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Summary Detection of micrometastases in patients with solid tumours may aid the establishment of prognosis and development of new
therapeutic approaches. This study was designed to investigate the presence and frequency of tumour cells in the peripheral blood (PB) of
patients with breast or ovarian cancer by using a combination of magnetic activated cell sorting (MACS) and fluorescence in situ hybridization
(FISH). Separated tumour cell and PB-samples from 48 patients (35 breast cancers, 12 ovarian tumours, one uterine sarcoma) were
analysed for the presence of numerical aberrations of chromosomes 7, 12, 17 and 17 q11.2–q12. Twenty-five patients had primary disease
and 23 had relapsed. The technique allows the detection of one tumour cell in 106 normal cells. Circulating tumour cells were detected in
35/48 cases (17 patients had relapsed and 13 primary carcinoma with lymph node or solid metastases) by the expression of anti-cytokeratin
and the presence of numerical chromosomal abnormalities. PB-tumour cells of patients with a primary carcinoma and without solid
metastases had a significantly lower percentage of chromosomal aberrations, especially for chromosome 12 (P = 0.035; P = 0.038) compared
to those with relapsed disease and solid metastases. Detection and quantification of minimal residual disease may monitor the response to
cytotoxic or hormonal therapy and may identify women at risk of relapse. © 1999 Cancer Research Campaign
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The detection and elimination of minimal disseminated disease in
patients with solid tumours is one of the main current topics in
clinical oncology (Pantel, 1996).

A variety of assays of widely varying sensitivity have been
utilized for the detection of circulating tumour cells such as light
microscopy, cytogenetic analyses, fluorescence in situ hybridiza-
tion (FISH), Southern blot analysis, immunocytochemistry,
polymerase chain reaction (PCR) and flow cytometry (Kvalheim,
1996; Pantel, 1996; Vrendenburgh et al, 1996; Schoenfeld et al,
1997; Traystman et al, 1997).

Because of the fact that breast and ovarian cancers do not appear
to have tumour-specific chromosomal aberrations, tumour cell
detection by molecular methods is based on the amplification of
tissue-specific transcripts (Mapara et al, 1997; Bostick et al, 1998).
In immunocytochemical assays, epithelial specific antibodies have
been used to detect isolated tumour cells in bone marrow (BM)
and blood (Cote et al, 1991, 1995, 1996; Diel et al, 1996; Franklin
et al, 1996).

In an effort to obtain greater sensitivity, several investigators
have developed techniques for the enrichment of tumour cells
before their identification by immunocytochemistry, PCR or FISH
(Hardingham et al, 1993, 1995; Berois et al, 1997; Eaton et al,
1997; Hildebrandt et al, 1997; Naume et al, 1997; Martin et al,
1998).

Therefore, the aim of our study was to analyse the presence and
frequency of circulating tumour cells in the peripheral blood of
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patients with breast or ovarian cancer by using a combination of
magnetic activated cell sorting (MACS) and interphase FISH.



Patients

In this study we included 48 adult patients with a median age of
60.6 ± 13.3 years (range 30–86). Thirty-five had the diagnosis of
breast cancer, 12 ovarian cancer and one uterine sarcoma. Twenty-
five patients had primary disease (6/25 without involvement of
axillary lymph nodes, 8/25 with solid metastases, 11/25 with
lymph node metastases) and 23 had relapsed (20/23 with solid
metastases). PB-samples were obtained following informed
consent at the time of diagnosis, during or after therapy. MACS-
sorted tumour cells were analysed by interphase FISH, using
α-satellite probes specific for the centromeric regions of chromo-
somes 7, 12, 17 and the region 17 q11.2–q12 (HER-2/neu).
Controls were PB-samples from five normal volunteers to deter-
mine the background for each probe.

