Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines

This article has been updated

Summary

2′,2′-Difluorodeoxycytidine (gemcitabine, dFdC) and cis-diammine-dichloroplatinum (cisplatin, CDDP) are active agents against ovarian cancer and non-small-cell lung cancer (NSCLC). CDDP acts by formation of platinum (Pt)–DNA adducts; dFdC by dFdCTP incorporation into DNA, subsequently leading to inhibition of exonuclease and DNA repair. Previously, synergism between both compounds was found in several human and murine cancer cell lines when cells were treated with these drugs in a constant ratio. In the present study we used different combinations of both drugs (one drug at its IC25 and the other in a concentration range) in the human ovarian cancer cell line A2780, its CDDP-resistant variant ADDP, its dFdC-resistant variant AG6000 and two NSCLC cell lines, H322 (human) and Lewis lung (LL) (murine). Cells were exposed for 4, 24 and 72 h with a total culture time of 96 h, and possible synergism was evaluated by median drug effect analysis by calculating a combination index (CI; CI < 1 indicates synergism). With CDDP at its IC25, the average CIs calculated at the IC50, IC75 IC90 and IC95 after 4, 24 and 72 h of exposure were < 1 for all cell lines, indicating synergism, except for the CI after 4 h exposure in the LL cell line which showed an additive effect. With dFdC at its IC25, the CIs for the combination with CDDP after 24 h were < 1 in all cell lines, except for the Cls after 4 h exposure in the LL and H322 cell lines which showed an additive effect. At 72 h exposure all Cls were < 1. CDDP did not significantly affect dFdCTP accumulation in all cell lines. CDDP increased dFdC incorporation into both DNA and RNA of the A2780 cell lines 33- and 79-fold (P < 0.01) respectively, and tended to increase the dFdC incorporation into RNA in all cell lines. In the AG6000 and LL cell lines, CDDP and dFdC induced > 25% more DNA strand breaks (DSB) than each drug alone; however, in the other cell lines no effect, or even a decrease in DSB, was observed. dFdC increased the cellular Pt accumulation after 24 h incubation only in the ADDP cell line. However, dFdC did enhance the Pt–DNA adduct formation in the A2780, AG6000, ADDP and LL cell lines (1.6-, 1.4-, 2.9- and 1.6-fold respectively). This increase in Pt–DNA adduct formation seems to be related to the incorporation of dFdC into DNA (r = 0.91). No increase in DNA platination was found in the H322 cell line. dFdC only increased Pt–DNA adduct retention in the A2780 and LL cell lines, but decreased the Pt–DNA adduct retention in the AG6000 cell line. In conclusion, the synergism between dFdC and CDDP appears to be mainly due to an increase in Pt–DNA adduct formation possibly related to changes in DNA due to dFdC incorporation into DNA.

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Abbruzzese, J. L. & Frost, P. (1992). Studies on the mechanism of the synergistic interaction between 2′-deoxy-5-azacytidine and cisplatin. Cancer Chem Pharmacol 30: 31–36.

    CAS  Article  Google Scholar 

  • Abbruzzese, J. L., Grunawald, R., Weeks, E. A., Gravel, D., Adams, T., Nowak, B., Mineishi, S., Tarassoff, P., Satterlee, W., Raber, M. N. & Plunkett, W. (1991). A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9: 491–498.

    CAS  Article  PubMed Central  Google Scholar 

  • Abratt, R. P., Bezwoda, W. R., Goedhals, L. & Hacking, D. J. (1997). Weekly gemcitabine with monthly cisplatin: effective chemotherapy for advanced non-small cell lung cancer. J Clin Oncol 15: 744–749.

    CAS  Article  PubMed Central  Google Scholar 

  • Bergman, A. M., Ruiz van Haperen, V. W. T., Veerman, G., Kuiper, C. M. & Peters, G. J. (1996). Interaction between cisplatin and gemcitabine in vitro. Clin Cancer Res 2: 521–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birnboim, H. C. & Jevcak, J. J. (1981). Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation. Cancer Res 41: 1889–1892.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braakhuis, B. J. M., Ruiz van Haperen, V. W. T., Welters, M. J. P. & Peters, G. J. (1995). Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts. Eur J Cancer 31A: 1335–1340.

    Google Scholar 

  • Chiu, C. S. M., Chan, A. K. & Wright, J. A. (1992). Inhibition of mammalian ribonucleotide reductase by cis-diamminedichloroplatinum(II). Biochem Cell Biol 70: 1332–1338.

