkaloids such
as vinblastine can bind both to soluble tubulin dimers and micro-
tubules and, at high concentrations, inhibit microtubule polymer-
ization (Jordan et al, 1992; Lobert et al, 1996; Nagan et al, 2000).
Taxanes, such as paclitaxel and the related compound docetaxel,
only bind to polymerized tubulin and promote microtubule poly-
merization (Jordan et al, 1993; Liu et al, 1994). At clinically
achievable concentrations, both vincas and taxanes induce apop-
totic cell death by inhibiting microtubule dynamics, without
altering the percentage of tubulin polymerization. It is generally
accepted that TBA inhibit cell proliferation by inducing a
sustained mitotic arrest at the metaphase/anaphase transition,
which is associated with the formation of an incomplete
metaphase plate of chromosomes and an abnormal assembly of
spindle microtubules (Jordan et al, 1996; Rudner and Murray,
1996). However other mechanisms for taxane-induced cytotoxicity
have been reported, including a late G1 block in non-transformed
cells (Trielli et al, 1996) and inhibition of centrosomal duplication
in late G2 (Paoletti et al, 1997). 
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The effect of p53 status on sensitivity of cancer cells to
chemotherapeutic agents must take into account the dual role of
p53 protein as a guardian of genome integrity and as a key inter-
mediate of apoptosis (Lane, 1992). p53 content increases after
alterations of DNA, blocking the cell cycle and allowing DNA
repair, or leading to apoptosis of the damaged cells. Tumour cells
with inactivated p53 have generally displayed a greater degree of
resistance to DNA toxic agents, such as alkylating compounds or
radiotherapy (Fan et al, 1994; Lowe et al, 1994). This resistance
phenomenon can be explained by reduced sensitivity to apoptosis,
and is often associated with gross genomic alterations including an
aneuploid karyotype. 

Alterations in p53 also abolish the G2/M checkpoint and allow
endoreduplication in the presence of TBA (Cross et al, 1995). It
was therefore striking that the loss of wild-type p53 (wt-p53) func-
tion has been found by some authors to be associated with
increased sensitivity to TBA, such as paclitaxel (Hawkins et al,
1996; Wahl et al, 1996). However other authors have reported that
the loss of wt-p53 led to increased resistance to TBA (Wu and El-
Diery, 1996) or did not modify sensitivity to these compounds
(Delia et al, 1996). The present study was designed to investigate
whether inactivation of wt-p53 protein by a dominant negative
mutant affected sensitivity to the cytotoxicity of tubulin-binding
agents and to determine the role of p53 in the pathways that link
microtubule damage, mitotic arrest and cell death induced by these
agents. 
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MATERIALS AND METHODS 

Reagents 

Drugs used for the experiments were clinical formulation of
vinblastine, vincristine, vindesine (Lilly Laboratories, Saint
Cloud, France), vinorelbine (Pierre Fabre, Castres, France), pacli-
taxel (Bristol-Myers Squibb, Paris, France), docetaxel (Rhône-
Poulenc Rorer, Vitry-sur-Seine, France), mitomycin C (Sanofi
Winthrop, Gentilly, France) and doxorubicin (Pharmacia, St
Quentin, France). Flavopiridol was a kind gift from Hoescht
Roussel pharmaceuticals (Paris, France). Stock solutions of each
drug were prepared in distilled water or DMSO and fresh dilutions
were prepared before each experiment. Colchine, 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT)
and propidium iodide were purchased from Sigma (St Quentin
Fallavier, France). Enhanced chemiluminiscence Western blot
detection reagents were purchased from Amersham Corp
(Amersham ECL system, Buckinghamshire, UK). Antibodies
against cyclin-G1, Bax and Raf-1 (C-12) were purchased from
Santa Cruz Biotechnology Inc (Santa Cruz, CA); antibodies
against Bcl-2 and p53 (DO7) were purchased from DAKO
(Glostrup, Denmark); antibodies against (Poly[ADP-Ribose]
Polymerase) (PARP) were purchased from Transduction
Laboratories (Lexington, KY), Pharmigen (San Diego, CA) and
Boehringer Mannheim (Gmbh, Germany), respectively.
Peroxidase-conjugated secondary antibodies were purchased from
Covalab (Oullins, France). Tetra methyl rhodamine methyl ester
(TMRM) was purchased from Molecular probes (Interchim,
Montluçon, France). 

