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Summary The present study performed a segregation analysis of a cohort of first-degree relatives (FDR) of glioma patients. The families with
two or more gliomas were also expanded to determine if any more gliomas could be detected, and if any other types of cancers were
associated. These glioma-prone families (n = 24/432) were extended to include first-, second- and third-degree relatives (n = 807) and a
cohort was assembled, the standardized incidence risk for other types of cancer calculated and the pedigrees investigated for a possible
mode of inheritance. A segregation analysis of the 2141 FDR in 297 families, performed using the Pointer software, did not clearly reject a
multifactorial model χ2 (3) = 6.13, P < 0.2. However, when letting all parameters be free, the recessive model provided the best fit. In the
extended families, no increased risk of other types of cancer was found. This population-based study proposes that familial glioma occurs in
about 5% of all glioma cases and that 1% have a possible autosomal dominant inheritance. This first segregation analysis performed in
familial glioma must be cautiously interpreted, but an autosomal recessive gene provided the best fit, which could possibly explain 2% of all
glioma cases. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Since one of the first reports of familial glioma, in a mother and
two children (Koch, 1949), there have been many case reports of
the aggregation of glioma in families. In our view, familial glioma
is defined as a first- (FDR) or second-degree relative (SDR) with
glioma in the family except the proband. A case-control study
showed an increased risk of developing primary brain tumours
(PBT) among FDR to glioma patients (Wrensch et al, 1997). In a
cohort study, we found a threefold increased risk for FDR to
glioma patients to develop glioma (Malmer et al, 1999). In some
families there is a known inherited syndrome that explains the
cluster of glioma, as in neurofibromatosis (NF) and the Li-
Fraumeni syndrome (Louis and von Deimling, 1995), but in many
cases of familial glioma no predisposing syndrome is known. The
only established environmental risk factor, apart from these
genetic syndromes, is ionizing radiation (Karlsson et al, 1998).
Beyond this, the aetiology of brain tumours is poorly understood. 

Previously, segregation analyses of breast cancer have
supported an autosomal dominant gene in families with a hered-
itary breast cancer (Iselius et al, 1991). These findings have been
confirmed and two breast cancer susceptibility genes have been
identified, BRCA 1 and 2, showing an autosomal dominant inher-
itance (Wooster et al, 1994). Segregation analyses in colorectal
and prostate cancer also support dominant inheritance of these
cancers in some families (Houlston et al, 1995; Gronberg et al,
1997). In testicular cancer, a segregation analysis has supported an
autosomal recessive gene (Heimdal et al, 1997) and a recent
linkage study has mapped a testicular cancer locus to Xq27
(Rapley et al, 2000). However, no segregation analysis has been
performed on adult familial glioma. 
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We used complex segregation analysis on a population-based
material of FDR to patients with glioma to study the mode of
inheritance in familial glioma (Malmer et al, 1999). An attempt
was also made to identify additional cases of glioma in an
extended cohort of glioma-prone families and to compare the
extended pedigrees, including first; second- and third-degree rel-
atives, with the result of the segregation analysis. The occurrence
of other types of cancer associated with these families was also
investigated. 



Families 

Between 1985 and 1993, 463 cases of astrocytoma, regarded in
this study as equivalent to glioma were diagnosed in the northern
region of Sweden. A questionnaire asking for names of first-
degree relatives (FDR) and second-degree relatives (SDR), date of
birth and death, and if the relatives had any type of cancer was
mailed to 432 of these cases, 31 having been excluded for various
reasons (Malmer et al, 1999). 297 (68%) responses to the ques-
tionnaire were received. The mean age of the respondents was 53
years. There were no statistically significant differences between
respondents and non-respondents in type of astrocytoma, self or
proxy-reports, sex or median age (see Malmer et al, 1999). 