Magnetic cell separation

Mononuclear cells were isolated from fresh blood by Ficoll-
Hypaque gradient separation. After washing in PBS per 5 mm
EDTA, 300 µl PBS buffer per 108 cells, 20 µl of CK-8 microbeads
(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) were
added. After gentle mixing and incubation for 15 min at 4°C, the
cells were washed once in 5 ml buffer per 108 cells. The buffer was
completely removed, and the cells were resuspended again in
400 µl buffer. The cell suspension was then applied to a prefilled
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Table 1 Anatomical site, pathology and percentage of chromosomal aberrations in PB-tumour cells from 45 patients with gynaecological cancer

Patient Diagnosis Stage Grade Metastases Aberrant cells (%)

no. Chromosome 7 Chromosome 12 Chromosome 17

1 Breast cancer (relapse) I G I Solid 7.0 4.7 17.5
2 Primary breast cancer I ND None
2a 3.0 (negativea) 3.7 (negativea) 14.3
2b 6.3 3.7 (negativea) 15.3
2c 7.6 11.0 13.3
2d 6.0 3.0 (negativea) 10.5
3 Breast cancer (relapse) I G II Lymph nodes 5.3 (negativea) 9.0 14.0
4 Ovarian cancer (relapse) II ND Solid 5.7 5.7 (negativea) 12.0
5 Breast cancer (relapse) I G II Solid 4.3 (negativea) 6.5 (negativea) ND
6 Ovarian cancer (relapse) I ND Solid 2.7 (negativea) 5.7 (negativea) 15.5
7 Primary ovarian cancer IV ND Solid 5.1 (negativea) 4.7 (negativea) 11.4
8 Primary breast cancer II ND Lymph nodes 4.0 (negativea) 5.3 (negativea) 8.7 (negativea)
9 Ovarian cancer (relapse) III ND Solid 4.7 (negativea) 7.3 12.3

10 Primary breast cancer II G III Lymph nodes 6.3 6.3 (negativea) 14.3
11 Breast cancer (relapse) IV ND Solid 4.0 (negativea) 11.0 10.7
12 Primary breast cancer I G II Lymph nodes ND ND 18.0
13 Breast cancer (relapse) III ND Solid 4.7 (negativea) 5.7 (negativea) 8.6 (negativea)
14 Primary breast cancer II G II Lymph nodes 7.7 12.0 16.0
15 Primary breast cancer IV G II Solid 5.0 (negativea) 5.7 (negativea) 11.0
16 Breast cancer (relapse) II G III Solid 3.7 (negativea) 8.3 17.0
17 Primary breast cancer I G II Lymph nodes 0 8.5 ND
18 Ovarian cancer (relapse) IV G II Solid 2.3 (negativea) 13.0 22.0
19 Primary breast cancer IV ND Lymph nodes ND ND1 4.2 (negativea)
20 Breast cancer (relapse) I ND Solid 28.1 22.8 ND
21 Primary breast cancer II G I None ND 4.4 (negativea) ND
22 Ovarian cancer (relapse) IV ND Solid 0 0 ND
23 Breast cancer (relapse) IV G I None 4.0 (negativea) 10.0 ND
24 Ovarian cancer (relapse) III ND Solid 1.3 (negativea) 6.7 9.7
25 Breast cancer (relapse) IV ND Solid 4.8 (negativea) 6.0 (negativea) ND
26 Primary breast cancer IV ND Solid 13.0 15.0 ND
27 Primary breast cancer II ND Solid 5.0 (negativea) 6.0 (negativea) 14.5
28 Breast cancer (relapse) II G II Solid 7.6 15.1 ND
29 Primary breast cancer II G II None 7.3 5.3 (negativea) 14.7
30 Primary breast cancer II ND Solid 3.0 (negativea) 3.0 (negativea) 13.0
31 Primary breast cancer I ND None 4.7 (negativea) 3.0 (negativea) 14.0
32 Primary breast cancer I G II Lymph nodes 7.0 7.0 10.0
33 Primary breast cancer IV ND Lymph nodes ND ND 13.7
34 Primary ovarian cancer III G II Solid 1.5 (negativea) 4.6 (negativea) ND
35 Primary ovarian cancer III ND Solid 6.0 11.3 14.3
36 Breast cancer (relapse) I G III None 7.0 9.3 11.5
37 Primary ovarian cancer II G II Lymph nodes 0 3.4 (negativea) ND
38 Primary breast cancer II G III Solid 1.3 (negativea) 9.3 10.5
39 Primary breast cancer I ND None 3.3 (negativea) 3.7 (negativea) 10.7
40 Primary breast cancer I ND None 5.5 5.5 (negativea) 10.7
41 Ovarian cancer (relapse) III ND Solid 0 7.0 ND
42 Breast cancer (relapse) II ND Solid 0 10.0 ND
43 Uterus sarcoma (relapse) II G III Solid 6.0 18.0 ND
44 Ovarian cancer (relapse) IV ND Solid 4.9 (negativea) 9.2 ND
45 Primary breast cancer I G III Lymph nodes negative negative negative
46 Primary breast cancer I G II Lymph nodes negative negative negative
47 Breast cancer (relapse) II ND Solid negative negative negative
48 Breast cancer (relapse) II ND Solid negative negative negative