Cell lines 

The MN-1 cell line, containing wt-p53 and the MDD2 cell line,
derived from the human breast carcinoma cell line MCF-7, were
generously provided by Moshe Oren (Weizmann Institute of
Science, Israel). The MDD2 line is a variant derived from MCF-7
by transfection with a dominant negative mutant of p53 (pCMV-
DD-p53; mut-p53). This plasmid encodes a non-functional p53
miniprotein containing the first 11 residues and residues 302 to
390 of murine p53 (Shaulian et al, 1992). The MN-1 line is a
control line transfected with the empty plasmid. HCT116+/+ and
HCT116–/– are cell lines derived from colorectal carcinoma.
HCT116+/+ displays wt-p53 while in HCT116–/–, 2 promoterless
targeting vectors were used to sequentially disrupt the 2 p53 alleles
(Bunz et al, 1998). All cell lines were maintained in monolayer
cultures on 75 cm2 flasks in Dulbecco’s Minimum Essential
Medium containing 10% fetal calf serum, 1% L-glutamine, 2%
penicillin-streptomycin-neomycin (0.4 mg ml–1). 

Cytotoxicity assays 

Cell viability was determined using the MTT assay as previously
described (Twentyman et al, 1989). The inhibitory concentration
50 (IC50) was defined as the drug concentration resulting in 50%
loss of cell viability relative to untreated cells. Assays were
performed in triplicate in at least 3 separate experiments. In exper-
iments with flavopiridol, this compound was added at a final
concentration of 300 nM 6 hours after exposure to vinblastine or
paclitaxel. 
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Flow cytometry analyses 

The apoptotic fraction was determined using the Annexin-V-Fluos
Staining Kit (Boehringer Mannheim, Gmbh, Germany) after 
24 h treatment of cells with vinblastine 200 nM or paclitaxel 100 nM.
Cell cycle distribution and DNA ploidy status after 24 h of expo-
sure to vinblastine or paclitaxel were calculated from propidium
iodide-stained cells using Modfit LT 2.0™ software (Verity
Software Inc, Topsham, ME). In experiments with flavopiridol,
this compound was added at a final concentration of 300 nM 6
hours after exposure to vinblastine or paclitaxel and cell cycle
distribution and DNA ploidy status determined after 24 h treat-
ment. 

Western blots 

Protein expression was determined by Western blot analysis in
untreated MN-1 and MDD2 cells and after 24 h exposure to
vinblastine (200 nM) or paclitaxel (100 nM) as previously
described (Dumontet et al, 1996). Briefly, cell lysates were
resolved by 12% SDS (sodium-dodecyl sulfate)-PAGE, and trans-
ferred onto nitro-cellulose membrane (Hybond-ECL, Amersham
Corp, Buckinghamshire, UK). The blots were then incubated with
the appropriate dilution of primary antibody, followed by incuba-
tion with peroxidase-conjugated secondary antibody. Protein were
detected by chemiluminescence using Kodak film (Eastman
Kodak Company, Rochester, NY, USA). 

Northern blots 

Total RNA was extracted using Tri-Reagent (Sigma). This proce-
dure is an improvement of the single-step method reported by
Chomczynski and Sacchi for total RNA isolation (Chomczynski
and Sacchi, 1987). RNA samples (10 µg) were separated by
electrophoresis through a denaturing formaldehyde agarose gel
and transferred tonylon membranes (Hybond-N+; Amersham).
Membranes were labelled with a p21/WAF1 cDNA probe. 

Measurement of mitochondrial transmembrane
potential analysis 

Control and TBA-treated cells were incubated in medium
containing 500 nM (TMRM) for 15 min at 37˚C. Then, cells were
distrupted with 1 ml Hanks buffer saline solution (HBSS) 0.25%
SDS and TMRM fluorescence was measured at 574 nm after exci-
tation at 546 nm using a spectrofluorophotometer RF5301PC.
TMRM amounts were estimated using a TMRM calibration curve
performed under the same conditions. The results are expressed as:
∆[TMRM]% = ([TMRM]assay – [TMRM]control) / [TMRM]
control × 100. 

