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Summary The expressions of Lewis (Le) antigens, α-1,3/1,4 fucosyltransferases (α-1,3/1,4 FuTs), and metastatic potential after the
treatment of 2 differentiation inducers, all-trans retinoic acid (ATRA), 8-bromo-cyclic 3′,5′adenosine monophosphate (8-Br-cAMP); and 2
proliferation inducers, epidermal growth factor (EGF) and phobol-12-myristate-13-acetate (PMA), on 7721 human hepatocarcinoma cell line
were studied. Cell adhesion to human umbilical vein endothelial cells (HUVEC), cell migration through transwell and invasion through matrigel
were selected as the indexes of metastatic potential-related phenotypes. Using fluorescence-labelled antibodies and flow-cytometric analysis,
it was found that 7721 cells mainly expressed sialyl Lewis X (SLex) and a less amount of sialyl dimeric Lewis X (SDLex) antigens on the cell
surface. Their expressions were down-regulated by ATRA, and up-regulated by EGF. SLex antigen was also decreased and increased by the
treatment of 8-Br-cAMP and PMA respectively. With Northern blot to detect the mRNAs of α-1,3/1,4 FuTs, the main enzymatic basis for the
change in SLex expression was found to be the alteration of the expression of α-1,3 FuT-VII. It was evidenced by the observations that α-1,3
FuT-VII was the main α-1,3/1,4 FuT in 7721 cells, while α-1,3/1,4 FuT-III and α-1,3 FuT-VI were expressed rather low. The changes in the
expressions of SLex antigen and α-1,3 FuT-VII resulted in the altered cell adhesion to tumour necrosis factor-α stimulated HUVEC, since only
the monoclonal antibody of the SLex, but not other monoclonal antibodies blocked the adhesion of 7721 cells to HUVEC. The migration and
invasion of 7721 cells were also reduced by the treatment of ATRA or 8-Br-cAMP, and elevated by EGF or PMA. The above findings indicate
that the metastatic potential of 7721 cells is suppressed by differentiation-inducers and promoted by proliferation-inducers. © 2001 Cancer
Research Campaign http://www.bjcancer.com
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Liver carcinoma is one of the important cancers in China with high
incidence. It was reported by our laboratory that a human hepato-
carcinoma cell line, 7721, was shown to be differentiated by all-
trans retinoic acid (ATRA) and the cell permeable derivatives of
cyclic 3′,5′-adenosine monophosphate (cAMP). After treatment
with ATRA or cAMP derivatives, the morphological appearance
was changed toward normal (Ai et al, 1990, 1991a), the activities
of γ-glutamyltransferase (GGT) and tyrosine protein kinase (TPK)
(Chai et al, 1993a), protein kinase C (PKC) (Chai and Chen,
1994a), as well as the expressions of α-fetal protein (Ai et al, 1990)
and some oncogenes (Ai et al, 1991b; Chai and Chen, 1994b) were
decreased, while the expression of albumin was up-regulated by
ATRA (Ai et al, 1990). On the contrast, cell growth, the activities
of TPK and GGT (Chai et al, 1993b; Shen et al, 1993; Xia et al,
1998), as well as the expressions of some oncogenes (Chai et al,
1994c), were increased during the treatment of phorbol-12-myris-
tate-13-acetate (PMA) or epidermal growth factor (EGF).
Therefore, ATRA and cAMP derivatives can be considered as the
differentiation-inducers of 7721 cells, while PMA and EGF are the
proliferation-inducers of this cell line. On the other hand, we
found that a metastasis-related glycan processing enzyme, 
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N-acetylglucosaminyltransferase V (GnT-V) (Taniguchi et al,
1999), and its product, GlcNAcβ1,6Manα-branching structure in
asparagine-linked glycans, were also down-regulated by ATRA or
dibutyl-cAMP (Dong et al, 1994; Chen et al, 1995) and up-regu-
lated by EGF or PMA (Xia et al, 1998). 