    CAS  Article  PubMed Central  Google Scholar 

  • Chou, T-C & Hayball, M. P. (1996). CalcuSyn, Windows Software for Dose Effect Analysis. Biosoft: Cambridge

  • Chou, T-C & Talalay, P. (1983). Quantitative analysis of dose-effect relationship: the combined effects of multiple drugs on enzyme inhibitors. In Advances in Enzyme Regulation, G. Weber (ed), pp. 27–55. Pergamon Press: New York

    CAS  Article  PubMed Central  Google Scholar 

  • Chou, T-C, Motzer, R. J., Tong, Y. & Bosl, G. J. (1994). Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 86: 1517–1524.

    CAS  Article  PubMed Central  Google Scholar 

  • Crino, L., Scagliotto, G., Marangolo, M., Figoli, F., Clerici, M., DeMarinis, F., Salvati, F., Cruciani, G., Dagliotti, L., Pucci, F., Paccagnella, A., Adamao, V., Altavilla, G., Incoronato, P., Tripetti, M., Mosconi, A. M., Santucci, A., Sorbolini, S., Oliva, C. & Tonato, M. (1997). Cisplatin-gemcitabine combination in advanced non-small cell lung cancer: a phase II study. J Clin Oncol 15: 297–303.

    CAS  Article  PubMed Central  Google Scholar 

  • Ellerhorst, J. A., Frost, P., Abbruzzese, J. L., Newman, R. A. & Chernajovsky, Y. (1993). 2′-deoxy-5-azacytidine increases binding of cisplatin to DNA by a mechanism independent of DNA hypomethylation. Br J Cancer 67: 209–215.

    CAS  Article  PubMed Central  Google Scholar 

  • Freeman, K. B., Anliker, S., Hamilton, M., Osborne, D., Dhahir, P. H., Nelson, R. & Allerheiligen, S. R. B. (1995). Validated assays for the determination of gemcitabine in human plasma and urine using high-performance liquid-chromatography with ultraviolet detection. J Chromatogr Biomed Appl 665: 171–181.

    CAS  Article  Google Scholar 

  • Heinemann, V., Hertel, L. W., Grindey, G. B. & Plunkett, W. (1988). Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-β-D-arabinofuranosylcytosine. Cancer Res 48: 4024–4031.

    CAS  PubMed  Google Scholar 

  • Hertel, L. W., Kroin, J. S., Misner, J. W. & Tustin, J. M. (1988). Synthesis of 2′-deoxy-2′,2′-difluoro-D-ribose and 2′-deoxy-2′,2′-difluoro-D-ribofuranosyl nucleosides. J Org Chem 53: 2406–2409.

    CAS  Article  Google Scholar 

  • Huang, P., Chubb, S., Hertel, L. W., Grindey, G. B. & Plunkett, W. (1991). Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51: 6110–6117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krakowski, I., Petit, T., Kayitalire, L., Weber, B., Beaudouin, M., Canon, J. L., Janssens, J., Martin, C. & Belpomme, D. (1998). Gemcitabine (Gemzar) in combination with cisplatin (CP) in advanced ovarian cancers (AOC): a phase II study. Proc Am Soc Clin Oncol 17: 356a (abstract 1373)

  • Lu, Y., Han, J. & Scanlon, K. J. (1988). Biochemical and molecular properties of cisplatin-resistant A2780 cells grown in folinic acid. J Biol Chem 263: 4891–4894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83: 761–766.

    Article  Google Scholar 

  • Nogué, M., Cirera, L., Arcusa, M., Tusquets, I., Batiste-Alentorn, E., Font, A. & Boto, B. (1998). Gemcitabine combined with cisplatin first line: a phase II study in patients with advanced epithelial ovarian cancer. Proc Am Soc Clin Oncol 17: 357a (abstract 1377)

  • Parker, R. J., Gill, I., Tarone, R., Vionnet, J., Grunberg, S., Muggia, F. & Reed, E. (1991). Platinum DNA-damage in leucocyte DNA of patients receiving cisplatin and carboplatin chemotherapy, measured by atomic absorption spectrometry. Carcinogenesis 12: 1253–1258.

    CAS  Article  PubMed Central  Google Scholar 

  • Peters, G. J., Laurensse, E., Leyva, A. & Pinedo, H. M. (1987). Purine nucleosides as cell-specific modulators of 5-fluorouracil metabolism and cytotoxicity. Eur J Cancer Clin Oncol 23: 1869–1881.

    CAS  Article  PubMed Central  Google Scholar 

  • Peters, G. J., Wets, M., Keepers, YPAM, Oskam, R., Van Ark-Otte, J., Noordhuis, P., Smid, K. & Pinedo, H. M. (1993a). Transformation of mouse fibroblasts with the oncogenes H-ras or trk is associated with pronounced changes in drug sensitivity and metabolism. Int J Cancer 54: 450–455.

