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Summary Quantitation of metabolic changes in tumours may provide an objective measure of clinical and subclinical response to anticancer
therapy. This pilot study assesses the value of quantitation of metabolic rate of glucose (MRGlu) measured in mmol min–1 ml–1 to assess early
subclinical response to therapy in a relatively non-responsive tumour. Nine patients receiving the CRC Phase II study schedule of
temozolomide were assessed with [18F]fluorodeoxyglucose ([18F]FDG) dynamic positron emission tomography (PET) scans prior to and 14
days after treatment with temozolomide given as 750–1000 mg m–2 over 5 days every 28 days. Tumour MRGlu was calculated and compared
with objective response at 8 weeks. Pretreatment MRGlu was higher in responders than non-responders. The responding patient group had a
greater than 25% reduction in MRGlu in regions of high focal tumour uptake (HFU). Whole tumour changes in MRGlu did not correlate with
response. Percentage change in HFU standardized uptake value (SUV) did discriminate the responding from the non-responding patients, but
not as well as with MRGlu. Large differences also occurred in the normal brain SUV following treatment. Thus, MRGlu appeared to be a more
sensitive discriminator of response than the simplified static SUV analysis. Changes in MRGlu may reflect the degree of cell kill following
chemotherapy and so may provide an objective, quantitative subclinical measure of response to therapy. © 2000 Cancer Research Campaign
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The ability to assess tumour response after a single cycle of
chemotherapy may improve patient management and early evalua-
tion of new anticancer therapies. Quantitative tumour metabolic
response rate assessment has been suggested as a surrogate end
point for tumour response to therapy and may assist in the identifi-
cation and scheduling of new chemotherapeutic strategies in phase
I and II clinical trials (Price and Jones, 1995). Clinically, early
identification of those patients with non-responding tumours may
permit the cessation of ineffective therapy and promote individual-
ization of therapy.

Positron emission tomography (PET) is an in vivo functional
imaging modality using positron-emitting radiolabelled
compounds. The most widely used radiotracer in oncology is 2-
[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), a glucose analogue. It
is transported by facilitated diffusion into the cells where it is
phosphorylated by hexokinase to form [18F]fluorodeoxyglucose-6-
phosphate ([18F]FDG-6-P). It effectively becomes ‘trapped’ intra-
cellularly since dephosphorylation is slow especially in tissues
with low levels of glucose-6-phosphatase. [18F]FDG uptake is
enhanced in tumours due to both increased transport and phospho-
rylation (Bennett et al, 1978; Herholz et al, 1992; Brown et al,
1993, 1996). Increased [18F]FDG uptake, as measured by PET,
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although a function of proliferative activity (Minn et al, 1988a;
Okada et al, 1992; Higashi et al, 1993) is related to the number of
viable tumour cells (Herholz et al, 1993). Therefore, reduction in
the viable tumour cell population with effective chemotherapy
should result in reduced [18F]FDG uptake.

A number of pilot studies have shown that early reduction in
tumour [18F]FDG uptake is related to tumour response to effective
chemotherapy in extracerebral tumours (Minn et al, 1988b; Ichiya
et al, 1991; Wahl et al, 1993; Jansson et al, 1995). Pilot studies
with intracerebral tumours have shown reduced tumour [18F]FDG
uptake corresponding with radiological improvement and thera-
peutic response duration in patients with medulloblastoma
(Holthoff et al, 1993). For patients with gliomas, reduction in
tumour [18F]FDG uptake corresponded with radiological response
30 days after combination chemotherapy (Rozental et al, 1989)
and with patient survival (De Witte et al, 1994).