It was well-documented that Lewis antigens, mainly located on
the outer chains of the glycans of cell surface glycolipids or the 
O-linked glycans of glycoproteins, were closely related to the
metastatic potential and overall prognosis of many human cancers,
such as colorectal, prostate and lung cancer (Nakamori et al, 1993;
Ogawa et al, 1994; Jorgensen et al, 1995). Lewis antigens are a
series of fucosylated Galβ1,3/1,4GlcNAc containing oligosaccha-
rides (sialylated or not sialylated, β1,3 linkage in type 1 chain and
β1,4 linkage in type II chain), and are known to participate in the
process of leukocyte infiltration during inflammation and cell
adhesion during malignant cell metastasis. In the beginning of
haematogeneous metastasis, malignant cells have to first invade
into blood vessels. After their dissemination via the circulation,
they may adhere to and penetrate through the vascular endothe-
lium, and move into the surrounding tissue to form metastatic
colonies (Hakomori, 1996). The E-or P-selectin expressed on the
surface of vascular endothelial cells interacts with sialyl Lewis
antigens, such as SLex, SDLex and SLea, expressed on the surface
*These two authors contributed equally to this manuscript. 
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of malignant cells, and mediates the adhesion of malignant cells 
to the vascular endothelium (Takada et al, 1993; Kanas et al,
1996). Sialyl Lewis antigen, therefore, are considered as another
metastasis-related structure of glucans in addition to GlcNAcβ1,
6Manα-branch. 

A set of glycosyltransferases is responsible for the biosynthesis
of Lewis antigens. The last step in their synthesis, fucosylation, is
catalysed by α1,3/1,4 fucosyltransferases (α1,3/1,4 FuTs). 6
human α1,3/1,4 FuTs have been cloned (αFuT-III, IV, V, VI, VII
and IX) (Kukowska-latallo et al, 1990; Lowe et al, 1991; Weston
et al, 1992a, 1992b; Sasaki et al, 1994; Kudo K et al, 1998). 4 of
them efficiently fucosylate sialylated acceptors, while α1,3 FuT-
IV and α1,3 FuT-IX prefer non-sialylated neutral acceptors.
α1,3/1,4FuT-III is the only αFuT, which has 2 different activities
(α1,3 and α1,4 fucosylation), leading to the generation of SLex

and SLea, respectively. However, α1,3 FuT-VII only catalyses the
synthesis of sialylated Lex (SLex) (Sasaki et al, 1994; Narimatsu,
1998). There were many literatures which reported that the expres-
sions of α1,3/1,4 FuTs are positively related to the metastasis
potency of some cancers, and negatively related to the prognosis
of the patients (Ito et al, 1997; Ogawa et al, 1997; Kudo T et al,
1998). 

On the base of our previous studies, the effects of 2 differentia-
tion inducers, ATRA and 8-Br-cAMP, as well as 2 proliferation
inducers, PMA and EGF, on the expressions of Lewis antigens on
7721 cell surface, their enzymatic mechanisms, and their relations
to some metastatic phenotypes ex vivo were investigated. 

MATERIALS AND METHODS 

The 7721 human hepatocarcinoma cell line was obtained from the
Institute of Cell Biology, Academic Sinica. Plasmids containing
cDNAs of α1,3 FuTs, monoclonal antibodies (mAb) of SLex and
SLea, KM 93 and CA19-9 respectively, were kindly gifted from
Prof Narimatsu at Soka University. FH6 (mAb of SDLex) was a
gift from Dr Hakomori at University of Washington. CD15 (mAb
of Lex) was purchased from Dako. The cDNA of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was from Dr Shimizu at
Tokushima University. Human umbilical vein endothelial cells
(HUVEC) were obtained from the Department of Anatomy of our
university. RPMI 1640 medium, DMEM medium and Matrigel were
from GIBCO. ATRA, 8-Br-cAMP, PMA, EGF, L-poly-L-lysine,
Fluorescein isothiocynate (FITC)-conjugated goat antibodies
against mouse IgM or IgG, and sialidase (Clostridium perfringens)
were purchased from Sigma. Trizol, DNA restriction endo-
nucleases and random primer labelling kit were from Promega.
Hybond-N+ nylon membrane and (α-32P)-dATP were from
Amersham Corp. Insert (transwell) and cell culture plates were
obtained from NUNC Company. Other reagents were commer-
cially available in China. 

Cell culture and treatment 

Cells were cultured at 37˚C, 5% CO2 in RPMI-1640 medium
containing 10% FCS, penicillin and streptomycin as previously
described by our laboratory (Ai et al, 1990). ATRA, PMA in
ethanol or 8-Br-cAMP, EGF in re-distilled water were separately
added to the culture medium, and cultured for 48 h. The final
concentrations of these compounds in the medium were indicated
in the text, tables or the legends of figures. The culture medium of
the control cells for ATRA or PMA contained the same final
© 2001 Cancer Research Campaign
concentration of ethanol, but all the results were no different
between the ethanol-containing medium and the ethanol-free
medium for EGF and 8-Br-cAMP. 

