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The recognition of DNA damage and DNA repair responses are
coupled to transcriptional events. This coupling evolved in
mammalian cells in order to stimulate DNA repair processes,
induce additional repair mechanisms, activate checkpoint
functions or apoptosis. In order to repair, recover and survive,
mammalian cells must recognize DNA damage and consequently
they require the induction of specific genes and proteins. Some
universal, and possibly some other tissue-specific, signal transduc-
tion pathways lead to the activation of key transcription factors
which then regulate downstream molecular events in the damage
response. The regulation of DNA damage repair at the transcrip-
tional level could be a primary response and thus altered gene
expression may offer the first detectable molecular events in the
process of DNA damage control. BRCA1 and BRCA2 both have
transcriptional activator functions and are part of a big nuclear
protein complex, which may act as a molecular sensor and signal
transducer. The role of the p53 gene in DNA damage response is
well established and recently it has been reported that both
BRCA1 and BRCA2 gene products actively interact with TP53.
Also, there are several studies demonstrating altered damage
response in cells mutated for BRCA1 or BRCA2. Clearly, there is
a role or perhaps more than one role for the BRCA1 and BRCA2
genes in DNA damage response, but the real question is where to
place their action in this very elaborate multistep pathway?

It is estimated that 10% of breast cancer patients develop the
disease due to the presence of a breast cancer predisposition gene
(Easton and Peto, 1990). Nearly half of these patients are thought
to have a mutation in the breast cancer predisposition genes,
BRCA1 or BRCA2. The recent isolation of BRCA1 (Miki et al,
1994) and BRCA2 (Wooster et al, 1995) stimulated intensive
scientific interest. Although a large amount of information is now
available, including nucleotide sequence, mutation spectrum,
cellular localization and protein structure, the molecular pathway
in which BRCA1 and BRCA2 is involved in response to DNA
damage remains to be elucidated.

BRCA1 and BRCA2 are tumour suppressor genes since the
majority of tumours arising in members of BRCA1- and BRCA2-
linked families show loss of heterozygosity at the relevant loci
with the retention of the mutant allele (Neuhausen et al, 1994;
Collins et al, 1995). The products of both genes are large nuclear
proteins; the BRCA1 gene encodes a protein of 1863 amino acids,
the BRCA2 gene a protein of 3418 amino acids. The primary
amino acid sequences reveal only little information regarding the
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function of these genes and, although there are some similarities
between their genetic structure, there is no sequence homology
between them. However, a number of observations indicate that
BRCA1 and BRCA2 may function in a similar pathway. Their
tissue distribution and gene expression pattern are similar, their
expression level is cell cycle regulated (Rajan et al, 1996) and they
both interact with RAD51 (Scully et al, 1997; Sharan et al, 1998)
and TP53 (Marmorstein et al, 1998; Zhang et al, 1998).

RAD51 plays a key role in homologous recombination and
DNA double-strand break (DSB) repair; thus this interaction
suggests a role for BRCA1 and BRCA2 in the DNA damage
response. The BRCA2 protein directly interacts with RAD51
through the evolutionarily conserved BRC domains (Wong et al,
1997). The interaction of the BRCA1 and RAD51 proteins has
also been mapped to a specific region of BRCA1 exon 11 (Scully
et al, 1997a), although it is not known whether this interaction is
direct or mediated by other proteins. Furthermore, recently it has
been shown that BRCA1 and BRCA2 form a complex in vivo, as
they can be co-immunoprecipitated from cell extracts (Chen et al,
1998). Mapping the site for this interaction showed that the
BRCA1 C terminal region is important and that RAD51 does not
serve as a bridge between BRCA1 and BRCA2. In meiotic cells
BRCA1, BRCA2 and RAD51 are all localized on unsynapsed
axial elements, which suggests that this complex participates in
signalling pathways and/or recombination. In mitotic cells they
also co-localize in nuclear dots, and after DNA damage they relo-
cate into the proliferating cell nuclear antigen (PCNA) replicating
structures suggesting a joint action in damage response (Chen et
al, 1998). However, it is important to note that these interactions
are not stochiometric and there is a pool of ‘free’ RAD51 in the
cells and, similarly, only about 5% of the BRCA1 and BRCA2 are
in complex with each other. This also shows the possibility of
multiple functions of these proteins.

