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Summary The objective of this study was to test the hypothesis that chromosomal imbalances in central nervous system primitive
neuroectodermal tumours (PNETs) reflect site and histology. We used comparative genomic hybridization to study 37 cases of PNET, of
which four were cerebral and 31 were medulloblastomas classified histologically as classic (n = 17) or nodular/desmoplastic (n = 14). Tumour
immunophenotype was characterized with antibodies to neuroglial, mesenchymal and epithelial markers. Chromosomal imbalances were
detected in 28 medulloblastomas (90%), and significant associations between tumour variants and genetic abnormalities were demonstrated.
Aberrations suggesting isochromosome 17q were present in eight (26%) medulloblastomas, of which seven were classic variants. None of
these cases, or a further six with gain of 17q, showed immunoreactivity for glial fibrillary acidic protein. Loss on 9q was found in six cases
(19%), five of them nodular/desmoplastic. Loss of 22 occurred in four (13%), all classic medulloblastomas in young patients with a poor
outcome and immunoreactivity for more than one epithelial or mesenchymal marker. Different patterns of imbalance were found in the
cerebral PNETs. There were no abnormalities of chromosome 17, but all three cases with imbalance showed losses of 3p12.3–p14.

Keywords: medulloblastoma; cerebral PNET; comparative genomic hybridization; isochromosome 17q; monosomy 22; glial fibrillary acidic
protein
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Tumours of the central nervous system (CNS) are the commonest
solid neoplasms of childhood, and primitive neuroectodermal
tumours (PNETs) are the most numerous among these, accounting
for approximately 25% of all childhood brain tumours (Packer,
1995). More than 90% of cases of CNS PNET occur in the
posterior fossa as medulloblastomas. PNETs at other CNS sites
resemble the classic medulloblastoma, which has a propensity for
divergent differentiation along neuro-epithelial lines, manifesting
as expression of glial fibrillary acidic protein (GFAP) and/or
neuronal proteins or rarely as the presence of scattered ganglion
cells (Tomlinson et al, 1992; Ellison and Love, 1998). In addition
to the classic medulloblastoma, several variants are recognized in
the World Health Organization classification of CNS tumours:
desmoplastic medulloblastoma, melanotic medulloblastoma and
medullomyoblastoma (Kleihues et al, 1993). Desmoplastic medul-
loblastomas account for approximately 20% of medulloblastomas
and frequently exhibit a nodular architecture in which cells often
show a neuronal or glial immunophenotype; these nodular/desmo-
plastic medulloblastomas are considered to form a histological
spectrum of tumours, distinct from classic medulloblastomas
(Giangaspero et al, 1991; Tomlinson et al, 1992).

Cytogenetic studies of medulloblastoma and other PNETs have
identified several non-random chromosomal aberrations in a high
proportion of cases (Biegel et al, 1989; Bhattachajee et al, 1997;
Bigner et al, 1997). Of these, isochromosome 17q [i(17q)] is the
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most common, occurring in a third of cases overall (Mertens et al,
1994). Other recognized patterns of abnormality have included
loss of the X or Y chromosome, trisomy 7, monosomy 22, double
minutes and structural rearrangements, particularly of chromo-
somes 1, 7 and 11 (Heim and Mitelman, 1995; Bigner et al, 1997).
Microsatellite analysis has corroborated the existence of chromo-
some 17 abnormalities by documenting loss of heterozygosity
(LOH) on 17p, as well as on chromosomes 9, 10, 11, 16 and 22
(Blaeker et al, 1996).

All of these abnormalities result in genetic imbalance and there-
fore make these tumours particularly suitable for study by compar-
ative genomic hybridization (CGH). Two previous studies (Schütz
et al, 1996; Reardon et al, 1997) found widely different numbers of
abnormalities in medulloblastomas using CGH. The aims of this
study were to screen a series of CNS PNETs, mostly medulloblas-
tomas, for chromosomal imbalance as revealed by CGH, to test the
hypothesis that histological and immunophenotypical differences
among variants of PNET are associated with specific genetic
abnormalities, and to assess the prognostic value of any commonly
observed genetic abnormalities.