    CAS  Article  PubMed Central  Google Scholar 

  • Peters, G. J., Schornagel, J. H. & Milano, G. A. (1993b). Clinical pharmacokinetics of anti-metabolites. Cancer Surveys 17: 123–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz van Haperen, V. W. T., Veerman, G., Vermorken, J. B. & Peters, G. J. (1993). 2′,2′-Difluoro-deoxocytidine (Gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem Pharmacol 46: 762–766.

    CAS  Article  PubMed Central  Google Scholar 

  • Ruiz van Haperen, V. W. T., Veerman, G., Eriksson, S., Boven, E., Stegmann, A. P. A., Hermsen, M., Vermorken, J. B., Pinedo, H. M. & Peters, G. J. (1994a). Development and characterization of a 2′,2′-difluorodeoxycytidine-resistant variant of the human ovarian cancer cell line A2780. Cancer Res 54: 4138–4143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz van Haperen, V. W. T., Veerman, G., Boven, E., Noordhuis, P., Vermorken, J. B. & Peters, G. J. (1994b). Schedule-dependence of sensitivity to 2′,2′-difluorodeoxycytidine (Gemcitabine) in relation to accumulation and retention of its triphosphate in solid tumor cell lines and solid tumors. Biochem Pharmacol 48: 1327–1339.

    CAS  Article  PubMed Central  Google Scholar 

  • Ruiz van Haperen, V. W. T., Veerman, G., Vermorken, J. B., Pinedo, H. M. & Peters, G. J. (1996). Regulation of deoxycytidine kinase from solid tumor cell lines by CTP and UTP. Biochem Pharmacol 51: 911–918.

    CAS  Article  Google Scholar 

  • Scanlon, K. J., Kashai-Sabet, M., Tone, T. & Funato, T. (1991). Cisplatin resistance in human cancers. Pharmacol Ther 52: 385–406.

    CAS  Article  PubMed Central  Google Scholar 

  • Steward, W. P., Dunlop, D. J., Dabouis, G., Lacroix, H. & Talbot, D. (1996). Phase I/II study of gemcitabine and cisplatin in non-small cell lung cancer: preliminary results. Semin Oncol 5: 43–47.

    Google Scholar 

  • Sundquist, W. I. & Lippard, S. J. (1990). The coordination chemistry of platinum anticancer drugs and related compounds with DNA. Coord Chem Rev 100: 293–322.

    CAS  Article  Google Scholar 

  • Terheggen, PMAB, Emondt, J. Y., Floot, B. G. J., Dijkman, R., Schrier, P. I., Den Engelse, L. & Begg, A. C. (1990). Correlation between cell killing by cis-diamminedichloroplatinum(II) in six mammalian cell lines and binding of a cis-diamminedichloroplatinum(II)-DNA antiserum. Cancer Res 50: 3556–3561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Vijgh, W. J. F. (1991). Clinical pharmacology of carboplatin. Clin Pharmacokin 21: 242–261.

    CAS  Article  Google Scholar 

  • Van der Wilt, C. L., Smid, K., Noordhuis, P., Aherne, G. W. & Peters, G. J. (1997). Biochemical mechanisms of interferon modulation of 5-fluorouracil activity in colon cancer cells. Eur J Cancer 33: 471–478.

    CAS  Article  PubMed Central  Google Scholar 

  • Van der Wilt, C. L., Visser, G. W. M., Braakhuis, B. J. M., Wedzinga, R., Noordhuis, P., Smid, K. & Peters, G. J. (1993). In vitro antitumour activity of cis- and trans-5-fluoro-5,6-dihydro-6-alkoxy-uracils. Br J Cancer 68: 702–707.

    CAS  Article  PubMed Central  Google Scholar 

  • Van Moorsel, C. J. A., Peters, G. J. & Pinedo, H. M. (1997). Gemcitabine: future prospects of single-agent and combination studies. Oncologist 2: 127–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Moorsel, C. J. A., Pinedo, H. M., Veerman, G., Vermorken, J. B., Postmus, P. E. & Peters, G. J. (1999). Scheduling of gemcitabine and cisplatin in Lewis Lung tumour bearing mice. Eur J Cancer. In press

    Google Scholar 

  • Vermorken, J. B., Van der Vijgh, W. J. F., Klein, I., Gall, H. E., Van Groeningen, C. J. & Pinedo, H. M. (1984). Pharmacokinetics of free and total platinum species after rapid and prolonged infusions of cisplatin. Clin Pharmacol Ther 39: 136–144.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Moorsel, C., Pinedo, H., Veerman, G. et al. Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. Br J Cancer 80, 981–990 (1999). https://doi.org/10.1038/sj.bjc.6690452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bjc.6690452

Keywords

  • cisplatin
  • gemcitabine
  • DNA damage
  • strand breaks
  • DNA adducts

Further reading

Search

Quick links