Several studies have demonstrated a relationship between
BRCA1 and BRCA2 gene function and normal growth control.
For example, BRCA1 and BRCA2 are induced at the G1/S
boundary in normal mammary epithelial cells and in breast cancer
cell lines stimulated to proliferate (Gudas et al, 1996; Vaughn et al,
1997). BRCA1 message and protein was also shown to be induced
by the mitogenic activity of hormones (Marks et al, 1997). The
mouse homologues brca1 and brca2 appear to function in normal
growth control and their very similar expression pattern suggests
analogous regulatory pathway. A recent study showed that the
expression pattern of brca1 and brca2 are closely correlated in
most tissues with PCNA nuclear staining, which is a marker for
proliferating cells in S phase. Exception was found in the testes
where brca1 expression precedes brca2 expression (Blackshear
et al, 1998), thus their regulatory pathways are not identical. This
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Figure 1 TP53, a key responder to DNA damage, is interacting with
BRCA1 and BRCA2 and they all take part in transcription regulation leading
to the final cellular response of cell cycle arrest, DNA repair or apoptosis
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pattern during spermatogenesis also suggests that these genes can
function beyond DNA replication, since brca1 and brca2 tran-
scripts expressed for longer periods than the PCNA protein. Brca1,
brca2 and rad51 nullizygous mice all show early embryonic
lethality, associated with a proliferation deficit (Gowen et al, 1996;
Ludwig et al, 1997; Suzuki et al, 1997) and it is very interesting to
note that coincident homozygous p53 mutation can partially
suppress this lethality (Ludwig et al, 1997).

The cells of BRCA1- and BRCA2-deficient tumours are often
aneuploid (Marcus et al, 1996) and cells of brca2 mutant mice
have aberrant chromosome structure coupled with inefficient
DNA repair (Patel et al, 1998), which suggests that both genes are
involved in the maintenance of genomic stability. Consistent with
this hypothesis, brca2 nullizygous embryos exhibit X-ray hyper-
sensitivity (Sharan et al, 1997). It has been shown that the human
pancreatic adenocarcinoma cell line Capan-1, which has only one
copy of the BRCA2 gene with a mutation producing a truncated
protein eliminating the RAD51 interacting domain, has a striking
deficiency in double-strand break repair (Abbott et al, 1998).
These studies clearly demonstrate a role for BRCA1 and BRCA2
in DNA break repair and in the maintenance of genome integrity.

Looking into the protein structures of these gene products very
little is revealed about the possible function. The BRCA1 protein
has a RING finger in its N terminal globular region, which could
be involved in DNA binding (Thakur et al, 1997). The tandem
BRCT domain at the C terminal region (aa 1560–1863) has tran-
scriptional activation function, as it transactivates gene expression
when fused to a heterologous DNA binding domain (Monteiro et
al, 1996). Furthermore, this BRCT motif is a relatively common
feature of proteins involved in DNA repair or cell cycle check-
point function (Bork et al, 1997; Calebaut et al, 1997). It has also
been demonstrated that BRCA1 is physically associated with the
RNA polymerase II complex (Scully et al, 1997) through RNA
helicase A that interacts with the carboxy terminus of BRCA1 and
links it to the complex (Anderson et al, 1998). Recent studies
implicate that BRCA1 acts as a transcriptional co-activator and
increases the TP53-dependent transcription from P21 and BAX
promoters (Zhang et al, 1998). The interaction between BRCA1
and TP53 has been mapped to aa 224–500 of BRCA1 and the C
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terminal domain of TP53. These results would indicate that
BRCA1 and TP53 may coordinately regulate gene expression;
however, BRCA1 has also been found to transactivate the expres-
sion of P21, the major cyclin-dependent kinase inhibitor, in a
TP53-independent manner (Somasundaram et al, 1997). These
data suggest BRCA1 involvement in the inhibition of cell cycle
progression into the S phase.

BRCA2 also has transcription activating function, which was
localized to a highly conserved region at the amino acid terminus.
Regions in exon 3 of BRCA2 show sequence homology with C-
JUN and this exon has the potential to activate transcription in yeast
(Milner et al, 1997). The BRCA2 protein has been shown to have
histone acetyl-transferase (HAT) activity (Siddique et al, 1998),
although this study was criticized, claiming that BRCA2 does not
have intrinsic HAT activity but interacts with P/CAF1, a histone
acetyltransferase (Fuks et al, 1998). Either way both studies
suggest that BRCA2 participates in transcriptional regulation, as
disrupting the nucleosomal structure through acetylation of certain
histones is a possible mechanism for transcriptional activation.

Transcriptional response to DNA damage is well-documented
after exposure of cells to different DNA-damaging agents. It has
been shown that DNA-damaging agents trigger a transient induc-
tion of TP53 through post-translational mechanisms (DNA-PK,
ATM) that inhibit ubiquitin-mediated degradation. The accumula-
tion of TP53 in turn activates transcription from several genes,
including P21, GADD45, MDM2, CYCLIN G, BAX. Post-
translational modification, including phosphorylation by DNA-
PK, may activate TP53 sequence-specific DNA binding or may
affect TP53 activity through its interaction with other proteins. As
BRCA1 has now been identified as a TP53-interacting protein
(Zhang et al, 1998) and it also appears to regulate the expression of
P21 in a TP53-dependent and -independent manner, there are
strong reasons to propose an important role for BRCA1 in DNA
damage processing.