Patient group

All biopsies (n = 39) came from patients (n = 37) attending the
Wessex Neurological Centre in Southampton between 1985 and
1997. Some tumour, surplus to diagnostic requirements, was
stored in each case at –170°C. All specimens used in the study
were obtained prior to commencement of treatment, except in
cases 8 and 13.

Most patients (n = 31) had a medulloblastoma. Of these, 17
showed classic histology, while the remaining 14 had a
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Table 1 Clinical features of PNETs and CGH results

Case Age at PNET Metastases Primary Chemotherapy Radiotherapy Survival CGH results
diagnosis variant surgical (years)
(years) resection

1 19.8 Classic MB No Subtotal No CS 4.8* rev ish enh(5,6,7,12q24,17,18),dim
(X,2q14qter,3,8p12q24.1,9p,11,13q13q31,
14q23q31,16q)

2 14.3 Classic MB No Partial Yes CS 8.8* rev ish enh(7,17q),dim(2,8,11p,
12pterq22,13q,17p)

3 8.5 Classic MB No Subtotal Yes CS 3.3 rev ish enh(4p15.3pter,6q23qter,
9p,12q23qter,17q),dim(Y,5q34qter,8p12pter,
17p,18p,20)

4 0.7 Classic MB No Partial No No 0.3 rev ish dim(22)
5 1.6 Classic MB No Partial Yes No 0.3 rev ish enh(17,19q), dim(Yq,11q13.5q23)
6 6.3 Classic MB Spinal Complete Yes CS 1.4 rev ish enh(17q,18),dim(8,17p)
7 9.8 Classic MB Spinal Partial Yes CS 1.7 rev ish enh(17q),dim(Yq,17p)
8 6.5 Classic MB No Subtotal Yes CS 5.1 1st relapse: rev ish enh(1q,4p16,7q,

12q23qter,17q21qter),dim(4q22q28,
4q32qter, 5q33qter,8p21.3pter,
11p11.2p13,16q21qter) 2nd relapse: 
rev ish enh(1q,4p16,7q, 12q23qter,
17q21qter),dim(Y,4q22q25, 4q32qter,
5q33qter,8p21.3pter,11p,
16q21qter)

9 6.6 Classic MB No Complete Yes CS 2.8* No imbalances
10 3.3 Classic MB No Complete No CS 6.3* rev ish enh(1q,8,17q),dim(4q31qter,17p)
11 24.8 Classic MB Spinal Subtotal No CS 0.3* rev ish enh(10,17q),dim(17p)
12 4.8 Classic MB Spinal Complete No No 0.1 rev ish enh(2p13.3pter,12,17q,18),

dim(4q24qter,16q21qter,17p)
13 30.3 Classic MB No Subtotal No CS 3.3 1st relapse: rev ish enh(Xq,3q,6q26q27,9p,

13,15q23qter,18p),dim(Xp,4q31q34,
9q22q34.1,10q21qter,11p14,11q14q22,
14,15q11q15,17p12pter),amp(2q14q21)

14 32.2 Classic MB Not known Biopsy No No 0 rev ish dim(10q,11,17p)
15 5.3 Classic MB No Subtotal Yes CS 1.5 rev ish dim(22)
16 0.3 Classic MB No Biopsy No No 0 rev ish dim(22)
17 0.7 Classic MB Spinal Subtotal Yes Local 1.3 rev ish enh(14),dim(22)
18 9.3 ndMB Spinal Subtotal Yes CS 0.8 no imbalances
19 5.1 ndMB No Subtotal Yes CS 6.4* rev ish enh(4,5,6,7,17q),dim(Y,8,17p)
20 11.2 ndMB No Subtotal No CS 1.3* rev ish enh(1,7,17q),dim(Xq12q25,Y,8,10,11,

13q13q21,14q11.2q13,14q24,15,20)
21 5.9 ndMB No Subtotal Yes CS 1.2* rev ish enh(2,7,15,17q),dim(3,8,10,

11p15pter,21)
22 5.3 ndMB No Subtotal No No 0.1 rev ish enh(7q,8q24,12q24,17q22qter,18,

19pterq12),dim(8p,10q21.3qter,19q13.2qter)
23 12.7 ndMB No Complete Yes CS 8.1* rev ish enh(1q31qter,2,4q21q25,9p,18),

dim(4p15.2q13,4q26q32,8,9q22q34,10,16),
amp(12p13,13q33)