Fluorescence cytometric analysis of Lewis antigens 

The cells (1 × 106) detached by 2 mmol l–1 ethylene diamine tetra-
acetic acid (EDTA) were washed and re-suspended in phosphate-
buffered saline (PBS) containing 1% BSA and incubated with
different monoclonal antibodies of Lewis antigens for 30 min at
4˚C. After 2 washings, the cells were incubated for 45 min at 4˚C
with FITC-conjugated goat antibody against mouse IgM (for anti-
Lex, anti-SLex and anti-SDLex) or IgG (for anti-SLea). Then the
cells were subjected to flow-cytometry for fluorescence cyto-
metric analysis after suitable washing. Data were expressed as the
relative fluorescence intensity. 

Preparation of 32P-labelled probes of α-1,3/1,4 FuTs 

The plasmid containing cDNA of α1,3 FucT-VII (pUC19/FucT-
VII) or α1,3/1,4 FucT-III (pUC19/FucT-III) was cut with BamH1
and EcoRI, and the cDNA was purified with agarose electro-
phoretic separation, Tris buffer saturated phenol/chloroform
extraction and ethanol precipitation. The probes were labelled
with (α-32P)-dATP using random primer labelling kit from
Promega according to the instructions described in the manual.
The cDNA of GAPDH was labelled with the same method. 

RNA extraction and Northern blot of α-1,3/1,4 FuT
mRNAs 

Total RNA was extracted from the cells using Trizol according to
the protocol provided by Promega. Northern blot analysis was
carried out with the method described by Sagerstrom and Sive
(1996, pp 83–103). Briefly, total RNA (30–50 µg) was separated
by formaldehyde denatured electrophoresis, then transferred to
Hybond-N+ nylon membrane, and pre-hybridized for 4–6 h at
65˚C in 0.2 mol l–1 pH 7.4 sodium phosphate buffer/1 mM
EDTA/1% BSA/7% SDS/15% formamide. Hybridization was
performed at 65˚C for 16–20 h in the same hybridization solution
containing adequate (α-32P) labelled probe. After exposure of the
membrane under X-ray film, the intensity of each hybridized spot
was quantified using a densitometer, and expressed as the relative
absorbance unit (absorbance of α FucT/absorbance of GAPDH).
The ratio of the untreated control was set as 100%. 

The probe used for detection of αFuT-III, V and VI was the
α1,3/1,4FuT-III cDNA, and the probes for measurement of α1,3
FuT-IV and α1,3 FuT-VII were the cDNA of αFuT-IV and αFuT-
VII respectively. The GAPDH mRNA was determined with
GAPDH cDNA for intrinsic control. 

Determination of cell adhesion to HUVEC 

Assay of cell adhesion to HUVEC was carried out according to the
method reported by Takada et al (1993) with minor modification
(Liu et al, 2000). Chiefly, HUVEC were coated onto 96-well plates
and treated with 200 ng ml–1 TNF-α for 4 h to stimulate the
expression of E-selectin on the cell surface. Then 100 µl of the
cultured 7721 cells (1 × 105 well–1) were added to the plate wells
and further incubated for 30 min at 4˚C (to minimize possible
adhesion mediated by integrins). After washing with PBS 5 times,
British Journal of Cancer (2001) 84(11), 1556–1563



1558 F Liu et al 

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

80

0

C
ou

nt
s

100 101 102 103 104

Control
80

0

C
ou

nt
s

100 101 102 103 104

ATRA
80

0

C
ou

nt
s

100 101 102 103 104

EGF

(−) Control

Lex

SLex

SDLex

SLex

80

0

C
ou

nt
s

100 101 102 103 104

Figure 1 Expression of 4 Lewis antigens on the surface of 7721 cells
before and after the treatment of ATRA or EGF (profiles of flow-cytometric
analysis). (–) Control: without the addition of the first antibody; Control:
untreated cells; ATRA: 10 µmol l–1 ATRA treated cells; EGF: 10 ng ml–1 EGF
treated cells. The duration of ATRA or EGF treatment was 48 h. The
monoclonal antibodies for the detection of Lex, SLex, SDLex and SLea were
CD15, KM93, FH6 and CA19-9 respectively. The profiles are the
representatives of 3 independent experiments. The experimental procedure
is described in ‘Materials and Methods’ 

Table 1 Expressions of Lex, SLex, SDLex and SLea in 7721 cells before and
after treatment with ATRA or EGF 