Assays for caspases 3 and 9 

Determination of activation of caspase 3 and 9 at baseline and
after 24 h of vinblastine and paclitaxel incubation were performed
as previously described (Voorzanger-Rousselot et al, 1998). 

Determination of Raf-1 kinase activity 

Raf-1 kinase activity was determined as described earlier
(Rasouli-Nia et al, 1998). The level of Raf-1 kinase activity 
British Journal of Cancer (2001) 85(6), 902–908
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Figure 1 Induction of p53 protein and p53-related events in MN-1 and
MDD2 cells after exposure to 200 nM vinblastine (VBL) and 100 nM
paclitaxel (TAX). (A) Kinetics of p53 protein. Western blots were performed
on 50 µg of total cell protein with DO7 anti-p53 antibody; (B) p21/WAF1 RNA
levels were determined by Northern blotting; (C) cyclin-G1 protein expression
was measured by Western blot after 24 h exposure to both drugs; results
shown are representative of 2 separate experiments

Table 1 Cytotoxicity data (IC50)a and relative resistance 

Drug (nM) MCF-7 MN1 MDD2

VBLc 7.4 6.8 340
NBL ND 8.2 23
VDS ND 6 10 000
VCR ND 58 3 400
TAX 9 7.6 240
TXT ND 8.7 194
COL ND 85 185 000
MITO ND 645 6 450
DOX 45 53 110

aIC50:IC50 values were obtained from dose response curv
separate experiments each of which were performed in trip
(IC50 MDD2/IC50 MN1 or IC50 HCT116+/+/HCT116–/–). c

VCR: vincristine; TAX: paclitaxel; TXT: docetaxel; COL: co
determined. 

--- - -

- -
was determined using the Pierce Colorimetric PKC assay 
kit Spinzyme™ Format (Pierce, Rockford, IL) according to the
manufacturer’s instructions and the fluorescence intensity deter-
mined by fluorescence spectroscopy. 

Electron microscopy 

Control and treated cell lines were fixed in situ in sodium cacody-
late 0.1 M buffer containing 2% glutaraldehyde at 4˚ for 2 h,
washed in the same buffer and post-fixed in sodium cacodylate
0.15 M buffer containing 1% osmium tetroxide and 1.5% potas-
sium ferrocyanide for 1 h. The cells were then dehydrated in
graded ethanol and embedded in epoxy resin. Ultrathin sections
were double-contrasted with uranyle acetate and lead citrate and
examined at 80 KV on a Siemens Elmiskop 102 transmission elec-
tron microscope. 

RESULTS 

Induction of p53 protein by tubulin-binding agents 

p53 protein expression was determined after exposure to vinblas-
tine and paclitaxel at different time intervals. In MN-1 cells, expo-
sure to these drugs induced significant wt-p53 acumulation in a
time-dependent manner with maximum effects after 6 h for
vinblastine and 18 h for paclitaxel (Figure 1A). p53 accumulation
could be detected up to 72 h with both compounds. In MDD2 cells,
p53 was detected at high levels at all time points, since the mutant
p53 transfected in these cells is recognized by the DO7 antibody
(Figure 1A). 

Effect of p53 status on sensitivity to chemotherapeutic
agents 

IC50 values of various chemotherapeutic compounds on MN1 and
MDD2 cells are shown in Table 1. MDD2 cells displayed 31.5 to
50-fold resistance to paclitaxel and vinblastine in comparison to
MN1 cells. In similar experiments with HCT-116+/+ (wt-p53) and
© 2001 Cancer Research Campaign

ratio (RR)b values to different drugs 

RR HCT +/+ HCT –/– RR 

50 0.2 0.53 2.6 
2.8 ND ND ND 

1 666 ND ND ND 
58.6 ND ND ND 
31.5 0.05 0.13 2.6 
22.2 0.5 1.5 3 

2 176 160 950 5.9
10 167 950 5.6 
2.07 30 190 6.3 

es assessed by MTT assay and are means of three
licate. SD were < 10%. bRR: relative resistance ratio
VBL: vinblastine; NBL: vinorelbine; VDS: vindesine;
lchicine; MITO: mitomycin C; DOX: doxorubicin; ND: not
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HCT-116–/– cells exposed to TBA, the survival advantage of cells
carrying a non-functional p53 was confirmed, although to a lesser
degree (Table 1). MN1 and MDD2 cells were negative for classical
MDR, MRP and LRP resistance proteins by immunostaining and
flow cytometric functional assays (data not shown). 