Segregation analysis 

The 297 respondents had 2141 FDR (Malmer et al, 1999) and the
complete personal identification number (ID) was identified in
1890 (88%) but in 203 (9.5%) this was not found, but the name
and year of birth and death was known. These cases were included
in the analysis and coded as unaffected since they had been stated
as unaffected in the questionnaire. In 14 families there were 16
FDR with a history of glioma, which was verified through medical
429



430 B Malmer et al 

Table 1 Each person in the population-based segregation analysis of first-degree relatives (FDR) to patients with glioma was assigned to one of 9 liability
classes since the risk of being affected varies with age and sex 

Men/Women (age) Cumulative incidence (Ij) Disease specific mortality (Mj) Morbid risk (Rj) Liability class (LI) 

0–9/0–9 0.000031 0 0.000031 1 
10–24/10–29 0.000059 0.00003 0.000085 2 
25–34/30–39 0.000102 0.000012 0.000143 3 
35–44/40–49 0.000158 0.000034 0.000239 4 
45–54/50–64 0.000246 0.000084 0.00042 5 
55–64/65–74 0.000342 0.000186 0.00063 6 
75+ (women only) 0.000373 0.000298 0.00074 7 
65–74 (men only) 0.000443 0.000309 0.00088 8 
75+ (men only) 0.000562 0.000438 0.00111 9 
and pathology records. The complex segregation analysis was
performed with the POINTER software (Morton et al, 1983).
Since Pointer cannot accept pedigrees, the 297 families were
divided into 504 nuclear families, one subset of nuclear families
including siblings and parents of the proband and one subset of
nuclear families including spouse and children of the proband. It
was thus a mixture of complete and incomplete selection, since
ascertainment through both parents and children was used. Data
for the 257 wives or husbands could not be collected from the
questionnaire and were coded as unaffected and having the same
age as the proband. 

The segregation analysis was performed under the mixed
model, which assumes the familial aggregation to be due to a
major gene, a multifactorial component and a random environ-
mental component, each acting independently. The estimated para-
meters are: H = multifactorial heritability; q = the estimated gene
frequency of the major locus in the population; t = displacement
between the homozygous means in standard deviations; d = degree
of dominance, where d = 0 corresponds to an autosomal recessive
gene and d = 1 corresponds to an autosomal dominant gene. Each
person was assigned to one of nine liability classes since the risk 
of being affected varies with age (Table 1). The risk of being
affected was defined by Iselius et al (1991), as indicated by the
formula: 

R
j = (Ij – Mj–i/(I – Mj–i)

Rj is the risk of being affected (morbid risk), Ij is the cumulative
incidence to the midpoint of the jth age interval and Mj–i is the
disease-specific mortality to the end of the preceding age
interval. The incidence and mortality rates for glioma in each
class (Ij) were calculated from the Regional Cancer Registry
for Northern Sweden during the years 1958–1994. The age of
each case was set by time at ascertainment, age at developing a
glioma or age at death. Both joint and conditional likelihood
were used when testing the competing hypotheses, calculating
the difference of minus twice the log likelihood (-2lnL + C)
between the general model and the reduced model, thereby
getting a χ 2 distribution. The degrees of freedom were equal to
the difference in free parameters between the models. There was
one pointer in the material of two brothers both being probands
in the study. 

Analyses of 24 extended PBT families 

PBTs were found in 24 families of these 297 glioma cases and
these had the following characteristics: 
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1. at least two FDR with glioma (n = 14) 
2. one second-degree relative except for the proband with glioma

(n = 8) 
3. two relatives with PBT (excluding glioma) other than the

proband in the family (n = 2). 

A number of families with only one third-degree relative except
the proband were also identified but they were considered as prob-
ably being in the same family due to chance only and were
excluded from further analyses. Additional family members in the
selected families (n = 24) were searched for through the Regional
Archives to obtain the names and the unique 10 digit personal ID
number of all first-degree relatives, uncles, aunts, cousins, and in
some families cousins’ children. We identified 1752 relatives in
these 24 families and of these 313 (18%) died before 1958 or
emigrated and were therefore excluded from further analysis, as
linkage to the Cancer Registry was not possible in these cases. A
date of death was known for these 313 persons and in most cases
also the cause of death. In addition, 41 persons (2.3%) having an
unknown date of death and born before 1885 were also excluded
since they had probably died before 1958. The remaining 1398
relatives were then linked to the nation-wide Swedish Cancer
Registry to identify all cancer diagnoses in the period 1958–1994.
If a history of PBT was recorded in the questionnaire or the
registry linkage, an independent confirmation was made through
medical and histopathology records, thereby confirming the
diagnoses made before 1958 when the Swedish Cancer Registry
was established. 