Lewis Control ATRA (10 µmol–1) EGF (10 ng ml–1) 
antigen

Lex Trace Trace Trace 
SLex 241.6 ± 28.3 (100) 153.9 ± 16.1 (63.7)** 327.5 ± 35.0 (135.6)* 
SDLex 76.4 ± 9.5 (100) 29.7 ± 3.6 (38.8)** 102.1 ± 13.3 (133.6)* 
SLea Trace Trace Trace 

Data in the table are the mean ± SD of the fluorescence intensity in 3
independent experiments. Data in parentheses are the percentage of control.
*: P < 0.05, **: P < 0.01 as compared with the control. 
the cells were fixed with glutaraldehyde and stained with crystal
violet. The numbers of cells adhered to HUVEC were counted in 
8 high-powered fields (HPFs) (×200). The data were expressed by
the mean value of cells per HPF in triplicate with 2 independent
experiments. 

In order to determine the inhibition of cell adhesion by the
different monoclonal antibodies of Lewis antigens and the role of
sialyl residue in the adhesion, 7721 cells were pre-incubated with
10 µg ml–1 different antibodies for 30 min at 4˚C or with 1 U ml–1

sialidase for 1 h at 37˚C before added to the coated HUVEC. 

Measurement of cell migration and invasion 

The chemotaxic cell migration assay was performed using 24-well
transwell units with polycarbonate filter of 8 µm pore size
according to the method of Yu et al (1994) and described in our
previous paper (Liu et al, 2000). Each lower compartment of the
transwell contained 600 µl of 0.5% FCS as chemoattractant, or
0.5% BSA as negative control in DMEM. Cells (2 × 104) in 0.1 ml
DMEM–0.1% BSA were added into the upper compartment of 
the transwell unit and incubated for 6 h at 37˚C in a humidified
atmosphere containing 5% CO2. The cells were then fixed with
glutaraldehyde and stained with crystal violet. Then the numbers
of the cells that had migrated to the lower side of the polycar-
bonate filter were counted in 8 HPFs (×200). The data were
expressed by the mean value of cells per HPF in triplicate with 2
independent experiments. 

The procedure for chemotaxic cell invasion text was the same as
in the chemotaxic cell migration assay, except that the upper side
of polycarbonate filter was coated with 0.1 ml (20 µg filter–1) of
matrigel in cold DMEM to form a continuous thin layer (Yu et al,
1994). The added cells were 1 × 105 in 0.1 ml, the FCS used was
1%, and the incubation time was prolonged to 36 h. Cells were
stained and counted as described above, and the number of cells
invading the lower side of the filter was a measure of the invasive
activity of the cells. 

RESULTS 

Expressions of surface Lewis antigens before and after
treatment with ATRA or EGF 

Using different monoclonal antibodies, CD15 (anti-Lex), KM93
(anti-SLex), FH6 (anti-SDLex) and CA19-9 (anti-SLex), the
expressions of 4 Lewis antigens on the surface of untreated
(control) 7721 cells were detected with fluorescence cytometric
analysis by means of flow cytometry. It was found that only SLex

was expressed in a significant amount. The expression of SDLex

was lower, and the other 2 Lewis antigens, Lex and SLea, were only
expressed in trace amounts. After treatment with 10 µmol l–1

ATRA, the expressions of both SLex and SDLex were obviously
decreased (P < 0.01), while these 2 Lewis antigens were increased
by the treatment of 10 ng ml–1 EGF (P < 0.05) (Figure 1, Table 1).
The changes in the expression of Lex and SLea, however, were not
detectable. Therefore, SLex was selected as the index to compare
the effects of 8-Br-cAMP and PMA. 

Expression of surface SLex before and after treatment
with 8-Br-cAMP or PMA 

As shown in Figure 2A and B, the expression of SLex on 7721 cells
was decreased to 65.6% of the untreated control cells by the
British Journal of Cancer (2001) 84(11), 1556–1563
treatment of 0.5 mmol l–1 of 8-Br-cAMP (P < 0.05), but increased
to 471.7% of the control value after treated with 100 nmol l–1 PMA
(P < 0.01). 