Mean ± s.e.m. 5.0 ± 0.7 7.7 ±0.7 12.9 ± 0.6

ND, not determined; aPercentage of chromosomal aberrations less than background (mean + 3 SD of normal control cells)
MiniMACS column [MS+RS+ or MACS VS+ separation columns
(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany)]. The
cells were passed through the column and washed four times with
500 µl buffer. The column was removed from the separator, and
the CK-enriched cells were eluted using the plunger.
British Journal of Cancer (1999) 81(7), 1165–1173
Flow cytometry

The following directly conjugated antibodies [anti-cytokeratin
(Dako AS, Glostrup, Denmark) and anti-CD45 (Becton
Dickinson, Heidelberg, Germany)] were used to detect circulating
© 1999 Cancer Research Campaign
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Figure 1 Dilution experiment of normal peripheral blood containing MCF-7 cells. Flow cytometry after MACS-sorting using an anti-cytokeratin and an anti-
CD45 antibody failed to detect tumour cells at the 5 × 10–4 level. By applying FISH after MACS-sorting using chromosome probes for the centromeric region of
chromosomes 7 and 12 detection of tumour cells in a dilution as few as 1 × 10–6
tumour cells. A total of 10 µl of anti-CD45 PerCP
(peridinin–chlorophyll–protein) conjugated antibody were added
to 1 × 106 mononuclear cells and incubated for 15 min at room
temperature in darkness. Appropriate isotype controls were used to
set the amplification and compensation of the flow cytometer. The
cells were then washed twice with PBS and fixed in 1 ml 0.25%
paraformaldehyde at room temperature for 15 min. After another
wash with PBS, cells were incubated in cold (4°C) 70% methanol
for 60 min in darkness before staining with 10 µl anti-cytokeratin
FITC (fluorescein isothiocyanate)-labelled antibody. After an
incubation of 30 min at 4°C, the cells were washed with PBS,
resuspended in 300 µl PBS and then analysed with a FACScalibur
flow cytometer (Becton Dickinson, San Jose, CA, USA). Analysis
by flow cytometry was done before and after MACS-sorting.
Tumour cells were defined as cytokeratin+/CD45–.

Fluorescence in situ hybridization

Sorted cells were fixed in 3:1 methanol:glacial acetic acid and
stored until hybridization at –20°C. Slides were incubated at room
temperature in 0.1 N hydrochloric acid with 0.05% Triton X-100
for 15 min and then washed six times: once for 2 min in 2 × saline
sodium citrate (SSC; 0.3 M sodium chloride, 30 mM sodium
citrate, pH 7), once in PBS, once in PBS with 1% formaldehyde
© 1999 Cancer Research Campaign
for 5 min, twice for 2 min with PBS, and finally once with
2 × SSC. Slides were denatured in 70% formamide in 2 × SSC at
70°C for 2–4 min, dehydrated in a 70%, 85%, 100% ethanol series
and air-dried.

Directly conjugated centromeric probes (CEP) specific for
chromosomes 7, 12 and 17 (Vysis, Stuttgart, Germany) were used
for interphase FISH (CEP 7 conjugated to Spectrum Green, CEP
12 and 17 conjugated to Spectrum Orange, CEP 17/17q.11.2–q12
conjugated to Spectrum Green/Orange). One microlitre of each
probe was mixed with 7 µl hybridization buffer (50% formamide,
2 × SSC, 10% dextran sulphate) and 2 µl distilled water. Probe
DNA was denatured for 5 min at 70°C and applied to each slide.
Hybridization was performed overnight at 37°C in a humidified
chamber.