Assessment of alterations in tumour extent with therapy using
computerized tomography (CT) and magnetic resonance imaging
(MRI) can be a problem for gliomas where the tumour can not be
clearly delineated from post-operative enhancement (Cairncross
et al, 1985) and radiation-induced necrosis (Patronas et al, 1982).
Interpretation of sequential anatomical scans to monitor treatment
response in brain tumours can be complicated. The addition of a
metabolic response marker in the form of [18F]FDG-PET may
improve response assessment in these tumours.
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Increased [18F]FDG has been shown in gliomas and correlated
with tumour grade (Di Chiro et al, 1982) and prognosis (Alavi et
al, 1988). The [18F]FDG-PET technique has been used to differen-
tiate tumour recurrence from necrosis (Valk et al, 1988). It has
been proposed that changes in [18F]FDG uptake could be used to
parallel phase I and II clinical trials (Price and Jones, 1995) to
provide an objective quantitative measure of clinical and sub-
clinical response.

Temozolomide is a methylating imidazotetrazinone which was
evaluated during a phase II clinical trial at Charing Cross Hospital,
London, under the auspices of the Cancer Research Campaign’s
(CRC) Phase I & II Clinical Trials Committee. The initial phase I
trial had previously demonstrated that the drug had activity against
gliomas, malignant melanoma and mycosis fungoides on a five day
schedule repeated every 28 days, with myelosuppression being the
main toxicity (Newlands et al, 1992; O’Reilly et al, 1993).

The aim of this pilot study was to evaluate [18F]FDG-PET as an
early tumour metabolic response marker in high-grade gliomas
treated with the phase II treatment schedule of temozolomide.



Patients

Nine patients with recurrent grade III and IV gliomas being treated
using the CRC Phase II trial schedule of temozolomide were
recruited for the [18F]FDG-PET study. Eligibility criteria included
those for entry into the phase II clinical study (O’Reilly et al,
1993) and the ability to undergo two PET scans. No patient had
received radiotherapy or chemotherapy in the 4 weeks preceding
treatment with temozolomide, or in the preceding 6 weeks for
those who had received treatment with nitrosoureas. All had evalu-
able tumour on CT scan and had WHO performance status of ≤3.

Temozolomide was administered at a dose of 750 mg m–2

divided equally over 5 days for the first cycle, increased to
1000 mg m–2 divided over 5 days for the subsequent cycles
providing there had been no myelosuppression noted on day 22.
The cycles were repeated every 28 days (O’Reilly et al, 1993).

All the patients gave informed written consent for this study as
approved by the Hammersmith Hospitals Research and Ethics
Committee and UK Administration of Radioactive Substances
Advisory Committee.
© 2000 Cancer Research Campaign
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Figure 1. Diagram demonstrating the metabolism of [18F]FDG in tissue. The rate
characterize delivery, washout, phosphorylation and dephosphorylation respective
extended to include a dephosphorylation rate constant (k4) of the reaction [18F]FDG
(K1, k2, k3, k4 min–1), in Figure 1 reflecting transfer between compartments, are esti
tissue time activity curves and the input function.
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[18F]FDG-PET imaging

[18F]FDG-PET scans were performed at the Medical Research
Council (MRC) Cyclotron Unit, prior to the first treatment cycle
with temozolomide, and a repeat scan performed within 14 days of
completing the first 5-day oral course. One patient (no. 1) had both
[18F]FDG-PET scans performed 14 days apart prior to
commencing temozolomide therapy, to act as a control subject in
order to determine reproducibility of data collection and analysis.

Patients were fasted for 4–6 h prior to the PET scan, in order to
stabilize their blood glucose concentration and enhance tumour
[18F]FDG uptake (Lindholm et al, 1993; Ishizu et al, 1994). For
those receiving corticosteroids, dexamethasone dosage was stabi-
lized for a minimum of 2 weeks prior to performing the baseline
scans and initiating temozolomide to minimize changes in oedema
induced by steroid administration (Cairncross et al, 1988). There
was no alteration in the patients’ dose of corticosteroids nor anti-
convulsant medication until at least after the second [18F]FDG-
PET study. This is important as dexamethasone can elevate
circulating plasma glucose levels which may confound the inter-
pretation of SUV and K1 (Roelcke et al, 1998) and it has also been
shown to decrease normal cerebral glucose metabolism (Fulham et
al, 1995).