Influence of TBA on cell cycle arrest according to p53
status 

Flow-cytometric cell cycle analysis demonstrated a diploid-MN-1
cell population that after 24 h of vinblastine treatment, accumu-
lated in G2/M phase (Table 2). Similar features were observed
when MN-1 cells were exposed to paclitaxel (Table 2).
Conversely, MDD2 cells demonstrated a partially tetraploid
histogram (DI = 1.93 ± 0.02; n = 3). In these cells, TBA treatment
induced the presence of a large number of cells with 8N DNA
content (Table 2). Thus, these results demonstrate that treatment of
MN1 and MDD2 cells with TBA produces an accumulation of
cells within G2/M phase independently of the presence or not of a
functional p53. 

Induction of p53-related events after exposure to
vinblastine and paclitaxel 

We examined whether these agents required a functional p53 to
induce expression of different proteins involved in the G2/M
checkpoint. p21/WAF1 mRNA expression was analysed by
Northern blotting and cyclin-G1 expression by Western blotting.
As shown in Figure 1B, p21/WAF1 expression was strongly
induced in MN1 cells after 12 h of vinblastine or paclitaxel treat-
ment. However, p21/WAF1 levels decreased 24 h after exposure to
vinblastine and remained stable up to 72 hours after exposure to
paclitaxel. In MDD2 cells, exposure to TBA treatment induced
© 2001 Cancer Research Campaign

Table 2 Analysis of ploidy and cell cycle distribution of MN1 and MDD2
cells by flow cytometry before and after 24 h treatment with vinblastine and
paclitaxela

MN1 (wt-p53) MDD2 (mut-p53) 

Cell population Db (100) D (68 ± 10.1) T (32.2 ± 10) 
G2/M CONc 11.8 ± 5.1 ND 5.2 ± 7.3 
G2/M VBL 68.4 ± 7.9 ND 52.7 ± 11.7 
G2/M TAX 64.7 ± 6.4 ND 62.7 ± 10.6 

aThe reported values (mean ± SD, n = 3) are expressed as percentage of
total cells. bD: diploid cells, 2N; T: tetraploid cells, 4N; ND: not detectable.
cCON: control; VBL: vinblastine; TAX: paclitaxel; ND: not determined. 

Table 3 Apoptotic percentage, mitochondrial transmembrane potential variation
tubulin-binding agents 

Apoptosisa (%) [TMRM]b (nmol mg–1) ▲▲

MN-1 CONc 2 0.146
MN-1 VBL 43 0.231
MN-1 TAX 44 0.264
MDD2 CON 3 0.145
MDD2 VBL 12 0.168
MDD2 TAX 25 0.211

aAs measured by the flow cytometric annexin-V-Fluos Staining Kit. bTMRM: tetra 
([TMRM] assay – [TMRM]control) / [TMRM] control × 100.cCON:Control; VBL:vinb
very weak expression of p21/WAF1 mRNA (Figure 1B). Exposure
to vinblastine or paclitaxel for 24 h resulted in a moderate increase
in cyclin-G1 protein levels in MN-1 cells and in a decrease of this
protein in MDD2 cells (Figure 1C). These results indicate that
alterations in p21/WAF1 and cyclin-G1 expression after treatment
with tubulin-binding agents are p53-dependent. 
British Journal of Cancer (2001) 85(6), 902–908

s and caspase 3 and 9 activity in MN1 and MDD2 cells exposed to 

[TMRM] (%) Caspase 3 (pmol min–1) Caspase 9 (pmol min–1) 