24 3.6 ndMB No Complete No CS 7.4* rev ish dim(9q21q31)
25 19.6 ndMB No Subtotal No CS 4.5 Primary tumour: rev ish enh(3q),dim(Y)

1st relapse: rev ish enh(3q),dim(11q13q22)
26 22.8 ndMB No Complete No CS 7.2* rev ish dim(X,6q16q24)
27 7.3 ndMB No Complete No CS 1.3* rev ish enh(1q,2,3p14p21,7,9p,10p,13),

dim(Xp,3q,4pterq26,5q,8q12qter,9q21.3q22,
10q,11q23qter,14,16,17p,18p),amp(4q28)

28 30.3 ndMB No Subtotal No CS 2.4 rev ish enh(20q),dim(9q22qter,17p)
29 25.6 ndMB Not known Complete No Local 6.4 rev ish enh(15q12q14)
30 27.9 ndMB Bone Partial No CS 5.6 No imbalances
31 4 ndMB No Subtotal No CS 0.9* rev ish enh(3,9p),dim(9q)
32 11.9 GNB No Complete No CS 10.3* rev ish enh(17q),dim(17p)
33 14.1 MmyoB Not known Complete No CS 10.3* rev ish enh(8)
34 8.3 cPNET No Biopsy Yes Palliative 0.6 rev ish enh(X,1,7p,9,13,16p,19,20,22),dim

(3,4,5,6,8q13qter,10q11q22,10q24.3qter,
12p12q23,14,15q11q23,16q12q22.1,18q),
amp(7p11.2p12,7q21.3q22)

35 2.6 cPNET No Subtotal Yes CS 5.7* rev ish enh(X,1p32pter,1q32qter,2p,
7q33qter),dim(3p12p14,3p21.3pter,5pterq33,
6,7p12p21.1,9p23q32,11,14q24qter)

36 6.4 cPNET Not known Partial No No 0.2 rev ish dim(3p13p21.1)
37 1.1 cPNET No Complete Yes No 0.8 No imbalances

Survival: *denotes ongoing remission. MB, medulloblastoma; nd, nodular/desmoplastic; GNB, ganglioneuroblastoma; MmyoB, medullomyoblastoma; cPNET,
cerebral PNET; CS, craniospinal radiotherapy.
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Table 2 Immunophenotype of PNETs

Tumour GFAP SYN NFP CK EMA SMA DES

1 MB – – – – – – –
2 MB – – – – – – –
3 MB – – – – – – –
4 MB – – – – 2+ 2+ –
5 MB – 1+ – – – – –
6 MB – 1+ – it it it it
7 MB – 1+ – it it it it
8a MB – it it it it it it
8b MB – 2+ – – – – –
9 MB – 2+ – – – – –

10 MB – 2+ 3+ – – – –
11 MB – 3+ – – – – –
12 MB – 3+ – – – – –
13 MB 1+ – – – – – –
14 MB 1+ – – – – 2+ –
15 MB 1+ – – – 3+ 3+ –
16 MB 1+ – – 2+ 3+ 2+ –
17 MB 2+ – – 3+ 3+ – –
18 nd MB – 2+ – – – – –
19 nd MB – 3+ – – – – –
20 nd MB – 3+ – – – – –
21 nd MB – 3+ – – – – –
22 nd MB – 3+ – – – – –
23 nd MB 1+ – – – – – –
24 nd MB 2+ – – – – – –
25a nd MB 2+ – – – – 2+ –
25b nd MB 2+ – – – – 1+ –
26 nd MB 2+ – – it it it it
27 nd MB 2+ 1+ – – – 2+ –
28 nd MB 2+ 2+ – – – – –
29 nd MB 2+ 2+ – it it it it
30 nd MB 2+ 3+ 3+ it it it it
31 nd MB 3+ – – – – – –
32 GNB – 1+ 1+ – – – –
33 MmyoB – 1+ – – – – 2+
34 cPNET – – – – – – –
35 cPNET – – – – it – –
36 cPNET – – – it it – –
37 cPNET 1+ – – it it it it