[18F]FDG was synthesized on-site at the MRC Cyclotron Unit,
using the stereospecific reaction consisting of a nucleophilic fluo-
rination followed by a de-protection stage to produce a no-carrier
added FDG (Hamacher et al, 1986). The radiochemical purity of
the [18F]FDG was 100%. The studies were performed at a time
when [18F]FDG was assessed only for KryptofixR, a toxic catalyst
and impurity.

A peripheral venous cannula was inserted for intravenous
administration of [18F]FDG. A second cannula was inserted into
the patient’s contralateral radial artery, having performed Allen’s
test, to measure arterial [18F]FDG and glucose concentrations.

All image data were acquired on an ECAT 953B CTI Neuro-PET
scanner (CTI/Siemens, Knoxville, TN, USA). The patients were
positioned using a head support and the orbito-meatal line parallel to
the transaxial plane of the tomograph, such that the tumour position
was well within the 10.8 cm field of view. Prior to the [18F]FDG
injection, a transmission scan with 68Ge rod sources was performed
to measure and correct for tissue attenuation of 511 keV photons.
Emission scanning was commenced 30 s prior to [18F]FDG adminis-
tration with a protocol of 23 frames (6 × 30 s; 7 × 60 s; 10 × 5 min).
Data acquisition was in the two-dimensional mode.
British Journal of Cancer (2000) 82(3), 608–615
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Table 1 MRC neurological status

0= No neurological deficit.
1= Some neurological deficit but function adequate for useful

work.
2= Neurological deficit causing moderate functional

impairment, e.g. able to move limb(s) only with difficulty,
moderate dysphasia, moderate paresis, some visual
disturbances (e.g. field defect).

3= Neurological deficit causing major functional impairment,
e.g. inability to move limbs, gross speech or visual
disturbance.

4= No useful function – inability to make conscious responses.

Table 2 Patient clinico-pathological details

Patient Sex Age Initial Steroid Anti-
(years) tumour therapy convulsant

grade therapy

1 Female 44 IV Yes Yes
2 Male 48 IV No Yes
3 Male 28 III Yes No
4 Female 55 IV Yes No
5 Male 43 III Yes Yes
6 Male 33 II Yes Yes
7 Female 52 II No Yes
8 Female 48 IV Yes Yes
9 Male 34 III Yes No
The [18F]FDG was injected as an intravenous bolus given over a
30 s period starting 30 s into the [18F]FDG-PET study. The
patient’s radial arterial blood was continuously withdrawn over a
calibrated bismuth germinate (BGO) detector allowing continuous
measurement of arterial radioactivity (Ranicar et al, 1991).
Downstream from the detector discrete samples were taken imme-
diately prior to the start of the scan and at 5, 10, 20 and 50 min.
These samples were used to measure circulating glucose levels
and partition [18F] radioactivity between whole blood and plasma.

PET data analysis

The PET data were attenuation corrected and reconstructed using
filtered back projection with a Hann filter, cut off at the Nyquist
frequency (8.2 ± 0.2 mm), into two-dimensional matrices of
128 × 128 with pixel dimensions of 2.016 × 2.016 mm. The 31
slices were stacked to form a three-dimensional volume with an
axial slice width of 3.375 mm.

The second [18F]FDG-PET study was co-registered to the first
using the Wood’s algorithm (Woods et al, 1992). All frames for
each study were summed to provide an image of higher statistical
quality for region of interest (ROI) drawing. ROI analysis was
performed using the Sunview package ‘Analyze’ (Analyze, Mayo
Clinic, Rochester, MN, USA).