– 36.7 31.0 
+ 58.2 29.3 27.5 
+ 80.8 30.4 26.7 

– 33.1 28.1 
+ 11.7 28.7 21.7 
+ 45.5 32.8 29.1 

methyl rhodamine methyl ester; The results are expressed as: ▲▲[TMRM]% =
lastine; TAX:paclitaxel.
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Figure 2 Effect of antitubulin-binding agents on PARP cleavage (A), protein
expression of Bcl-2 and Bax (B) and Raf-1 kinase activity (C) in MN-1 and
MDD2 cells. Cells were treated with vinblastine 200 nM and paclitaxel 100
nM for 24 h. For (A) and (B), cells were lysed; subjected to SDS-PAGE, and
immunoblotted with corresponding monoclonal antibody as described in
Material and methods. For (C), Raf-1 kinase activity is expressed in IU/106

cells. This figure represents one of the two experiments performed. CON:
control; VBL: vinblastine; TAX: paclitaxel 

D 
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Effect of p53 status on TBA-induced apoptosis 

After exposure of the MN1 line to vinblastine for 24 h, 43% of
cells were found to be apopotic in contrast to 12% of MDD2 cells
(Table 3). Similar results were obtained after a 24 h exposure to
paclitaxel (Table 3). Analysis of PARP cleavage was detected after
vinblastine and paclitaxel treatment in MN1 cells but not in MDD2
cells (Figure 2A). 

Effect of TBA on pro- and anti-apoptotic proteins 

Expression of Bcl-2 and Bax proteins were examined in MN1 and
MDD2 cells after exposure to TBA. At baseline, MN1 cells had
significantly higher Bcl-2 and Bax expression than MDD2 cells
(Figure 2B). Bcl-2 protein increased after drug exposure in both
cell lines. Bax protein level was reduced in the MDD2 line after
exposure to vinblastine or paclitaxel but remained stable in the
MN1 line after exposure to these compounds. 

Effect of exposure to TBA on transmembrane
mitochondrial potential and caspase 3 and 9 activity 

To investigate the mitochondrial changes that precede apoptosis,
we measured the mitochondrial transmembrane potential in
British Journal of Cancer (2001) 85(6), 902–908
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Figure 3 Effect of sequential treatment with vinblastine (VBL) or paclitaxel
(TAX) and flavopiridol (FL) on MDD2 cells. (A) IC50 values; MDD2 cells were
plated at 7 × 103 cells/well in the presence of increasing concentrations of
vinblastine (VBL) and paclitaxel (TAX). After 6 h of incubation, flavopiridol
(FL) 300 nM was added. Cytotoxic data was determined by the MTT assay
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cycle distribution was analysed by flow cytometry. CON: control; W/FL:
without flavopiridol; Add FL: flavopiridol-treated MDD2 cells 

D 

D 
untreated and treated cells using the accumulation of TMRM. The
increase in TMRM accumulation ratio after drug treatment was
weaker in the mut-p53 cells than in the wt-p53 cells (Table 3).
caspase 3 and 9 activities were similar in both cell lines, and no
increase in caspase 3 or 9 activity was observed in either line after
exposure to vinblastine or paclitaxel (Table 3), suggesting that
PARP cleavage may be due to the activity of other caspases. 

Effect of exposure to TBA on Raf-1 kinase activity 

At baseline, MN1 cells had a 2-fold greater Raf-1 kinase activity
than MDD2 cells (Figure 2C). Exposure of MN1 cells to vinblas-
tine did not change the level of activity of Raf-1 kinase, while
exposure to paclitaxel reduced Raf-1 activity to 68% of the base-
line value. Conversely, vinblastine exposure of MDD2 cells
reduced Raf-1 kinase activity 8.6-fold, while exposure to pacli-
taxel had no effect. We observed no difference in Raf-1 protein
expression between the 2 cell lines, either before or after treatment
with vinblastine or paclitaxel (data not shown). 

Effect of exposure to TBA on microtubular organization 

The ultrastructural analysis showed that mut-p53 MDD2 cells but
not wt-p53 MN1 cells displayed atypical structures in the presence
of drugs. MDD2 exposed to vinblastine exhibited lamellar
complexes studded with ribosomes (data not shown). These struc-
tures were similar to the so-called ribosome–lamella complexes.
When exposed to paclitaxel, MDD2 showed long tubulo-filamentous
structures (data not shown). MN1 cells did not display similar
structures after drug exposure. 