Expression of α1,3 FuT-VII mRNA after treatment with
ATRA, EGF, 8-Br-cAMP and PMA 

SLex can be synthesized by αFuT-III, V, VI and VII (Weston et al,
1992a, 1992b; Sasaki et al, 1994; Narimatsu, 1998). In order to
study the enzymatic mechanism of the altered expression of SLex,
the expression of αFuT mRNAs were determined using Northern
blot, followed by hybridization with different cDNAs of α-1,3/1,4
FuT as probes. It was reported that there was cross-hybridization
among the c-DNA of αFuT-III, V and VI owing to the very high
(85–90%) sequence homology among these 3 αFuT subtypes
(Weston 1992a, 1992b; Narimatsu, 1998), but they can be
© 2001 Cancer Research Campaign
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Figure 2 Expression of SLex on the surface of 7721 cells before and after
the treatment 8-Br-cAMP and PMA. (A) Profiles of flow-cytometric analysis.
(–) Control: without the addition of the first antibody; Control: untreated cells;
8-Br-cAMP: 0.5 mmol l–1 8-Br-cAMP treated cells; PMA: 100 nmol l–1 PMA-
treated cells. The duration of 8-Br-cAMP and PMA treatment was 48 h. The
monoclonal antibodies used for detection of SLex, was FM93. The profiles
are the representatives of 3 independent experiments. (B) Calculation of
relative fluorescence intensity. The mean fluorescence intensity of the control
was set at 100%. *: P < 0.05, **: P < 0.01 as compared with the control. The
experimental procedure is described in ‘Materials and Methods’ 
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Figure 3 Expression of α1,3-FucT-VII mRNA in ATRA, EGF, 8-Br-cAMP
and PMA treated 7721 cells. (A) ATRA-treated cells. The numbers under the
spots are the concentrations of ATRA in µmol l–1. (B) EGF-treated cells. The
numbers under the spots are the concentrations of EGF in ng ml–1. (C) U:
untreated cells; M: 0.5 mmol l–1 8-Br-cAMP-treated cells; P: 100 nmol l–1

PMA-treated cells. GAPDH: mRNA of glyceraldehyde-3-phosphate
dehydrogenase. The duration of inducer treatment was 48 h. The figure only
shows one of the 3 repeatable experiments. The experimental procedure is
described in ‘Materials and Methods’. The probe used was the cDNA of 
α1,3-FucT-VII 

Table 2 Relative expressions of α1,3 FuT-VII mRNA in 7721 cells after the
treatment of differentiation- or proliferation-inducers 

Cell treatment Relative expressiona % of control 

Control 100.0 

Differentiation-inducer 
ATRA (0.1 µM) 84.9 ± 9.1 
ATRA (1.0 µM) 71.3 ± 8.5* 
ATRA (10.0 µM) 64.5 ± 7.3** 
8-Br-cAMP (0.5 mM) 74.7 ± 8.2* 

Proliferation-inducer 
EGF (1.0 ng ml–1) 105.7 ± 12.3 
EGF (10 ng ml–1) 134.4 ± 14.8* 
EGF (20 ng ml–1) 169.1 ± 15.2** 
PMA (100 nM) 271.9 ± 33.3** 

aCalculated as the ratio of absorbance units of α1,3FuT-VII mRNA
spot/absorbance units of GAPDH mRNA spot, and set the ratio of the control
cells as 100%. The data are the mean ± SD of 3 independent experiments. 
*: P < 0.05, **: P < 0.01 as compared with the control. 

,. 
differentiated with competitive reverse transcription polymerase
chain reaction (Narimatsu, 1998). By using this method, it was
found that the α1,3 FuT-V gene was not expressed in many tissues,
and might be a silent gene (Narimatsu, 1998). Therefore, the
amount of mRNA hybridized with α1,3/1,4FuT-III cDNA was
mainly the sum of α1,3/1,4FuT-III and α1,3FuT-VI mRNA.
However, α1,3 FuT-VII only shares 42–43% and 47% identity in
amino acid sequence with αFuT-III/V/VI and α1,3 FuT-IV respec-
tively (Sasaki et al, 1994), its probe is specific, and does not cross-
hybrid with other α FuTs. 

We found that there was a medium expression of α1,3FuT-VII
mRNA in untreated control 7721 cells, which was down-regulated
after the treatment of ATRA in a dose-dependent manner (Figure
3A), and up-regulated in the EGF-treated cells with a similar dose-
dependent manner (Figure 3B). The reduced and enhanced expres-
sions of α1,3 FuT-VII mRNA were also observed after
8-Br-cAMP and PMA treatment respectively (Figure 3C). The
© 2001 Cancer Research Campaign
relative expressions of α1,3 FuT-VII mRNA in 7721 cells treated
with the above 4 inducers were summarized in Table 2. These
results were compatible with the findings that the expressions of
SLex were lower in ATRA or 8-Br-cAMP treated cells and higher
in EGF- or PMA-treated cells. 