Region of interest definition

Gliomas are heterogeneous structures containing oedema, scar
tissue, necrosis as well as viable tumour cells. Clear delineation of
the tumour margins from normal brain tissue and peripheral
oedema can prove difficult using anatomical imaging. In this
study, ROIs were defined with visual reference to a pretreatment
British Journal of Cancer (2000) 82(3), 608–615
CT scan to assist in the anatomical localization of tumour extent.
Normal brain (B) was defined as uninvolved contralateral
temporo-parietal white matter, whole tumour (WT) defined a
region encompassing the whole tumour and high focal [18F]FDG
uptake areas (HFU) were defined as a small area within the tumour
with the highest uptake defined visually. ROIs for all three tissue
areas are defined on the baseline [18F]FDG-PET study. Co-regis-
tration of second to the first [18F]FDG PET study was employed
(Woods et al, 1992). Tissue time activity curves were generated by
applying the ROIs defined to the co-registered dynamic PET scan
frames for both studies. The average count per pixel was used for
each ROI. Where it was possible to define more than one HFU, the
one with the highest MRGlu at baseline was used for comparison.

Calculation of MRGlu

The [18F]FDG plasma time concentration curve was generated
from the continuous and discrete arterial blood samples to provide
an input function. The metabolic rate for glucose (MRGlu µmol
min–1 ml–1) was determined using the arterial input function, and
the PET-generated tissue time activity curves with a three
compartment model (Figure 1).

The tissue or tumour glucose utilization rate is given by:

The K values are the rate constants as defined in Figure 1. The
lumped constant (LC) corrects for differences in the transport and
phosphorylation rates of FDG and glucose, and is defined as the
ratio of the FDG phosphorylation rate to the rate of glucose phos-
phorylation. It was set to 0.52 as previously measured for normal
brain tissue (Reivich et al, 1985). Cpl is the plasma glucose concen-
tration (µmol ml–1). Due to technical failure, the plasma glucose
concentration measured at 50 min was not available for some
studies (n = 4 patients; 6 studies). No significant difference was
seen between the available whole blood and plasma glucose
concentrations measured at 20 min (n = 11, mean difference ±
standard deviation (s.d.): 0.07 ± 0.44; t-test P > 0.2, t = 0.05)
(Bland and Altman, 1986). The 20 min whole blood glucose
concentrations were used to compute MRGlu for this study.

Calculation of standardized uptake values

In addition to calculating the glucose utilization rates for the
regions defined, standardized uptake values (SUV) were also
measured thereby allowing comparison of the two analysis
methods. Standardized uptake values are a simplified model inde-
pendent, semi-quantitative technique. It would be an easier calcu-
lation for clinical work being undertaken in busy nuclear medicine
departments. It utilizes a static image, in these studies determined
from the last 15 min of the scan, and normalizes it for known
differences between the studies, i.e. patient weight or body surface
area and injected activity of [18F]FDG.

Clinical response assessment

Contrast-enhanced CT scans and MRC neurological status assess-
ment (Table 1) were performed pretreatment and after two courses

MRGlu (µmol min–1 ml–1) = Cpl × K1k3

LC k2+ k3
© 2000 Cancer Research Campaign
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Figure 2 Comparison of pre- and post-glucose utilization rates (MRGlu,
µmol min–1 ml–1) for normal brain

Table 3 Glucose utilization rates (MRGlu µmol min–1 ml–1) for normal brain (B), whole tumour (WT) and high focal uptake area
within tumour (HFU) defined on the pre- and post-treatment positron emission tomography scans

MRGlu±SE SUV

Pt Tissue Pre- Post- % Pre- Post- % Clinical
Treatment Treatment Diff Treatment Treatment Diff Response

(8 weeks)

1 HFU 0.39±0.02 0.35±0.04 –10 182.930 183.222 +0.2 Control –
WT 0.27±0.02 0.28±0.01 +4 143.964 139.096 –3.4 no
B 0.25±0.02 0.23±0.02 –8 128.563 129.277 +0.5 treatment

2 HFU 0.13±0.04 0.25±0.02 +92* NaN 126.356 NaN
WT 0.14±0.05 0.16±0.02 +14 NaN 94.827 NaN SD
B 0.35±0.02 0.31±0.02 –11 NaN 178.134 NaN