Effect of flavopiridol on the chemoresistant phenotype
of MDD2 cells 

There were significant differences between IC50 values of MDD2
cells treated with vinblastine alone (340 nM) or with flavopiridol
(85 nM) (Figure 3A). Similar results were found after MDD2
treatment with paclitaxel alone (240 nM) or with flavopiridol (90
nM) (Figure 3A). The addition of flavopiridol thus effectively
reversed the resistant phenotype of MDD2 cells. Analysis of cell
cycle alterations after sequential exposure to TBA and flavopiridol
showed G1 arrest in this cell line. Figure 3B shows that after
vinblastine and paclitaxel treatment, the amount of cells in G1

phase diminished as a result of the G2/M arrest caused by these
drugs. Sequential treatment with vinblastine or paclitaxel followed
by flavopiridol increased the amount of cells in G1 phase. 

DISCUSSION 

The effect of loss of p53 function on sensitivity to tubulin-binding
agents has yielded conflicting results. Wu and co-workers found that
p53 status predicted in vitro chemoresistance to paclitaxel in PA-1
human ovarian teratocarcinoma cells that expressed HPV16 E6
protein (Wu and El-Diery, 1996). In contrast, Whal et al and Hawkins
et al found that cells became more sensitive to paclitaxel if they
lacked p53 (Hawkins et al, 1996; Wahl et al, 1996) and increased
sensitivity to paclitaxel correlated with increased G2/M cell cycle
arrest and apoptosis induction in cells lacking functional p53. These
studies used human foreskin fibroblasts and mouse embryo fibrob-
lasts, respectively, in which p53 inactivation was achieved either
© 2001 Cancer Research Campaign
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through targeted disruption of the gene or functional inactivation by
acute expression of HPV16 E6 or SV40 T antigen. Such cells are
more sensitive to apoptosis induced by chemotherapy, hypoxia or
growth factor withdrawal than cancer cells (McGill et al, 1997;
Brown and Wouters, 1999). Conversely, Delia and co-workers
demonstrated that the sensitivity to paclitaxel was similar in EBV
immortalized lymphoblastoid cells carrying heterozygous mutations
of p53 (p53 wt/mut) or wt-p53 (wt/wt) (Delia et al, 1996). However,
Brown and Wouters (Brown and Wouters, 1999) reported that, simi-
larly to oncogene-transformed normal cells, apoptotic characteristics
of lymphoid cells are different from those of cells derived from solid 
tumours. 

Our results obtained with MCF-7 variants show that inactiva-
tion of wt-p53 by a dominant negative mutant p53 miniprotein is
associated with a high degree of resistance to tubulin-binding
agents. Similar results were obtained with the colon-derived line
HCT116 p53 +/+ and –/–, although to a lesser degree. It is there-
fore possible that p53 alterations do not have the same conse-
quences in terms of chemosensitivity in cells transformed in vitro
and in tumour-derived cancer cells. In normal cells with inacti-
vated p53, the absence of cell cycle arrest mechanisms allowing
adequate chromosome distribution during anaphase may predomi-
nate, explaining increased propensity to apoptosis and enhanced
sensitivity to chemotherapy. Conversely in neoplastic cells which
have already successfully survived aberrant chromosomal distrib-
ution in vivo, the absence of the apoptosis-inducing activity of p53
may represent a survival advantage. It must be stressed that the use
of lines stably transfected with dominant negative p53 variants has
a major caveat which is the genetic drift over time with accumula-
tion of chromosomal aberrations. The mut-p53 line used in this
study is partially tetraploid, with a certain number of chromosomal
aberrations which may be involved in chemoresistance mechanisms.
One way to avoid this problem is to study inducible p53 variants,
an approach which is currently being developed in our laboratory. 