PNETs contained either no labelled cells (–), a small number of scattered immunoreactive cells (1+), less than 50% of cells with immunoreactivity (2+), or more
than 50% of cells with immunoreactivity (3+). GFAP: glial fibrillary acidic protein; SYN: synaptophysin; NFP: neurofilament protein; CK: low molecular weight
cytokeratins; EMA: epithelial membrane antigen; SMA: smooth muscle α actin; DES: desmin; nd = nodular/desmoplastic; it = insufficient tissue.
et al, 1988) and directly labelled by nick translation with fluores-
cein-12-dUTP (Dupont NEN). Reference DNA was extracted from
blood of karyotypically normal individuals and labelled with Texas
red-5-dUTP (Dupont NEN). Approximately 650 ng of labelled
DNA fragments in the size range 300–3000 base pairs were
hybridized with 30 µg human Cot-1 DNA (GibcoBRL) for 3 days
at 37°C on to normal male target metaphase slides (Vysis).
Following hybridization, the slides were washed, air-dried and
mounted in anti-fade solution containing 1.5 µg ml–1 4,6′-diamino-
2-phenylindole counterstain (Vector Laboratories). A control slide
with co-hybridized labelled DNA from a normal male and female
was included with each experiment.

Digital image analysis

Slides were analysed using a Zeiss Axioskop fluorescence micro-
scope and images captured by a cooled charged couple device
camera (Photometrics) in conjunction with Smartcapture software
(Digital Scientific), and then enhanced and analysed using Quips
© 1999 Cancer Research Campaign 
CGH software (Vysis). Each metaphase used in the analysis was
karyotyped and green to red fluorescence intensity ratios along the
length of each chromosome were calculated. Data from 5–10
metaphases were combined to give a mean ratio profile for each
chromosome together with profiles corresponding to 99% confi-
dence intervals (CIS), as calculated by the Quips software. Gains
or losses of material by the tumour were deduced from deviations
of the mean profile beyond thresholds set at ratios of 1.1 and 0.9,
provided also that the 99% CIs consistently deviated to the same
side of the midline for the regions involved, and that no deviations
were seen in the corresponding regions in the normal control
performed with each experiment. Amplifications were directly
visualized by microscopy as discrete regions of gain and were
localized by ratios greater than 1.5:1. Apparent gains or losses in
heterochromatic regions were excluded from analysis.

The abnormalities identified by CGH were expressed according
to the International System for Human Cytogenetic Nomenclature
(ISCN, 1995). CGH analysis was carried out without knowledge
of histology results.
British Journal of Cancer (1999) 80(9), 1322–1331
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Statistical analysis

Survival analyses were undertaken for medulloblastomas using
Kaplan–Meier estimates and correlations were assessed in contin-
gency tables. Survival time was calculated in months from cran-
iotomy to death, but in surviving (censored) patients, the interval
between operation and last medical review was used in the
analysis.



CGH analysis

Chromosomal imbalances were detected by CGH in all but four
tumours, and most cases showed multiple abnormalities, with a
mean of 6.2 per tumour (Table 1). The profiles for case 12 are
illustrated in Figure 1. The imbalances in the 31 classic and
nodular/desmoplastic medulloblastomas are shown in Table 1 and
in Figure 2. In our control experiments, using co-hybridized refer-
ence DNA from a normal male and female, no imbalances
reaching our criteria for inclusion were detected on the autosomes,
including the CG-rich regions 1p, 16p, 19 and 22.

Chromosome 17 was most frequently affected in medulloblas-
tomas, showing abnormalities in 18 tumours (58%). Twelve cases
(39%) showed loss of 17p, of which eight (26%) had a reciprocal
gain of 17q, suggesting the presence of i(17q). Four cases had
gains of 17q without loss of 17p and two had gains of the whole
of 17, making a total of 14 (45%) with gains of all or part of
British Journal of Cancer (1999) 80(9), 1322–1331
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chromosome 17. Other chromosomes frequently affected by losses
were 8 (11 cases; 35%), 11 (ten cases; 32%), Y (seven cases; 27%
of males), 4 (seven cases; 23%), 9 (seven cases; 23%) and 10q
(seven cases; 23%). Common sites of chromosomal gain were 7
(eight cases; 26%), 18 (six cases; 19%), 1q, 9p and 12q (five cases
each; 16%). Extensive loss of chromosome 22, suggesting mono-
somy 22, was seen in four cases. The eight cases with gain of all of
7 or 7q also showed losses of all or part of chromosome 8. Of ten
cases with losses on 8p, eight also had gains of 17q. High level
gains, suggesting gene amplification, were seen in only three
tumours of which one (case 23) had two amplicons. The chromo-
somal regions involved in amplification were 2q14–q21 (case 13),
4q28 (case 27), 12p13 and 13q33 (case 23). All three cases were
associated with multiple regions of imbalance, including losses on
9q, 10q and 16q. In the two tumours for which results were avail-
able from two separate biopsies, there were only minor differences
between the CGH findings.