Non-hybridized probe was washed off by a series of three 
post-hybridization washes in 50% formamide in 2 × SSC at 45°C
each for 10 min, followed by one 10-minute wash in 2 × SSC and
one 5-min wash in 2 × SSC/0.1% NP-40 at 37°C. The nuclei
were counterstained with diamino-2-phenylindole dihydrochloride
(DAPI, 0.2 µM in 90% glycerol/10% PBS, pH 8.0). Hybridization
signals were counted by hand in 100–500 cells under a fluores-
cence microscope (Leica, Heerbrugg, Switzerland) equipped with
a triple filter set (DAPI/FITC/Texas-Red).
British Journal of Cancer (1999) 81(7), 1165–1173
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Table 2 Dilution experiment of normal peripheral blood containing MCF-7
cells

Dilution Chromosome 7b Chromosome 12b Cytokeratin+ cellsd

MCF-7/nPBa (% abnormal cells)c (% abnormal cells)c (Flow cytometry)

100 98.7 98.4 98.2
0.1 65 66 95.4
10–2 55 55 76.8
5 × 10–3 60 60 56.3
10–3 32 29 22.2
5 × 10–4 9 9.2 0
10–4 2.7 2.7 0
5 × 10–5 5.2 8.4 0
10–5 3.1 3.4 0
5 × 10–6 0.5 0.8 0
10–6 2.2e 2.4f 0

anPB; normal peripheral blood; bat least 300 cells were counted; ccells with
trisomies or tetrasomies; d10 000 events were acquired; ebackground trisomy
7: 1.32%; fbackground trisomy 12: 1.10%.
Statistical analysis

Data are expressed as mean (± s.e.m.) or as mean (± s.d.) and
analysed by using the two-way analysis of variance and other
standard methods. The SPSS statistical package was employed for
these analyses as well as to generate descriptive statistics of the
data.



We investigated 48 patients with gynaecological cancer (Table 1).
To obtain greater sensitivity, we applied FISH on MACS-sorted
cells. To distinguish monosomy and trisomy from background,
cut-off levels were set at 3 standard deviations (s.d.) above the
mean percentages of normal control cells (n = 5) with one or three
signals (> 5.3% for abnormalities of chromosome 7, > 6.3% for
abnormalities of chromosome 12, > 8.2% for abnormalities of
chromosome 17).
British Journal of Cancer (1999) 81(7), 1165–1173

Table 3 Flow cytometry and FISH including HER-2/neu after MACS
carcinoma

Patient
no. CK + (%) Chromosome 7 Chromo

2a 18.5 3.0 (negativea) 3.7 (ne
2b 10.8 6.3 3
2c 13.3 7.6 11
2d 1.92 6.0 3.0 (ne

12 0.08 ND N
17 2.8 0 8
19 0.04 ND N
21 7.3 ND 4.4 (ne
30 10.0 3.0 3.0 (ne
33 7.7 ND N
34 13.0 1.5 4.6 (ne
41 2.1 0 7
Mean ± s.e.m. 6.9 ± 1.6 3.4 ± 1.0 5.4 

ND, not determined; aPercentage of chromosomal aberrations less th
FISH on primary tumours and cell lines

As a positive control for aberrations of chromosomes 7, 12 and 17
we analysed a breast cancer (MCF-7) and an ovarian cancer cell
line (MZ-1b). All MCF-7 and MZ-1b cells were aberrant for chro-
mosomes 7 and 12 and 87.5% of these cells showed numerical
abnormalities for chromosome 17. SK-BR-3 human breast cancer
cells (97% of aberrant tumour-cell nuclei) were used as a control
for Her-2/neu amplification.