In our model, p53 status did not influence the ability of cells to
accumulate in G

2/M. However wt-p53 cells were essentially found
to be blocked in the 4N state after drug treatment, whereas the
mut-p53 line, which is partially tetraploid, accumulated with an
8N DNA content, suggesting that the absence of p53 allowed
endoreduplication. Other authors have confirmed that loss of p53
leads to microtubule-induced endoreduplication and generation of
8N cell populations (Cross et al, 1995; Khan and Wahl, 1998).
Cyclin G1 levels, which are involved in molecular events medi-
ating G2/M transition (Bates et al, 1996) were identical at baseline
in both cell lines suggesting that expression of this protein is at
least partially p53-independent. Cyclin G1 levels increased only
moderately in the wt-p53 cells exposed to TBA in spite of p53
protein accumulation but were dramatically reduced in the mut-
p53 cells. These data suggest that under situations of stress
inducing a G2/M cell block, these different events may favour
endoreplication of mut-p53 cells. 

Paclitaxel-induced apoptosis has been suggested to be mediated
by Raf-1 kinase-mediated phosphorylation of Bcl-2 with concur-
rent loss of its anti-apoptotic properties (Blagosklonny et al, 1996;
Haldar et al, 1998). In our model mut-p53 cells had lower levels of
Raf-1 kinase activity than wt-p53 cells. This is in keeping with the
recent report (Fang et al, 2000) showing that wt-p53 expression
induces an activation of the MAPK cascade by a mechanism
which is upstream of Ras. Raf-1 kinase activity was slightly
decreased in both lines after exposure to paclitaxel. Exposure to
vinblastine induced a 90% decrease in Raf-1 kinase activity in
© 2001 Cancer Research Campaign
mut-p53 cells and only a 30% decrease in wt-p53 cells. It has been
reported that the effect of TBA on Raf-1 kinase requires an effect
on tubulin polymerization (Blagosklonny et al, 1996). Electron
microscopy studies showed that mut-p53 MDD2 cells, but not 
wt-p53 cells, displayed abnormal microtubular reorganization
induced by these drugs. The effects of paclitaxel and vinblastine
on Raf-1 kinase in the mut-p53 line may therefore be due to micro-
tubular reorganization induced by TBA. 

Paclitaxel-induced apoptosis has been reported to be associated
with changes in mitochondrial transmembrane potential, mito-
chondrial release of cytochrome c, activation of caspase 3 and
cleavage of PARP (Ibrado et al, 1998; Scarlett et al, 2000). Our
results show strongly reduced Bcl-2 levels and only weakly
reduced Bax levels in the mut-p53 cells in comparison to wt-p53
cells. It is therefore likely that the Bcl-2:Bax ratio at baseline is
higher in MN1 cells than in MDD2 cells. After drug treatment,
there may occur an increase in the Bcl-2:Bax ratio in the mut-p53
cell line while the Bcl-2:Bax ratio in the wt-p53 cells remains
stable, conferring a survival advantage to mut-p53 MDD2 cells.
Analysis of mitochondrial transmembrane potential showed a
weaker variation in the mut-p53 cells than in wt-p53 cells,
suggesting a reduced release of cytochrome c from mitochondria.
It is presently uncertain whether loss of mitochondrial membrane
potential represents the central initiating event in apoptosis (Yang
et al, 1997; Bossy-Wetzel et al, 1998). Caspase 3 and 9 levels were
identical in both cells lines, and no increase in caspase 3 or 9
activity was observed in either line after exposure to TBA. Other
activators of PARP, such as caspase 7 may be involved in PARP
activation. Taken together these data suggest that TBA-induced
apoptosis involves a mitochondrial process, that this process is
partially p53-dependent, but does not involve caspase 3. 

Flavopiridol, a synthetic flavone presently undergoing phase II
clinical trials, prevents endoreduplication in human cancer cells
defective in G

1 checkpoint proteins (Motwani et al, 2000). The
effect of flavopiridol on cell cycle arrest has been reported to be
independent of p53 status (Byrd et al, 1998). In our model sequen-
tial exposure to TBA and flavopiridol effectively reversed the
drug-resistant phenotype of mut-p53 cells. When analysing cell
cycle perturbations induced by the sequential treatment, addition
of flavopiridol increased the amount of cells in G1 peak indicating
that the additive effect of flavopiridol and vinblastine or paclitaxel
may be produced by preventing endoreplication in cells with a
compromised G1 checkpoint. Although p53-deficient cells ignore
the G2/M checkpoint and progress into G1 in spite of microtubular
insult, it is thus possible to block this progression pharmacologi-
cally and sensitize mut-p53 cells to TBA cytoxicity. 
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