3 HFU 0.19±0.04 0.28±0.03 +47* 119.245 224.849 +88.6
WT 0.31±0.02 0.34±0.02 +10 167.278 242.294 +44.8 PD
B 0.30±0.05 0.37±0.03 +23 145.595 242.283 +39.9

4 HFU 0.40±0.09 0.40±0.04 0 134.614 146.537 +8.8
WT 0.26±0.08 0.31±0.01 +19 133.101 138.403 +4.0 SD
B 0.30±0.02 0.26±0.02 –13 146.871 143.182 –2.5

5 HFU 0.68±0.1 0.15±0.2 –78* 212.025 165.314 –22
WT 0.29±0.03 0.31±0.03 +7 177.381 127.662 –28 OR
B 0.21±0.03 0.22±0.02 +5 195.105 131.321 –32.6

6 HFU 0.49±0.04 0.32±0.02 –35* 216.597 170.197 –21.4
WT 0.37±0.03 0.27±0.01 –27* 159.408 134.394 –15.7 OR
B 0.36±0.05 0.37±0.01 +3 136.467 174.204 –27.7

7 HFU 0.47±0.02 0.35±0.04 –26 187.794 185.784 –1.1
WT 0.34±0.01 0.36±0.02 +6 168.519 185.118 +9.8 OR
B 0.37±0.02 0.36±0.02 –3 182.040 197.707 +8.6

8 HFU 0.34±0.03 0.23±0.05 –32* 167.787 116.671 –30.5
WT 0.29±0.01 0.16±0.03 –45* 136.021 107.034 –21 OR
B 0.28±0.03 0.33±0.02 +18 145.106 124.000 –14.5

9 HFU 0.34±0.03 0.35±0.03 +3 141.321 129.923 +8.1
WT 0.39±0.03 0.33±0.02 –15 146.839 118.619 –19.2 PD
B 0.24±0.03 0.23±0.02 –4 127.998 114.384 –10.6

*Pre- and post-treatment MRGlu differ by at least 1 standard error (s.e.m.).

The percentage change (% diff) in glucose utilization and patient (Pt) clinical response assessed clinically and radiologically as
progressive disease (PD), objective response (OR) or stable disease (SD) at 8 weeks is shown.

}
}
}
}
}
}
}
}
}

• • 
• • 
• 

N 
of temozolomide (8 weeks). For assessment of tumour response in
high-grade glioma, objective response (OR) was used. This requires
an improvement in the MRC neurological status by one grade and a
clear-cut reduction in mass effect radiologically with a minimum
duration of 4 weeks and no development or deterioration in other
neurological symptoms or signs (Bleehen et al, 1989). Objective
response was defined at 8 weeks. For analysis patients with stable
and progressive disease were classified as non-responders.



Details of patients are summarized in Table 2. All nine patients
had received radiotherapy as their primary treatment (median 15
months previously; range 3.3–60.7 months). One (no. 4) had
received adjuvant chemotherapy (temozolomide) combined with
radiotherapy 2 years previously. All patients had normal liver and
renal function prior to therapy and none had known diabetes
mellitus. One patient (no. 8) had the second PET scan delayed
until after the second course of temozolomide due to illness. The
mean circulating whole blood glucose concentration at 20 min was
(5.6±0.56 mmol l–1).