Tumour cells obtained from tissue or effusions (n = 10) showed
a high frequency of chromosomal aberrations (an average of 45%)
mainly trisomies and tetrasomies of chromosomes 7, 12 and 17.
A monosomy pattern was limited to chromosome 17. Her-2/neu
amplification was identified on average in 36% of tumour-cell
nuclei with high copy levels.

Sensitivity

Dilution experiments were performed to determine the sensitivity
of FISH after MACS-sorting. MCF-7 cells with an average of 98%
of numerical aberrations for chromosomes 7 and 12 (trisomies and
tetrasomies) were sorted into normal peripheral blood (0.1–10–6).
By comparing flow cytometry after MACS-sorting using an anti-
cytokeratin and an anti-CD45 antibody and FISH (α-satellite
probes for chromosomes 7, 12 and 17), flow cytometry failed to
detect tumour cells at a level of 5 × 10–4. With FISH we were able
to identify 2.4% of chromosomal aberrant cells in a dilution
containing as few as 1 tumour cell in 106 normal cells (Figure 1
and Table 2).

Flow cytometry after MACS-sorting of PB-tumour cells

On 12 samples from 9/25 patients with primary carcinoma, we
applied flow cytometry after MACS-sorting by doublestaining
with anti-FITC-conjugated anti-cytokeratin and anti-PerCP-
conjugated CD45 antibody. Tumour cells were defined as
CK+/CD45–. The purity ranged from 0.04% to 18.50% (median:
7.30%; Table 3 and Figure 2). Some cells even double expressed
CK and CD45, suggesting a false-positive detection of tumour
cells. There was no correlation between sorting purity and the
frequency of chromosomal aberrations detected by FISH.
© 1999 Cancer Research Campaign

-sorting of PB-tumour cells from 10/28 patients with primary

Aberrant cells (%)

some 12 Chromosome 17 Her-2/neu

gativea) 14.3 18.8
.7 15.3 16.7
.0 ND 36.4
gativea) 10.5 negative
D 18.0 46.2
.5 ND ND
D 4.2 (negativea) 22.7
gativea) ND ND
gativea) 13.0 ND
D 13.7 41.5
gativea) ND ND
.0 ND ND
± 0.9 12.7 ± 1.7 30.4 ± 5.1

an background (mean + 3 SD of normal control cells)
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Figure 3 Percentage of chromosomal aberrations in PB-tumour cells
compared to tissue tumour cells. Tissue tumour cells showed a much higher
frequency of numerical aberrations for chromosomes 7, 12, 17 and 17q
compared to PB-tumour cells, which had only high Her-2/neu amplification
levels

Figure 4 Comparison of chromosomal aberrations of PB-tumour cells from
patients with/without solid metastases. PB-tumour cells of patients without
solid metastases had a significantly higher percentage of chromosomal
aberrations for chromosome 12 (P = 0.038) than patients without solid
metastases
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FISH on MACS-sorted PB-tumour cells

In 35/48 peripheral blood samples (17 patients had relapsed and 13
primary carcinoma with lymph node or solid metastases) we were
able to detect tumour cells which carried chromosomal aberra-
tions; they were identified by the fluorescence pattern of their
nuclei (Table 1 and Figure 3). To confirm the presence of tumour
cells after MACS-sorting, cells were doublestained for anti-cyto-
keratin and anti-CD45. These cells showed aberrations appearing
mainly as monosomies for chromosome 17 (12.93% ± 0.59%) and
as trisomies for chromosomes 7 and 12 (5.04% ± 0.68% and
7.64% ± 0.66%). Tumour cells from six PB-samples (primary
carcinoma) were also studied for amplification of the region
17q11.2–q12 (Table 3 and Figure 3). The frequency of aberrations
British Journal of Cancer (1999) 81(7), 1165–1173
(30.36% ± 5.13%) was much higher than numerical changes of
chromosomes 7, 12 and 17.