Expression of α-FuT-III/VI mRNAs after treatment with
ATRA, EGF, 8-Br-AMP and PMA 

As shown in Figure 4, the expression of αFuT-III/VI mRNA was
rather low in 7721 cells as compared with α1,3 FuT-VII. Its
expression was also suppressed by ATRA (Figure 4A) and 8-
Br-cAMP (Figure 4B), being 63.2% and 66.7% respectively of the
untreated control cells (Table 3), while it was promoted by EGF
British Journal of Cancer (2001) 84(11), 1556–1563
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Figure 4 Expression of α-FucT-III/VI mRNA in ATRA, EGF, 8-Br-cAMP- and
PMA-treated 7721 cells. (A) after ATRA or EGF treatment. U: untreated cells;
R: 10 µmol l–1 ATRA treated cells; E: 10 ng ml–1 EGF-treated cells. (B) after
8-Br-cAMP and PMA treatment. U: untreated cells; M: 0.5 mmol l–1 8-Br-
cAMP-treated cells; P: 100 nmol l–1 PMA-treated cells. GAPDH: mRNA of
glyceraldehyde-3-phosphate dehydrogenase. The duration of inducer
treatment was 48 h. The figure only shows one of the 3 repeatable
experiments. The experimental procedure is described under ‘Materials and
Methods’. The probe used was the cDNA of α1,3/1,4-FucT-III 

Table 3 Relative expressions of α-FuT-III/VI mRNA in 7721 cells after the
treatment of differentiation- or proliferation-inducers 

Cell treatment Relative expressiona % of control 

Control 100.0 

Differentiation-inducer 
ATRA (10 µM) 63.2 ± 7.1* 
8-Br-cAMP (0.5 mM) 66.7 ± 7.8* 

Proliferation-inducer 
EGF (10 ng ml–1) 151.5 ± 14.2* 
PMA (100 nM) 177.4 ± 19.0** 

aCalculated as the ratio of absorbance units of αFuT-III/VI mRNA
spot/absorbance units of GAPDH mRNA spot, and set the ratio of the control
cells as 100%. The data are the mean ± SD of 3 independent experiments. 
*: P < 0.05, **: P < 0.01 as compared with the control. 
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Figure 6 Effect of monoclonal antibodies and sialidase on the adhesion of
7721 cells to HUVEC. Open bar: without pre-incubation of TNF-α, Filled bar:
with pre-incubation of TNF-α. CD15: mAb of Lex, KM93: mAb of SLex, FH6:
mAb of SDLex, CA-19-9: mAb of SLea. The final concentration of antibodies
was 10 µg ml–1. The concentration of sialidase was 1 U ml–1. *: P < 0.01
compared with control. The experimental procedure is described in ‘Materials
and Methods’ 

' .. 
(Figure 4A) and PMA (Figure 4B), being 151.5% and 177.4%
respectively of the untreated control value (Table 3). 

The transcript of α1,3 FuT-IV was not detected in control and
treated 7721 cells by using α1,3 FuT-IV cDNA as probe (data not
shown). 

Alteration of cell adhesion to HUVEC after treatment
with ATRA, 8-Br-cAMP, EGF and PMA 

To mimic the Lewis antigen/selectin interaction in vivo, tumour
necrosis factor-α (TNF-α) was used for stimulating the expression
of E-selectin on the surface of human umbilical vein endothelial
cells (HUVEC), and determined the attachment of 7721 cells to the
coated HUVEC. It was observed that the adhesions of ATRA and
8-Br-cAMP treated 7721 cells to HUVEC were decreased by
48.1% and 45.0% respectively (P < 0.01), while those of EGF- and
PMA-treated 7721 cells was increased by 71.3 and 86.8% respec-
tively (P < 0.01) (Figure 5). 

When different monoclonal antibodies of Lewis antigens were
added to block the surface Lewis antigens on 7721 cells, it was
found that after the HUVEC were stimulated with TNF-α, only
British Journal of Cancer (2001) 84(11), 1556–1563
KM93 (anti-SLex mAb) showed a significant inhibition on the
adhesion of 7721 cells to HUVEC (P < 0.01). FH6 (anti-SDLex)
slightly suppress the adhesion but with no statistical significance
(P > 0.05). In contrast, other antibodies (anti-Lex, CD15 and anti-
SLea, CA19–9) did not show obvious blocking effects on the cell
adhesion. If the experiment was carried out in the absence of TNF-
α, or in the presence of sialidase to remove the terminal sialyl
residues on Lewis antigens, only a little cell adhesion was
observed and showed no difference among the samples added
different mAbs (Figure 6). 