The results of CGH analysis for the cerebral PNETs differed
from those for the medulloblastomas (Table 1, Figure 3). Both
cases 34 and 35 had multiple regions of loss and gain, several of
them similar, although case 34 also had two amplicons that
mapped to 7p11.2 and 7q21.3. Case 36 had an isolated loss of part
of 3p, and case 37 showed no abnormalities, suggesting a balanced
karyotype. Of note were the presence of losses involving proximal
3p in all three cases with abnormal CGH findings and the absence
of any imbalance involving chromosome 17 in any of the cerebral
PNETs studied.
© 1999 Cancer Research Campaign 

23

27

23

831927

8
12

10
13

4

11913

27

83

5

23

221
83

122

12

1
14

202
8

21
13

25
5

27

11

27
1113

20
21

23

14
27

22

10

31
27
3

23
27

13

1
812

16

22
8

21
20

19
12

11
10
7

6
3

2

51
2

3
6

7
10

11
12

13
14

19
27

28

17

13
23

22
12

6
1327

18

4
15

16
17

22

13

41
26

27
13

19

20

X

3
8

19
20

25

5
7

Y

ases of classic and nodular/desmoplastic medulloblastoma. Losses are
to the right, and amplicons by solid blocks. The cases to which each region of
mples from two biopsies were analysed are only included once

I§ • 
1111 

111111; 
111

"'"'
111

m11111111111111 
11~1111r 

1111~ 
''11 i'1 

1111111§ 



CGH analysis of PNETs 1327

34 35

1 2 3

35

36

3435

4 5

35
34

35

6 7 8 9 10 11 12

35
34 35

34

35

34

34
35

34

3435

13 14 15 16 17 18

34

34

34

3434

35

34

19 20 21 22 X Y

34

3534

34
3434

Figure 3 Summary of regions of chromosomal imbalance identified by CGH in cases of cerebral PNET. Losses are represented by vertical lines to the left of
the chromosome, gains by vertical lines to the right, and amplicons by solid blocks. The cases to which each region of imbalance corresponds are identified by
number

!I ~I 
Immunohistochemistry

Most medulloblastomas (27/31) were immunoreactive for one or
more of the neuroepithelial proteins, GFAP, synaptophysin and
neurofilament protein (Table 2). Among classic medulloblas-
tomas, 5/17 were positive for GFAP and 8/16 for either of the
neuronal markers synaptophysin and neurofilament protein. In
contrast, nodular/desmoplastic medulloblastomas showed a more
differentiated immunophenotype; 9/14 were immunoreactive for
GFAP and 9/14 for neuronal proteins. An immunophenotype char-
acterized by the presence of more than one non-neuroepithelial
protein, including epithelial membrane antigen, was seen in four
classic medulloblastomas. Four other medulloblastomas contained
tumour cells that labelled with an antibody to smooth muscle actin.
These tumours were all GFAP-positive. The medullomyoblastoma
contained large desmin-positive cells.

Chromosomal imbalance and tumour histology

Significant associations between chromosomal imbalance and
medulloblastoma histology were sought in contingency tables
(Table 3). Imbalance suggesting i(17q) occurred almost exclu-
sively in classic medulloblastomas. Of five tumours with gain of
© 1999 Cancer Research Campaign 
12q24, four were classic medulloblastomas. In contrast, five out of
six tumours with losses on 9q were nodular/desmoplastic medul-
loblastomas. All tumours with monosomy 22 showed classic
medulloblastoma histology.