Clinical response was available in all eight treated patients. Four
patients had an objective response, two stable disease and two
progressive disease at 8 weeks. The control patient was not
assessed for clinical objective response.
© 2000 Cancer Research Campaign
Details of clinical and metabolic response for normal brain (B),
whole tumour (WT) and tumour high focal (HFU) [18F]FDG
uptake are given in Table 3. The ROIs defined for each tissue area
British Journal of Cancer (2000) 82(3), 608–615
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Figure 3 Percentage changes in whole tumour (WT) glucose utilization
rates (MRGlu µmol min–1 ml–1) compared with clinical response. There is no
significant difference in percentage change in glucose utilization rates for the
two groups (n = 9, t-test P < 0.1)
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Figure 4 Percentage changes in high focal tumour uptake (HFU) glucose
utilization rates (MRGlu µmol min–1 ml–1) compared with clinical response.
There is a significant difference between the responders and non-responders
(n = 9, t-test P < 0.02) which separates the groups
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Figure 5 Comparison of glucose utilization rates (MRGlu µmol min–1 ml–1) and standardized uptake values (SUV) for all tissue
and tumour regions
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sampled contained a varying number of pixels since active
tumours themselves are of varying sizes. Brain mean 223 pixels
(range 113–432 pixels n = 9); whole tumour, mean 1087 pixels
(range 264–2673 pixels; n = 9); high focal tumour uptake, mean 48
pixels (range 9–106 pixels; n = 9).

For the control patient (no. 1) the percentage changes determined
for sampled tissue regions were –8% for normal brain, +4% for
whole tumour and –10% for the high uptake focus within the tumour.

Normal brain MRGlu was not significantly altered by treatment
with temozolomide (n = 9, P > 0.2 t-test) (Figure 2). Following
temozolomide, the MRGlu for the whole tumour (WT) regions
was decreased in three patients and increased in five patients.
Alterations in whole tumour MRGlu did not consistently corre-
spond with an objective response assessed at 8 weeks (Figure 3).
British Journal of Cancer (2000) 82(3), 608–615
A greater than 25% reduction in [18F]FDG uptake in the HFU
regions was seen in four patients (nos 5–8). In the other four
patients there was either no change or an increase in the MRGlu
for the high focal uptake areas (nos 2, 3, 4, 9). Figure 4 shows the
relationship between percentage change in MRGlu for HFU
regions responding and non-responding patients. Those patients
with 25% reduction in MRGlu at 14 days in HFU regions achieved
an objective response at 8 weeks (n = 4).

Pretreatment MRGlu levels in HFU were found to be related to
response, being higher in the responding patient group. There was
no difference between responders and non-responders in pre- or
post-treatment normal brain MRGlu values or in absolute change
in MRGlu.

Comparison of the MRGlu with SUV analysis for individual
© 2000 Cancer Research Campaign
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Figure 6 Comparison of pre- and post-treatment standardized uptake
values (SUV) for normal brain (B)

Figure 7 Percentage changes in whole tumour (WT) standardized uptake
values (SUV) compared with clinical response

Figure 8 Percentage changes in high focal tumour uptake (HFU) regions
standardized uptake values (SUV) compared with clinical response
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patients for B, WT and HFU is shown in Figure 5. There were differ-
ences in normal brain SUV values following treatment with temozolo-
mide (Figure 6). Comparison of percentage change in SUV following
treatment with response category for both WT and HFU is shown in
Figure 7 and 8 respectively. WT regions were not able to discriminate
responders from non-responders. Percentage change in HFU regions
was better at discriminating, but not as good as using MRGlu.


In this study, reduction in MRGlu of > 25% in regions of HFU was
seen 14 days after one cycle of temozolomide in patients who went
on to have a objective response at 8 weeks.

Alterations in whole tumour MRGlu did not correspond with
objective response. Despite visual comparison with anatomical
imaging, whole tumour regions sampled may contain normal brain
tissue, fibrosis, cystic fluid and oedema in addition to viable
tumour cells. The MRGlu for whole tumour regions therefore may
be, in part, determined by these non-tumour elements and will not
be as affected by anti-proliferative chemotherapy as viable tumour.
[18F]FDG uptake is increased in viable tumour and regions of HFU
probably contain a higher proportion of viable tumour cells.

Responding tumours had higher pretreatment MRGlu values in
HFU regions. A high MRGlu is usually associated with more
aggressive tumours (Di Chiro et al, 1982), suggesting that these
may be more responsive to temozolomide treatment.