Recently, a new protein, BAP1, has been found on the basis of
its interaction with BRCA1 (Jensen et al, 1998). BAP1 is a ubi-
quitin carboxy-terminal hydrolase, suggesting that de-
ubiquinating enzymes may play a role in BRCA1 function as well.
BAP1 binds to the wild-type BRCA1 RING finger and enhances
BRCA1-mediated growth inhibition of breast cancer cells. One
possible model for BRCA1 function is that the BRCA1–BAP1
complex serves to target different substrates with its ubiquitin-
mediated proteolysis. TP53 could easily be one of these target
molecules and the RAD51/52 complex is also a candidate.

Surprisingly in a yeast two-hybrid system, c-Myc was also
isolated as a BRCA1 binding protein and this c-Myc–BRCA1
interaction affects the cellular phenotypes caused by the syner-
gistic actions of c-Myc and Ras. Mapping the interaction revealed
two regions of BRCA1, aa175–303 and aa433–511. The small
intervening region, which is rich in acidic amino acids, appears to
account for some transcriptional activation function, although this
activity is much lower than that of the C terminal domain. c-Myc
is one of the early response genes activated in G1 phase and it acti-
vates the expression of a series of genes with important roles in
cell cycling. Reduced c-Myc expression leads to a slower growth
rate and delayed entry into S phase. It is possible that BRCA1
down-regulates Myc activity by preventing the Myc–Max
heterodimer DNA binding or represses transcription through the
action of BRCA1–Myc–Max complex. Either way this finding is
another supporting evidence that BRCA1 is an important compo-
nent of a transcription factor complex.
© 1999 Cancer Research Campaign
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In its unusually large exon 11, BRCA2 codes for eight tandem
repeats, the BRC repeats, which are required for the RAD51
binding (Chen et al, 1998) and it was shown that this interaction
is critical for cellular response to DNA damage. Very recently
interaction has been demonstrated between BRCA2 and TP53 as
well; however, no binding site was described and the interaction
may be mediated by other proteins. It was shown that BRCA2
forms a complex with TP53 in vivo and this interaction has an
important functional consequence. BRCA2 specifically inhibits
p53 transcriptional activity (Marmorstein et al, 1998) and, most
interestingly, the co-transfection with RAD51 and BRCA2 drove
to almost complete inhibition of transcription activation by p53.
This indicates that RAD51 enhances the BRCA2 inhibition of
p53 transcriptional activity, proving that the interaction between
BRCA2 and p53 has an important role in transcription regula-
tion. It is possible that BRCA2 acts to limit the length of the p53-
mediated cell cycle arrest. This is in concordance with a previous
study that showed that the brca2/p53 double mutant embryo had
less severe phenotype compared to the brca2 mutant one. In addi-
tion, brca2 mutant embryo cells exhibit increased p21 levels
associated with a defect in proliferation. It is also a novelty that
RAD51 is now linked to transcription regulation and perhaps
BRCA2 serves as a bridge linking cell cycle control and DNA
repair pathways.

An additional important feature of BRCA1 is that it becomes
hyper-phosphorylated following DNA damage (Scully et al,
1997). In an earlier study of c-JUN induction by UV irradiation, it
was found that UV exposure triggered a signalling cascade that
increased phosphorylation of the c-jun protein resulting in
enhanced transcription activation (DeVary et al, 1993). It is
© 1999 Cancer Research Campaign
intriguing that BRCA1 may serve as a substrate for DNA-PK that
upon DNA damage recognition phosphorylates BRCA1, just as it
phosphorylates TP53 as one of the initial responses upon DNA
damage. ATM can also play an important role in these molecular
events as it was shown that ATM specifically phosphorylates TP53
after irradiation. Could BRCA1 also serve as a target for phos-
phorylation by ATM? Perhaps the BRCA1–Myc interaction is
also affected by the BRCA1 phosphorylation state, and this way
BRCA1 may act as a signal transducer from DNA damage to
switch of cell cycle arrest versus apoptosis?

All the above data from recent studies strongly indicate that
BRCA1 and BRCA2 have a primary role in DNA damage
response by processing signals that arise after damage. Through
cross-talks with other important elements of signal transduction
pathways, BRCA1 and BRCA2 have an essential regulatory role
in the cellular response to the damage resulting in cell cycle arrest,
DNA repair or apoptosis. Some of the most recent studies show
that both BRCA1 and BRCA2 may act upstream of the actual
DNA repair and have important functions at the transcriptional
level regulating genes taking part in the consequtive molecular
events.

Note added in proof Since the preparation of this manuscript
Harkin et al have shown that BRCA1 indeed has an important role
in transcriptional regulation and GADD45, a DNA damage-
responsive apoptosis gene, was found to respond with immediately
elevated expression. This function of BRCA1 is proved to be p53
independent and further supports a role for BRCA1 in DNA
damage response.
British Journal of Cancer (1999) 81(7), 1099–1102
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