PB-tumour cells from patients with a primary carcinoma
without solid metastases had a significantly lower percentage
of chromosomal aberrations, especially for chromosome 12
(P = 0.035; P = 0.038) compared to those with relapsed disease
and solid metastases (Figures 4 and 5). There was no statistically
significant difference in the frequency of chromosomal aberrations
with respect to lymph node involvement in patients with primary
carcinoma. Twelve out of 25 patients with a primary carcinoma are
still in clinical remission with a median follow-up of 20 months
(range 4–24 months), one patient died in clinical remission (CR)
after 2 months, four relapsed after a median CR duration of 11
months (range 5–12 months). There was no correlation between
the frequency of chromosomal aberration in PB-tumour cells and
remission duration. Five of 8 patients with primary carcinoma and
solid metastases have stable disease with a median follow-up of 19
months (range 9–22 months), one patient has progressive disease
and two patients died shortly after diagnosis because of their
metastases.

In 13/48 samples (seven patients with primary carcinoma and
four of them without lymph node involvement, six patients with
relapsed disease and solid metastases) we could not detect tumour
cells either by flow cytometry or by FISH. The six patients with
solid metastases are clinically unchanged (median follow-up
24 months); three patients are in CR (median follow-up months),
one patient died after 2 months in CR and three patients relapsed
after a median remission duration of 5 months.

Tumour cell detection in peripheral blood and bone
marrow: a follow-up of a patient with primary breast
cancer

Four PB and one BM sample were obtained from a patient with
primary breast cancer (patient no. 2, Tables 1 and 3) at diagnosis
and at three different time points after surgery. The patient did not
receive any chemotherapy or hormonal treatment.
© 1999 Cancer Research Campaign
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Cells were doublestained for anti-cytokeratin and anti-CD45
before MACS-sorting. By flow cytometry we were able to detect
23 tumour cells µl–1 in the first PB-sample (obtained before tumour
resection), one tumour cell µl–1 4 months after surgery, two tumour
cells µl–1 in a follow-up sample 8 months after diagnosis compared
to 104 tumour cells µl–1 in the bone marrow. We could not detect
any CK+/CD45– cells in a PB-sample obtained 14 months after
diagnosis. However, by applying FISH after MACS-sorting we
identified peripheral blood tumour cells with aberrations for
chromosome 7 (5.8% ± 1.0%), chromosome 12 (5.3% ± 1.9%),
chromosome 17 (13.4% ± 1.0%) and for the region 17q11.2–q12
(23.9% ± 6.3%) without any statistically significant differences
between the first three samples (Tables 1 and 2). The frequency of
aberrant tumour cells was lower in the fourth sample and no
Her-2/neu amplification could be detected. BM tumour cells
showed in 11.8%, numerical aberrations for the centromeric region
of chromosome 17 and amplification for Her-2/neu in 18.2%.



The detection of small numbers of carcinoma cells in patients with
solid tumours has become increasingly important and may help in
determining the prognosis and the development of new therapeutic
approaches (Datta et al, 1994; Ross, 1998).

Many techniques such as immunocytochemistry, flow cytom-
etry, PCR and FISH have been used to detect micrometastases in
peripheral blood, bone marrow, aphereses or lymph nodes (Smith
et al, 1991; Kvalheim, 1996; Pantel, 1996; Vrendenburgh et al,
1996; Schoenfeld et al, 1997; Traystman et al, 1997).

In immunocytochemical assays, monoclonal antibodies to
cytokeratins can be regard as a sensitive probe to detect isolated
epithelial tumour cells in bone marrow and blood (Diel et al, 1996;
Franklin et al, 1996).

Molecular methods are based on the detection of either muta-
tions in oncogenes and tumour suppressor genes or mRNA
expression of tissue-specific and tumour-associated genes (Datta
et al, 1994; Schoenfeld et al, 1994, 1997; Kruger et al, 1996;
Luppi et al, 1996; Moscinski et al, 1996; Noguchi et al, 1996).
Nevertheless, the immunocytochemistry method needs to be
further developed before it can be used routinely in the clinic and
it is not clear whether the most frequently employed reverse tran-
scription PCR (RT-PCR) assays for cytokeratin 18 or 19 or pancar-
cinoma-associated tumour marker (KSA or 17-1A antigen) have
the specificity to be reliably used (Kvalheim, 1996; Helfrich et al,
1997).