Alteration of cell migration and invasion after treatment
with ATRA, 8-Br-cAMP, EGF, and PMA 

As indicated in Figure 7, the ability of cell migration through tran-
swell was declined by the treatment of ATRA and 8-Br-cAMP
(51.7% and 62.1% of the control value respectively, P < 0.05), but
elevated by EGF and PMA treatment (193.1% and 186.2% of the
© 2001 Cancer Research Campaign
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Figure 7 Migration and invasion of 7721 cells after treatment with ATRA, 
8-Br-cAMP, EGF and PMA. *: P < 0.05 compared with control; **: P < 0.01
compared with control (n = 6). The duration of inducer treatment was 48 h.
The experimental procedure is described in ‘Materials and Methods’ 
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control, P < 0.01). Similar to cell migration, cell invasion through
matrigel membrane was also reduced after the treatment of ATRA
and 8-Br-cAMP (50.0% and 53.4% of the control respectively, 
P < 0.01), but enhanced by the treatment of EGF and PMA
(156.9% and 219.0%, P < 0.05 and P < 0.01 respectively). 

DISCUSSION 

Our findings revealed that 7721 cells express mainly SLex on the
surface, and a small amount of SDLex, but the expression of Lex

and SLea were very low or only trace amount. The expression of
Lewis antigen, SLex, on 7721 cell surface was down-regulated by
the treatment of differentiation-inducers, ATRA and 8-Br-cAMP,
while up-regulated by the treatment of proliferation-inducers, EGF
and PMA. These compounds also regulated the expression of
SDLex in the same direction, but to a lesser extent. 

The main enzymatic mechanism of the alteration of SLex

expression was demonstrated to be the change in α1,3 FuT-VII
expression, because α1,3 FuT-VII was obviously expressed in
7721 cells, in contrast to the low expression of α1,3 FuT-III/VI.
The substrate specificity of α1,3 FuT-VII is very high, and SLex is
the only Lewis antigen synthesized by α1,3 FuT-VII (Sasaki et al,
1994). Furthermore, α1,3 FuT-IV as well as α1,3 FuT-IX, in
general, can not synthesize any sialyl Lewis antigens (Narimatsu,
1998). However, αFuT-III/VI might have a minor contribution to
the regulation of SLex in 7721 cells, because ATRA, 8Br-cAMP
down-regulate, and EGF, PMA up-regulate this enzyme, too.
αFuT-III/VI is also considered to be responsible for the expression
change in SDLex, since it was reported that α1,3 FuT-VI is the
major enzyme for the synthesis of SDLex from SLex (Weston et al,
1992b). Therefore, our results of measuring the mRNAs of αFuT
subtypes were consistent with the observations of Lewis antigen
expressions on 7721 cell surface. After the treatment of 10 µmol
l–1 ATRA or 10 ng ml–1 EGF, the percentage of decrease or
increase in α1,3 FuT-VII expression was very closed to the
percentage change in SLex expression, when the data in Table 2
and Table 1 were compared. It was found that that the changes in
α1,3 FuT-VII and SLex were –35.5% and –36.3% respectively for
10 µmol l–1 ATRA, while +34.4% and +35.6% respectively for 10
ng ml–1 EGF. However, the changes in α-1,3 FuT-VII and SLex
© 2001 Cancer Research Campaign
expressions in PMA treated cells (+171.9% and +371.7% respec-
tively) were not closed to each other when compared the data in
Table 2 and Figure 2B. This discrepancy suggests that probably
other enzyme(s) regulated by PMA may participate in the control
of SLex synthesis, such as α2,3 sialyltransferase. 

After the treatment of differentiation-and proliferation-inducers,
the altered αFuT-III/VI expression was not compatible with the
unchanged SLea expression, though SLea only can be synthesized
by α1,3/1,4 FuT-III. This may be explained by the following
reasons. First, the amount of SLea on 7721 cell surface was too low
for the detection of its decrease, and even its increase. Second, the
rate-limiting enzyme responsible for SLea synthesis is not α1,3/1,4
FuT-III, but β1,3-galatosyltransferase 5, which synthesizes the
precursor of SLea, type I sugar chain, GalβI, 3GlcNAc (different
from the type II chain, Galβ1, 4GlcNAc, in Lex and SLex). The ex-
pression of β1,3-galatosyltransferase 5 is in accordance with the
expression of SLea in many cell lines (Issiki et al, 1999).