The same imbalances showed a striking association with the
presence or absence of GFAP immunoreactivity (Table 3). For
example, all tumours with i(17q) (n = 8) were immunonegative for
GFAP, as were those showing gain of 17q without reciprocal loss of
17p (n = 6). However, the cases with loss of 17p without reciprocal
17q gain (n = 4) were GFAP-positive. No significant relationships
were found between the results of CGH and immunohistochemistry
with antibodies to neuronal proteins. All classic medulloblastomas
with monosomy 22 had an immunophenotype characterized by the
expression of more than one non-neuroepithelial protein.

Survival analysis

Kaplan–Meier survival curves showed that patients with evidence
of metastases at diagnosis had a significantly poorer prognosis
(P = 0.023) than those with localized tumours, and that there was a
trend (P = 0.067) towards longer survival for patients with
nodular/desmoplastic rather than classic histology (Figure 4A).
The presence of GFAP immunoreactivity had no prognostic value
British Journal of Cancer (1999) 80(9), 1322–1331
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Table 3 Abnormalities detected in medulloblastomas by CGH; associations with histological variant and immunoreactivity for GFAP

MB variant i(17q) loss 17p gain 17q gain 12q24 loss 9q22
Classic MB 7 9 10 4 1
Nodular/desmoplastic MB 1 3 4 1 5

P = 0.031 P = 0.073 P = 0.092 P = 0.217 P = 0.036
Immunophenotype i(17q) loss 17p gain 17q gain 12q24 loss 9q22
GFAP-negative 8 8 14 5 0
GFAP-positive 0 4 0 0 6

P = 0.003 P = 0.293 P < 0.0001 P = 0.027 P = 0.003

Figures = number of tumours, Tumours (n = 8) with i(17q) are included in columns enumerating tumours with loss of 17p (n = 12) and gain of 17q (n = 14). MB,
medulloblastoma. P-values refer to correlation in contingency (χ2) tables.
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Figure 4 Kaplan–Meier survival analyses for medulloblastomas, subdivided according to histological subtype (A) and the presence or absence of imbalances
suggesting monosomy 22 (B) or loss of 17p (C). Surviving (censored) patients are indicated by bars on the upper curves and, where applicable, by triangles on
the lower curves *A Classic [••] and nodular/desmoplastic [•] histology (P = 0.067); B Tumours with [••] and without [•] loss of 22 (P = 0.0013); C Tumours
with [••] and without [•] loss of 17p (P = 0.94)
(P = 0.96). Significantly different survival curves were demon-
strated for patients whose tumours had monosomy 22 (P =
0.0013), but not for those with loss of 17p (P = 0.94) (Figure
4B,C), or any other genetic abnormality.



Results of CGH in our series revealed only four tumours without
CGH abnormalities, suggesting balanced or normal karyotypes.
The findings in these cases are likely to be genuine rather than an
artefact of contamination with normal cells because non-neoplastic
tissue was not found in histological sections from three tumours,
British Journal of Cancer (1999) 80(9), 1322–1331
and accounted for only about 20% of tissue in one case. Gains and
losses in the remaining cases were supported by the inclusion of
controls in which we did not encounter the difficulties of interpre-
tation of CG-rich regions presented in studies employing indirect
labels (Kallioniemi et al, 1994; Reardon et al, 1997).

The findings of gain of 17q with reciprocal loss of 17p in 26%
of our cases of medulloblastoma are consistent with cytogenetic
reports (Biegel et al, 1989; Bigner et al, 1997), with two smaller
series of cases studied using CGH (Schütz et al, 1996; Reardon et
al, 1997), and with findings of LOH on 17p (Cogen et al, 1990;
Blaeker et al, 1996). The relative importance of 17p loss and 17q
gain remains unclear. In the search for potential tumour suppressor
© 1999 Cancer Research Campaign 



CGH analysis of PNETs 1329
genes, reports of the potential role for TP53 have been inconsistent
(Jaros et al, 1993; Batra et al, 1995; Phelan et al, 1995), but
evidence for a medulloblastoma-related locus at 17p13.3, distal to
TP53, has been presented (McDonald et al, 1994). In PNETs,
where isochromosome formation may occur in the absence of
other imbalances, as shown in cytogenetic studies (Biegel et al,
1989) and in two of our cases, it is possible that development of
i(17q) is an early event. The importance of 17q gain is less clear,
although our findings, particularly in terms of the correlation with
GFAP immunoreactivity, suggest that 17q gain may have signifi-
cance of its own. The associations found in this study between
classic histology and imbalances of chromosome 17 have not been
documented before in PNETs. Furthermore, the mutual exclusivity
we demonstrated between tumours exhibiting gain of 17q and
those showing immunoreactivity for GFAP has also not been
described previously. This result contrasts with the results of one
study in which the majority of PNETs with i(17q) showed ‘glial
differentiation’ (Biegel et al, 1995). The GFAP gene is located at
17q21, but it is unclear how gain of 17q might interfere with the
expression of this astroglial intermediate filament (Brenner et al,
1994).