Human breast and ovarian cancers appear, despite their consid-
erable pathologic uniformity, to be heterogeneous with respect to
biological and clinical behaviour and these tumours are not
associated with unique karyotypic changes (Deville et al, 1988).
Conventional cytogenetic studies and FISH analyses of breast and
ovarian tumour cells have shown multiple chromosomal abnor-
malities involving chromosomes 7, 12 and 17 (Dutrillaux et al,
1990; Geleick et al, 1990; Cajulis et al, 1994; Persons 1994; Xu
et al, 1994; Fiegl et al, 1995; Visscher et al, 1995, 1996; Ishikawa
et al, 1996, Engel et al, 1998). The erbB-2 oncogene located on
chromosome 17q is expressed in a substantial number of breast
tumours and associated with a poor prognosis (Kallioniemi et al,
1992; An et al, 1995; Schildkraut et al, 1995; Fernandez et al,
1996; Sauter et al, 1996; Ishikawa et al, 1997). Recent studies
(Press et al, 1997; Revillion et al, 1998) have confirmed a signifi-
cantly worse survival of erbB-2-positive patients and suggest that
© 1999 Cancer Research Campaign
erbB-2 could be a marker of reduced response to chemotherapy
and hormonal treatment.

Fluorescence in situ hybridization, by which many cells can be
screened, independent of their capacity to proliferate in vitro, has
become a complementary tool in cancer cytogenetics for the detec-
tion of numerical aberrations in interphase nuclei and for the
classification of marker chromosomes (Kiechle-Schwarz et al,
1991; Le Beau, 1993; Micale et al, 1994; Muller et al, 1996).

The immunomagnetic MACS system, using magnetic beads
coated with a cocktail of monoclonal antibodies recognizing the
leucocyte common antigen CD45 or the CK-antigen developed by
Miltenyi et al in 1990, is an extremely efficient method for sepa-
rating cells (Harbeck et al, 1995). No morphological alterations
were observed after the separation, which suggests that the
passage through a strong magnetic field does not damage the cells.

In this study, we used FISH on MACS-sorted tumour cells to
investigate the presence and frequency of micrometastases in
patients with breast or ovarian cancer by using CK-8 microbeads
and α-satellite probes specific for the centromeric regions of chro-
mosomes 7, 12 and 17 and the region 17q11.2–q12 (HER-2/neu).

Trisomies and tetrasomies of chromosomes 7, 12 and 17, as well
as combined aberrations, have been identified by FISH in a
substantial number of tumour cells obtained from tumour tissue. A
monosomy pattern was limited primarily to chromosome 17, thus
correlating with previous cytogenetic studies (Visscher et al, 1996;
Engel et al, 1998).

Circulating tumour cells were present in 35/48 peripheral blood
samples. Flow cytometry after MACS-sorting failed at a detection
level of 5 × 10–4. The sorting purity ranged from 0.04% to 18.50%
in patients samples, suggesting a low degree of specificity and
substantial contamination with normal PB lymphocytes. FISH
after MACS-sorting is an alternative method for detection of
circulating tumour cells with a higher sensitivity (one tumour
cells in 106 normal cells). However, PB-tumour cells carried aber-
rations for chromosomes 7, 12 and 17 as well but at a much lower
frequency (especially for chromosomes 7 and 12) compared to
those obtained from tumour tissue. In fact, these very low rates of
aberrations might suggest that chromosomes 7 and 12 are less
frequently involved in micrometastases of patients with breast or
ovarian cancer. On the other hand, it is tempting to speculate that
PB-tumour cells might be different with respect to their biological
behaviour. Nevertheless, higher levels of Her-2/neu copies (on
average 30%) and numerical aberrations for the centromeric
region of chromosome 17 (on average 13%) were detected,
suggesting chromosome 17 is frequently involved and might be a
sensitive marker for the detection of circulating tumour cells.
However, follow-up samples at different time points in clinical
remission are necessary to prove the value of circulating tumour
cells.

The technique described could become a valuable tool for the
quantification and molecular characterization of metastatic carci-
noma cells and might provide the basis to monitor the response to
cytotoxic or hormonal therapy and may identify women at risk of
relapse.
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