For the study of other malignancies than PBT among the rel-
atives, a cohort was constructed of all first-degree relatives (FDR)
and all uncles, aunts, and cousins in the 24 selected families. The
24 probands and 29 family members with PBT, which had been
selected for, were excluded from the cohort analysis. The children
of cousins were only known in a small number of the families
and were therefore excluded from this analysis (n = 562). The
remaining 807 relatives were linked to the Swedish Cancer
Register, the National Population Registry (SPAR), and to the
Swedish Causes of Death Register, thereby obtaining current
addresses of living cases and date of death of deceased cases, and
thus making calculation of person years possible. The numbers of
first, second- and third-degree relatives are presented in Table 2. 

The National Cancer Registry and the Swedish Causes of Death
Register was established in 1958 and 1952 respectively. Person-
years were therefore calculated from 1 Jan 1958 to 31 December
1994 using the software PYRS (Coleman et al, 1989). The cancer
incidence rates for the northern region of Sweden for the period
1958–1994 were obtained from the Regional Cancer Registry since
© 2001 Cancer Research Campaign
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Table 2 Number of relatives included and excluded from the 24 families in the cohort analysis with at least 2 glioma or three or more primary brain tumours
(PBT) in the family 

Type of relative Included in analysis Excluded because of death Excluded because of unknown Included and excluded  
before 1958 or emigrated date of death persons

First-degree relatives 174 (90.2%) 18 (9.3%) 1 (0.5%) 193 (100%) 
Second-degree relatives 

(uncles and aunts) 138 (52.7%) 109 (41.6%) 15 (5.7%) 262 (100%) 
Third-degree relatives (cousins) 495 (77.6%) 128 (20.1%) 15 (2.3%) 638 (100%) 
All relatives 807 (73.8%) 255 (23.3%) 31 (2.9%) 1093 
the relatives in the cohort were mainly residents of this region. The
expected number of cases was calculated by multiplying these inci-
dence rates by calendar and age-specific person-years. The stan-
dardized incidence ratio (SIR) was defined as the ratio between the
observed and expected number of cases. Exact confidence limits of
the SIR were calculated using the formula suggested by Byar
(Breslow and Day, 1980). Survival among the astrocytoma patients
was calculated from the date of diagnosis to the date of death or
follow-up to 1 October 1998 if the patients were alive. 



In our population-based cohort study, 22 of 432 initially included
families (5%) were identified with an aggregation of glioma. The
segregation analysis includes 297 families of which 14 families
had at least two FDR affected with glioma. Among those 14 families,
3 (21%) have a suspected dominant mode of inheritance in the
expanded pedigree, 9 (65%) have affected siblings only, favouring
an autosomal recessive gene, and 2 (14%) have parent–child 
pairs. 

Segregation analysis 

The result of the segregation analysis is presented in Table 3.
When calculated under joint likelihood, the familial aggregation of
glioma was not due to chance, since the sporadic model was
strongly rejected χ2 (4) = 110.18, P < 0.001. The multifactorial
model was not clearly significantly rejected in favour of a major
gene χ2 (3) = 6.13, P < 0.2. However, when testing for the best
model letting all parameters be free, the recessive model provided
the best fit for the generalized major locus, and the dominance at
the locus approached zero (Table 3). When calculated under condi-
tional likelihood, the sporadic model was strongly rejected, χ2 (3)
© 2001 Cancer Research Campaign

Table 3 Segregation analysis of first-degree relatives to probands with astrocyto
joint likelihood 

Model Multifactorial Gene frequency in 
heritability population

Sporadic (0) (0)
Multifactorial 0.68 (0)
Dominant (0) 0.000388
Additive (0) 0.020
Recessive (0) 0.026
Generalized single locus (0) 0.014
General model (heritability parameter free) 0.517 0.022

() = degrees of freedom. 
83.29, P < 0.001, but the segregation analysis did not provide
strong evidence for a single locus. 

Extended pedigree analyses 

The 3 families with three or more glioma patients in the pedigree
are presented in Figure 1. In the most extreme case, there were 5
gliomas and one ependymoma with 4 gliomas on the same side of
the family (family 1). In family 2, three siblings had glioma, all
developing the disease at an early age (13, 25, 40 years). There
were also two children with soft tissue sarcoma in the family,
thereby fulfilling the criteria for Li Fraumeni syndrome (Birch
et al, 1994). A mother affected with both glioma and amyotrophic
lateral sclerosis (ALS) had two children who developed glioma in
their mid-thirties (family 3). The number of relatives affected with
PBT in families 1–3 and the characteristics and diagnoses of the
family members are listed in Table 4. Among the families with
only two members with glioma, there were two parent–child pairs,
9 pairs of siblings, and 8 families with the proband and a second-
degree relative. The overall risk of developing other cancers than
PBT in the 24 families was not increased, SIR 0.88 (95% CI
0.72–1.07) with 101 observed and 114.7 expected cases. In addi-
tion, no individual cancer site showed an increased or decreased
significant risk. 