Monosomy 22 has been documented in a wide range of CNS
tumours (Heim and Mitelman, 1995) and is a feature of approxi-
mately 60% of CNS rhabdoid tumours, or atypical teratoid/rhab-
doid tumours (Biegel et al, 1990; Rorke, 1997). It has been found in
0–30% of abnormal cases in cytogenetic reports of PNET, all cere-
bellar tumours (Biegel et al, 1989; Bhattachajee et al, 1997; Bigner
et al, 1997), and results of microsatellite analyses have revealed
LOH on 22q in similar proportions (Blaeker et al, 1996), but no
correlations with clinical parameters have been made in any of
these studies. Schütz and co-workers (1996) did not find any
evidence of monosomy 22 in their CGH series and, although
Reardon’s group (1997) found 5/27 cases with apparent monosomy
22, these were from a wide age range of patients with multiple
CGH abnormalities. The tumours in our series with loss of 22 all
came from particularly young patients, with a median age of 8
months at diagnosis. Loss of 22 was either an isolated imbalance or
associated with only one other abnormality. These findings raise
the question of the relationship of these four cases to CNS rhabdoid
tumours, which characteristically show the varied immunoreactivi-
ties for neuroepithelial and non-neuroepithelial proteins and poor
prognosis found in our cases. Though cytological pleomorphism is
typically greater in CNS rhabdoid tumours than in medullo-
blastomas, the former may contain regions that resemble a classic
medulloblastoma. For two of our cases with monosomy 22, tissue
for histology was limited, and it is possible that insufficient
sampling may have precluded a diagnosis of CNS rhabdoid tumour.
However, retrospective review of the other two examples, where
large portions of tumour had been submitted for histology, revealed
no regions that might prompt a change in diagnosis.

Other imbalances detected in our series of medulloblastomas
were broadly consistent with previous studies, but some require
specific comments:

Loss of all or part of 9q, including 9q22, has been found in a
proportion of PNETs in each of the published CGH series (Schütz
et al, 1996; Reardon et al, 1997). Although all of our cases show
loss of a region large enough to be seen clearly in a conventional
cytogenetic preparation, interstitial losses of 9q have not been
reported in cytogenetic studies of PNET. In contrast, LOH on 9q
has been reported (Blaeker et al, 1996). Furthermore, 9q22 has
been identified as the locus for the ‘Drosophila patched’ (PTCH)
© 1999 Cancer Research Campaign 
gene, mutated in sporadic medulloblastomas as well as in cases of
Gorlin’s, or nevoid basal cell carcinoma syndrome, which pre-
disposes to medulloblastoma (Vorechowsky et al, 1997; Wolter
et al, 1997). One of our cases (case 24) with interstitial loss of 9q
developed dermatological lesions characteristic of naevoid basal
cell carcinoma syndrome after diagnosis of her medulloblastoma.
Tumours with a nodular/desmoplastic architecture were signifi-
cantly over-represented in our group with loss of 9q, corroborating
a previously noted link between LOH on 9q and the desmoplastic
variant of medulloblastoma (Schofield et al, 1995).

We found a high incidence of monosomy 8 (23%), only
recorded in one previous cytogenetic study (Bhattachajee et al,
1997), in which the association with gain of 7 and i(17q) was also
observed. Five of our medulloblastomas had gains including
12q23–q24. Although a finding not commented upon in their
report, a similar number of cases in the series of Reardon et al
(1997) also showed this imbalance. The epidermal growth factor
receptor pathway substrate 8 (Eps8) gene maps to this region and
overexpression of its product Eps8 enhances mitogenic response to
epidermal growth factor (Fazioli et al, 1993; Wong et al, 1994). A
role for Eps8 in tumour development or progression in these cases
of PNET might therefore be postulated, particularly in view of
recent attention given to the potential prognostic implications of
EGFR expression (Gilbertson et al, 1997). Gain of 12q24 in our
series was also associated with classic histology and absence of
GFAP immunoreactivity.

