Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Millennium Mini-Review

The illusion of cell immortality

This article has been updated

Abstract

Normal cultured cell populations are mortal but cells that are immortal are abnormal and most have properties of cancer cells. Nevertheless, this distinction becomes blurred because the terms ‘mortality’ and ‘immortality’ are subject to enormous variations in understanding. Forty years ago we showed that cell mortality and immortality are inextricably linked to longevity determination, ageing and cancer. We suggested that a counting mechanism existed in normal cells and that has now been identified as telomere attrition. This replicometer, in combination with the discovery of the enzyme telomerase, has gone very far in explaining why most normal somatic cells have a finite capacity to replicate both in vivo and in vitro and how immortal cancer cells circumvent this inevitability. It is suggested that telomere attrition may be better understood as a direct measure of longevity determination and to only have an indirect association with age changes. © 2000 Cancer Research Campaign

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci 89: 10114–10118

    CAS  Article  Google Scholar 

  2. Bell G (1988) Sex and Death in Protozoa. The History of an Obsession. Cambridge University Press: Cambridge

    Google Scholar 

  3. Blackburn EH and Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33–53

    CAS  Article  Google Scholar 

  4. Blackburn EH and Greider CW (1995) (eds.) Telomeres, Cold Spring Harbor Laboratory Press

    Google Scholar 

  5. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C, Morin GB, Harley CB, Shay JW, Lichsteiner S and Wright WE (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279: 349–352

    CAS  Article  Google Scholar 

  6. Chiu C and Harley CB (1997) Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med, 99–106

  7. Cooke HJ and Smith BA (1986) Variability of the telomeres of the X/Y pseudoautosomal region. Cold Spring Harbor Symp. Quant Biol 51: 213–219

    CAS  Article  Google Scholar 

  8. Cooke RE (1985) Growth and development in clonal plant populations. In: Jackson JBC, Buss LW, Cooke RE (eds.) Population Biology and Evolution of Clonal Organisms, Yale University Press: New Haven, Conn, pp 259–296

    Google Scholar 

  9. Counter CM, Avilon AA, LeFeuvre CE, Stewert MG, Greider CW, Harley CB and Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921–1929

    CAS  Article  Google Scholar 

  10. de Lange T and Jacks T (1999) For better or worse? Telomerase inhibition and cancer. Cell 98: 273–275

    CAS  Article  Google Scholar 

  11. de Lange T, Shiue L, Myers MR, Cox DR, Naylor SL, Killery AM and Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10: 518–527

    CAS  Article  Google Scholar 

  12. Earle WR (1943) Production of malignancy in vitro. J Natl Cancer Inst 4: 165–172

    CAS  Google Scholar 

  13. Feng J, Funk WD, Wang S-S, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW and Villeponteau B (1995) The RNA component of human telomerase. Science 269: 1236–1241

    CAS  Article  Google Scholar 

  14. Foulds L (1969) Neoplastic Development I. Academic Press, London, New York

    Google Scholar 

  15. Greider CW (1998) Telomeres and senescence: The history, the experiment, the future. Current Biology 8: 178–181

    Article  Google Scholar 

  16. Greider CW and Blackburn EH (1985) Identification of a specific telomere terminal transferase enzyme with two kinds of primer specificity. Cell 51: 405–413

    Article  Google Scholar 

  17. Harley CB, Futcher AB and Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460

    CAS  Article  Google Scholar 

  18. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK and Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–868

    CAS  Article  Google Scholar 

  19. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636

    CAS  Article  Google Scholar 

  20. Hayflick L (1980) Cell Aging. In: Annual Review of Gerontology and Geriatrics, C Eisdorfer (ed), Springer Publishing Co., NYC Vol. I, 26–67

    Google Scholar 

  21. Hayflick L (1996) How and Why We Age, Ballantine Books, New York City, N.Y.

    Google Scholar 

  22. Hayflick L (1997) Mortality and immortality at the cellular level: A review. Biochemistry (Moscow) 62: 1180–1190

    CAS  Google Scholar 

  23. Hayflick L (1998a) How and why we age. Exp Gerontol 33: 639–653

    CAS  Article  Google Scholar 

  24. Hayflick L (1998b) A novel technique for transforming the theft of mortal human cells into praiseworthy federal policy. Exp Gerontol 33: 191–207

    CAS  Article  Google Scholar 

  25. Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621

    CAS  Article  Google Scholar 

  26. Henderson E (1995) Telomere DNA structure. In: Telomeres, Blackburn EH, Greider CW (eds.) Cold Spring Harbor Laboratory Press, pp. 11–34

    Google Scholar 

  27. Hughes RN (1989) A Functional Biology of Clonal Animals, Chapman and Hall, NY p. 169.

    Google Scholar 

  28. Kipling D (1995) The Telomere, Oxford University Press

    Google Scholar 

  29. Klapper W, Heidorn K, Kühne K, Parwaresch R and Krupp G (1998) Telomerase in ‘immortal’ fish. FEBS Letters 434: 409–412