Blood–brain barrier disruption can alter the hexose transport
system and allow passive diffusion of glucose and [18F]FDG into
brain tumours. It is unknown by how much or how quickly the
integrity of the blood–brain barrier improves with response to
therapy. However, independence of deoxyglucose utilization and
blood–brain barrier disruption have been demonstrated in an
animal glioma model (Blasberg et al, 1981). Alternations in
tumour [18F]FDG uptake were measured early in the course of
treatment and probably reflect alterations in tumour [18F]FDG
utilization rather than changes in blood–brain barrier integrity.

As environmental conditions were not controlled for auditory
and visual stimuli, the temporo-parietal brain was selected as a
reference region for normal brain in this study. The variation in
normal brain MRGlu was not significant within the precision of
the measurement and therefore not attributable to treatment or
environmental stimulation.

There is controversy over the optimal method to assess
[18F]FDG uptake. This study used MRGlu which has been the
measurement standard for reporting [18F]FDG uptake in brain
tumours in the literature. The three-compartment model employed
has been validated for use with [18F]FDG in the normal human
brain (Phelps et al, 1979) and the original model (Sokoloff et al,
1977) extended to include a dephosphorylation (k4) rate constant
(Phelps et al, 1979; Huang et al, 1980). It is thought that extrapola-
tion of normal tissue data to tumours may not be entirely accurate
since the model assumes tissue homogeneity (Herholz et al, 1990;
Schmidt, 1992). The lumped constant for brain tumour has not yet
been established (Fischman and Alpert, 1993). The lumped
constant (LC 0.52) used in this study has been derived for normal
brain (Reivich et al, 1985). Values derived for normal brain range
from 0.42 to 0.86 (Phelps et al 1979; Reivich et al, 1985;
Lammertsma et al, 1987) and where values have been reported for
tumour they range from 0.72 to 3.10 (Spence et al, 1998). The
absence of a consistent value for the lumped constant for tumour is
a limitation for determination of MRGlu using [18F]FDG. The LC
British Journal of Cancer (2000) 82(3), 608–615
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may vary following treatment, but is as likely to do so with normal
brain as tumour. The use of percentage change in MRGlu circum-
vents the variation in the LC.

Standardized uptake values offer an alternative for the simplifi-
cation of tumour [18F]FDG uptake measurement and have previ-
ously been used in tumour response monitoring studies (Wahl et al,
1993). However, there are some disadvantages. SUV have been
found to be positively correlated with body weight, due to reduced
distribution of [18F]FDG in the fat. Also, the underlying assump-
tion that [18F]FDG uptake is complete and irreversible at 60 min,
the usual measurement time, is not usually fulfilled. Thus,
measurement is often made in the initial uptake phase (Wahl et al,
1993; Hamberg et al, 1994). The differences demonstrated in
normal brain SUV following treatment and the inability of changes
in [18F]FDG SUV to descriminate responders from non-responders
as well as MRGlu suggests that the SUV measurement may be a
less robust assessment for changes in tumour post-treatment. Brain
tumour response is usually a small change and so the most sensi-
tive measure is required to detect important small changes.

An assessment of the benefit of this method over simplified
quantitation methods, e.g. SUV analysis, in terms of sensitivity
and specificity warrants further assessment in studies specifically
designed to address these issues.

The numbers for this pilot study are small and one control
patient provides an indication, but not a measure of analysis
technique reproducibility. Subsequent reproducibility [18F]FDG
PET studies are underway, of which currently three pairs have
been performed. Similarly, a variation of < 6.5% for normal brain
and < 10.3% for whole tumour has been measured (Brock et al,
unpublished data).

In this pilot study [18F]FDG-PET functional imaging provided a
sensitive and quantitative measure of early tumour response to
chemotherapy. The efficacy of this technique for quantifying
degree of response is currently under evaluation in a larger group
of patients with high-grade glioma receiving treatment with temo-
zolomide, radiotherapy or a combination of the two. This will also
define a more objective threshold value for the prediction of
tumour response.
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