The findings of this, the first segregation analysis of familial
glioma, favours an autosomal recessive gene. This model provided
the best fit, although the multifactorial model was not clearly
rejected and the results must therefore be interpreted cautiously.
There is a well documented increased risk of FDR of glioma
patients developing glioma (Wrensch et al, 1997; Malmer et al,
1999). In our study, the glioma families are heterogeneous, with a
British Journal of Cancer (2001) 84(3), 429–434

ma grade I–IV diagnosed 1985–1993 in northern Sweden, calculated under

the Displacement between means for Dominance at the 22lnL+C 
homozygous individuals major locus

– – 481.99 
– – 377.94 

2.10 (1) 381.07 
3.11 (0.5) 375.42 
2.58 (0) 374.91 
3.05 0.33 373.07 
2.31 0 371.81 
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mixture of sibships, pedigrees with an autosomal dominant picture
and some families with two astrocytomas in two generations.
However, the majority (65%) of the families with FDR are
siblings. Inherited glioma-prone syndromes that are autosomal
British Journal of Cancer (2001) 84(3), 429–434

Symbol definitions

Clear symbol

glioma

Prostate

Sarcoma

Lung

Colon

Ependymoma

Pituitary adenoma

Thyroid

Pituitary adenoma and lung cancer

COLON
94

3 children

pinealoma 12
GLIOMA 34

THYROID

69

PROSTATE

62
5 children

GLIOMA
40

GLIOMA
13

SARCOMA
5

PIT.AD.51
LUNG 53

GLIOMA
25

3 children
RHABDOMYOSARCOMA

4

6 children

EPENDYMOMA
39

8 children

bra

GLIOMA
65

FAMILY 2

Figure 1 Three families with a suspected dominant mode of inheritance among
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dominantly inherited are the Li-Fraumeni syndrome and NF1
and NF2, but siblings are often described in the literature. In a
summary of case reports, 18 cases of siblings or twins with
primary brain tumours (PBT) were reported and in five cases with
© 2001 Cancer Research Campaign

COLON
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PITUITARY ADENOMA
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GLIOMA
60

LUNG
68

7 children

GLIOMA
37

GLIOMA
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GLIOMA
45

ALS

4 children

5 children

3 children

6 children

3 children

in stem glioma
4

GLIOMA
57

FAMILY 1

FAMILY 3

2

 the 24 glioma-prone families. ALS = Amyotrophic lateral sclerosis
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Table 4 Characteristics of primary brain tumours in family members in family 1–3, with three or more astrocytoma among first- and second-degree relatives.
Age at diagnosis, survival and the basis of diagnosis 

Family number Pedigree number Diagnosis Basis of diagnosis Age at diagnosis (y) Survival (months) Sex 

1 III:1 astro grIII HP 40 42 M 
III:2 glioma HP 13 9 M 
III:3 glioma X-ray 25 9 F 

2 II:6 astrogr III–IV HP 60 8 M 
III:4 astro III–IV HP 65 6 M 
III:5 astro III–IV HP 57 6 M 
V:1 brain stem glioma CT 4 8 F 
IV:1 pinealoma X-ray 12 

astrocytoma I HP 34+ 160 F 
IV:2 ependymoma HP 36 16 M 

3 II:3 astro gr I HP 45 56 F 
III:1 astro gr II–III HP 37+ 15 M 
III:2 astro gr II–III HP 36+ 66 F 

HP = histopathologically verified; CT = diagnosed with computed thomography; X-ray = diagnosed with ventriculography; + = patient alive; astro = astrocytoma.
PBT in two generations (Vieregge et al, 1987). A recent study also
found a majority of siblings but regarded environmental agents as
possible causes (Grossman et al, 1999) so other as yet unidentified
genetic and environmental factors must be also considered in
glioma aetiology. An autosomal recessive gene could be part of the
explanation of the sibpair excess. 