The mechanism of the change in cell adhesion to HUVEC by
the above mentioned 4 inducers is considered to result from the
altered synthesis of SLex, since the adhesion of 7721 cells to
HUVEC was only significantly abolished by the antibody of SLex,
KM93, but not by other antibodies of Lewis antigens. It indicates
that SLex is the most important Lewis antigen responsible for the
adhesion of 7721 cell to HUVEC among the 4 antigens assayed 
in our laboratory. α1,3 FuT-VII not only contributes greatly to 
the synthesis of SLex, but also anticipates in the regulation of
metastasis-related phenotypes, which are also assumed to be medi-
ated by SLex. This is evidenced by our findings that the increase of
SLex expression was accompanied with the enhanced cell adhesion
to HUVEC, as well as cell migration and invasion after trans-
fection of α1,3 FuT-VII cDNA into 7721 cells, Moreover, the
migration and invasion of 7721 cells were also suppressed by anti-
SLex, KM93, but not by the other monoclonal antibodies (to be
published).

The abolishment of cell adhesion to HUVEC by sialidase treat-
ment revealed that the sialy residue in Lewis antigens is a critical
glycosyl residue in the cell adhesion to HUVEC.

The metastasis potential of transformed cells can be assayed 
in vivo by inoculation of the modified (reagent-treated or gene-
transfected) cells into nude mice or other immuno-permissive
animals to observe the number of metastatic foci in the lung.
However, the ability of cell adhesion, cell migration and invasion
are good indexes for the estimating of metastasis-potential ex
vivo and are widely used in a lot of laboratories, and the results of
these ex vivo experiments are always in accordance with the in
vivo assay (Welch, 1997). The assay of cell adhesion to TNF-α
stimulated HUVEC mimics the interaction between the Lewis
antigens on malignant cells and the E-selectin on vascular
endothelium in vivo. The cell invasion assay is similar to the
penetration of cells through the vascular membrane, since
matrigel is an artificial membrane resembling the extracellular
interstitial membrane coated on the epithelial cells. 

ATRA and cAMP derivatives are the differentiation inducers of
7721 cells (Ai et al, 1990, 1991a; Chai et al, 1993a; Chai and
Chen, 1994a, 1994b). It is reasonable to consider that these 2
compounds may have an anti-metastasis effect on the same cell
line, because metastasis is a behaviour of malignant cells, and
differentiation of cancer cells is often accompanied by the
decrease of malignancy. Our laboratory has discovered that ATRA
up-regulate the expression of a metastasis-suppressive gene,
nm23-H1, in 7721 cells, and this is supposed to be one of the
British Journal of Cancer (2001) 84(11), 1556–1563
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mechanisms of the decreased metastasis-related phenotypes after
ATRA treatment (Liu et al, 2000). Moreover, the transfection of
nm23-H1 cDNA into 7721 cells leaded to the similar results as the
treatment of ATRA, including the decreased expressions of SLex

and α1,3 FuT-VII (unpublished data). Oppositely, EGF down-
regulates the expression of nm23-H1 in 7721 cells (Liu et al,
2000), and this can explain the increased metastasis-related pheno-
types provoked by EGF. The proliferation inducers usually
increase the malignancy and metastasis potency, as it was
evidenced in this paper. We also found that the expressions
of SLex/α1,3 FuT-VII and above metastasis potential-related
phenotypes were increased after the transfection of an oncogene,
c-erbB2/neu, into 7721 cells (to be published). 

The molecules for transducing the signals of 8-Br-cAMP and
PMA are protein kinase A (PKA) and protein kinase C (PKC)
respectively (Nishizuka, 1992; Nicholas and Paolo, 1996). The
signal transduction pathway for EGF is receptor tyrosine protein
kinase (R-TPK)→Grb2/Sos adaptor proteins→ Ras→Raf
ΜΕΚ→ERK, or R-TPK→ phosphatidylinositol 3-kinase→protein
kinase B (PKB or Akt) pathway (van der Geer et al, 1994). ATRA
down-regulated PKC (Chai and Chen, 1994a) and R-TPK (Chai
et al, 1993a), also PKB (unpublished data), which are probably
the mechanisms of the antagonistic effect of ATRA against EGF
and PMA in the expression of metastasis-related phenotypes.
Therefore, ATRA or its derivatives may become an anti-metastasis
drug used clinically in the prevention or treatment of metastasis. 

The molecular mechanisms of metastasis are very complex,
and the glycan structures on cell surface play an important role in
the metastasis-related phenotypes, including cell adhesion, migra-
tion and invasion, etc. However, the alteration in the surface Lewis
antigens is at least one of their molecular bases in addition to the
well-documented GlcNAcβ1,6Manα-branch of N-glycans. 
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