Only 3/31 (10%) of the medulloblastomas in our study showed
gene amplification, consistent with previous studies of primary
tumours (Bigner and Vogelstein, 1990; Heim and Mitelman, 1993;
Batra et al, 1994; Schütz et al, 1996; Reardon et al, 1997) and none
of our cases had amplifications at previously reported loci. This
gives added weight to the suggestion that the high proportion of
cell lines with MYC amplification may be due to a selective advan-
tage for in vitro growth conferred by this abnormality (Bigner and
Vogelstein, 1990; Batra et al, 1994). Our results are at odds with
the suggestion of Reardon et al (1997) that the combination of
amplification and 9q deletion in medulloblastoma is analogous to
MYCN amplification and 1p loss in neuroblastoma. While our
cases with amplification did have 9q loss, they also had multiple
additional abnormalities, and we had three cases of 9q loss that
were not associated with gene amplification. Furthermore, in view
of the rarity of gene amplification and variety of loci involved, it
would seem unlikely that a single mechanism is at work, or that
gene amplification plays an important role in the pathogenesis of
medulloblastoma.

Conflicting results have emerged from studies of clinical prog-
nostic indicators for PNET (Hubbard et al, 1989; Tait et al, 1990;
Zerbini et al, 1993; Geyer et al, 1994; Bailey et al, 1995), but the
presence of metastases at the time of diagnosis has featured consis-
tently as an indicator of poor prognosis, and is supported by our
findings. Prognosis has previously been linked to histological
variant (Hubbard et al, 1989), with desmoplastic variants tending to
have a more favourable outcome than classic medulloblastomas,
but this has not been found to be the case in all reports (Choux et al,
1983) and, while our series showed a similar trend, it did not reach
significance with the number of cases involved. GFAP immunore-
activity has been found to be predictive of a poor outcome (Janss et
al, 1996) but a separate study (Maraziotis et al, 1992) found, like
ours, that it had no independent prognostic significance. In the
search for genetic abnormalities with potential prognostic value,
previous attention has focused on aberrations of chromosome 17.
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An association between LOH on 17p and adverse prognosis has
been reported (Cogen et al, 1990; Batra et al, 1995), but these find-
ings have not been reproduced in a separate series (Emadian et al,
1996) or in our CGH study. However, our findings in relation to
loss of chromosome 22 and also to the expression of multiple
proteins characteristic of different cell lineages in PNETs, suggest
that they could be markers of a particularly poor prognosis.

Three out of four cases of cerebral PNET in our series demon-
strated multiple chromosomal abnormalities, but patterns of chro-
mosomal gains and losses that characterize medulloblastomas were
not seen. There is little published cytogenetic or molecular genetic
data for cerebral PNETs to allow comparison, but Burnett and co-
workers (1997) found no cases of chromosome 17p loss in a series
of eight supratentorial PNETs using molecular techniques, and
suggest that supratentorial PNETs and medulloblastomas are
genetically distinct. Loss of material from 3p was common to each
of our abnormal cases which suggests the loss of a tumour
suppressor gene from this region. The fragile histidine triad gene is
a possible candidate, as it encompasses the fragile site at 3p14.2
and has been implicated in the development or progression of a
variety of neoplasms, including renal cell carcinoma and small cell
carcinoma of the lung (Sozzi et al, 1997; Xiao et al, 1997). The
single case of cerebral PNET with amplified material (case 34)
showed a similar pattern to that seen in a case of malignant glioma,
with paired amplicons at 7p11.2p13 and 7q21.3q22 (Schröck et al,
1994).

In summary, we have demonstrated multiple chromosomal
abnormalities in a series of PNETs using CGH and have found
patterns of imbalance which are associated with tumour architec-
ture and immunophenotype. We have also identified a subgroup of
classic medulloblastomas that show similarities to CNS rhabdoid
tumours and revealed patterns of abnormality in cerebral PNETs
suggesting that supratentorial and posterior fossa PNETs may be
genetically distinct.
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