When segregation analysis favours an autosomal recessive
gene, certain biases must be considered. First, there could be ascer-
tainment bias if there is a lack of information of affected status in
the parental generation. In our families, all parents in the glioma-
prone families were ascertained through the Swedish Cancer
Registry. Second, one must consider affected status may influence
fertility, as in a testicular cancer study (Heimdal et al, 1997). This
is not an issue in our study since the median age at disease de-
velopment of the probands was 57 years for glioma. Third, an
environmental agent may be responsible for the aggregation of
glioma cases. However, there is no established aetiologic factor for
glioma except ionizing radiation (Karlsson et al, 1998), which
explains only a few cases of glioma. There are no such obvious
sources of bias in this study. The advantage of segregation analysis
is that the gene frequency of the population can be calculated in
population-based material. It can also adjust for a multifactorial
component; in this study the findings may favour a major auto-
somal recessive gene. 

This segregation analysis was performed under both condi-
tional and joint likelihoods. Conditional likelihood strongly
rejected the hypothesis that the aggregation could be due to
chance, although no obvious gene model was favoured.
Nevertheless, when calculating under joint likelihood, an auto-
somal recessive gene provided the best fit and was on the border
of significance. A study testing different hypotheses showed a
substantial drop in power when testing the hypotheses for a
recessive gene under conditional likelihood compared to joint
likelihood (Borecki et al, 1994). Since our material is rather
small, this could explain the differences between conditional and
joint likelihoods. A previous segregation analysis of childhood
brain tumours, calculating the segregation for cancer over-all in
these families, found that the multifactorial model provided the
best fit (Bondy et al, 1991). Given our rather small number of
families, this segregation analysis needs to be confirmed in a
larger cohort. 

In two families, the extended pedigree identified more cases of
glioma, indicating a different mode of inheritance compared to the
© 2001 Cancer Research Campaign
interpretation in the segregation analysis, which comprised only
first-degree relatives. The criteria for Li-Fraumeni syndrome is
fulfilled in family 2, since, apart from three siblings with glioma,
there was a brother with sarcoma and also a child to the proband
with rhabdomyosarcoma (Figure 1). In addition, family 1 was
coded as only two siblings in the segregation analysis, whereas in
the expanded pedigree it had a suspected maternal dominant mode
of inheritance with reduced penetrance. Apart from these two
families, no differences were found between the segregation
analysis and the expanded pedigrees. 

In addition, the medical records of the affected in the glioma-prone
families were reviewed for signs of NF1 or other inherited
syndromes that could explain the familial aggregation. No positive
family history of associated diseases or inherited disorders was
found. Interestingly, among other cancer diagnoses in the extended
family pedigrees, pituitary adenoma was apparent in both a brother
to the proband in family 1 and a mother of the proband of family 2.
To our knowledge, this has not been described previously in
glioma families. There was no site-specific significant increased
risk for any type of cancer in the cohort analysis. Clearly, our fam-
ilies do not co-segregate with other inherited cancers sites, such as
breast or colon cancer. 

Similarities within families can be seen in Table 4. On the
maternal side of family 2, all family members had an aggressive
tumour and short survival, whereas in family 3 all members had a
low-grade glioma and a long survival. This should be considered
in light of the fact that astrocytoma patients in general have a
median survival of about 12 months. An interesting observation is
that families 1 to 3 aggregate in the most northern county of
Sweden, Norrbotten. Our genealogical research has currently not
shown any relation between the families, but if the families 
are remotely related to each other, a founder mutation is a
possibility. 

In conclusion, this population-based study suggests that aggre-
gation of glioma occurs in about 5% (22/432) of all families to
glioma patients. This can be compared with 10–15% in familial
breast cancer (Rosenthal and Puck, 1999) and 20% in colorectal
cancer (Prichard and Tjandra, 1998). It is likely that familial
glioma is a heterogenic disease with different causes. Our study
suggests a dominant mode of inheritance in about 1% of all glioma
cases, and if there is a dominant trait, that it is not fully penetrant.
In the segregation analysis, an autosomal recessive gene model
provides the best fit, which could possibly explain 2% of all
British Journal of Cancer (2001) 84(3), 429–434
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gliomas. In the glioma-prone families analysed, no increased risk
of other malignancies was detected. 
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