    CAS  Article  Google Scholar 

  30. Kohler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    CAS  Article  Google Scholar 

  31. Kraemer PM, Ray FA, Brothman AR, Bartholdi MF and Cram LS (1986) Spontaneous immortalization rate of cultured Chinese hamster cells. J Natl Cancer Inst 76: 703–709

    CAS  Article  Google Scholar 

  32. Levy MZ, Allsopp RC, Futcher AB, Grieder CW and Harley CB (1992) Telomere end-replication problem and cellular aging. J Molec Biol 225: 951–960

    CAS  Article  Google Scholar 

  33. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715

    CAS  Article  Google Scholar 

  34. Macieira-Coelho A (1999) A comparative biology of cell immortalization. In: Cell Immortalization, Macieira-Coelho A (ed.) 51–80, Springer-Verlag: Heidelberg

    Chapter  Google Scholar 

  35. Maynard Smith J, Smith NH, O'Rourke M and Spratt BG (1993) How clonal are bacteria?. Proc Natl Acad Sci USA 90: 4384–4388

    Article  Google Scholar 

  36. McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282

    CAS  Google Scholar 

  37. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59: 521–529

    CAS  Article  Google Scholar 

  38. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL and Wu J-R (1988) A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci 85: 6622–6626

    CAS  Article  Google Scholar 

  39. Muggleton-Harris AL and Hayflick L (1976) Cellular aging studied by the reconstruction of replicating cells from nuclei and cytoplasms isolated from normal human diploid cells. Exp Cell Res 103: 321–330

    CAS  Article  Google Scholar 

  40. Muller HJ (1962) The remaking of chromosomes. In: Studies of Genetics: The Selected Papers of H.J. Muller, pp 384–408. Indiana University Press, Bloomington

    Google Scholar 

  41. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB and Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and humans. Science 277: 955–959

    CAS  Article  Google Scholar 

  42. Oinenen E (1967) The correlation between the size of Finnish bracken (Pteridium aquilinum [L.] Kuhn.) clones and certain periods of site history. Acta Forrestalia Fennica 83: 1–51

    Google Scholar 

  43. Olovnikov AM (1971) Principles of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk S S S R 201: 1496–1499

    CAS  Google Scholar 

  44. Olovnikov AM (1973) A theory of marginotomy: The incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem. J Theoret Biol 41: 181–190

    CAS  Article  Google Scholar 

  45. Olovnikov AM (1996) Telomeres, telomerase and aging: origin of the theory. Exp Geront 31: 443–448

    CAS  Article  Google Scholar 

  46. Paul T and White D (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Ann Rev Physiol 61: 283–310

    Article  Google Scholar 

  47. Ran Q and Periera-Smith OM (2000) Genetic approaches to the study of replicative senescence. Exp Gerontol 35: 7–13

    CAS  Article  Google Scholar 

  48. Sack GH (1981) Human cell transformation by simian virus 40. A review. In vitro 17: 1–19

    CAS  Article  Google Scholar 

  49. Shippen-Lentz D and Blackburn EH (1990) Functional evidence for an RNA template in telomerase. Science 247: 546–552

    CAS  Article  Google Scholar 

  50. Vasek FC (1980) Creosote bush: long-lived clones in the Mohave Desert. Am J Botany 67: 246–255

    Article  Google Scholar 

  51. Watson JD (1972) Origin of concatemeric T7 DNA. Nature, New Biol 239: 197–201

    CAS  Article  Google Scholar 

  52. Weismann A (1891) Essay Upon Heredity and Kindred Biological Problems, 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  53. Witkowski JA (1979) Alexis Carrel and the mysticism of tissue culture. Medical History 23: 279–296

    CAS  Article  Google Scholar 

  54. Witkowski JA (1980) Dr. Carrel's immortal cells. Medical History 24: 129–142

    CAS  Article  Google Scholar 

  55. Witkowski JA (1985) The myth of cell immortality. Trends in Biochemical Sciences 10: 258–260

    Article  Google Scholar 

  56. Wright WE and Hayflick L (1975) Nuclear control of cellular aging demonstrated by hybridization of anucleate and whole cultured normal human fibroblasts. Exp Cell Res 96: 113–121

    CAS  Article  Google Scholar 

  57. Wright WE and Shay JW (1992) Telomere positional effect and the regulation of cellular senescence. Trends in Genetics 8: 193–197

    CAS  Article  Google Scholar 

  58. Yashima K, Maitra A, Rogers BB, Timmons CF, Rathi A, Pinar H, Wright WE, Shay JW and Gazdar AF (1998) Cell Growth and Differentiation 9: 805–813

  59. Zhang X, Mar V, Zhou W, Harrington L and Murray RO (1999) Telomere Shortening and apoptosis in telomerase-inhibited human tumor cells. Genes and Development 13: 2388–2399

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Hayflick, L. The illusion of cell immortality. Br J Cancer 83, 841–846 (2000). https://doi.org/10.1054/bjoc.2000.1296

Download citation

Keywords

  • mortality
  • immortality
  • cell senescence
  • ageing
  • longevity determination
  • telomeres
  • telomerase

Further reading

Search

Quick links