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Summary Increased use of glucose through glycolysis is characteristic for neoplastic growth while the significance of serum-free fatty acids
for regulation of energy metabolism in cancer is poorly understood. We studied whether serum-free fatty acids (FFA) interfere with glycolytic
metabolism of lymphoproliferative neoplasms as assessed with 2-F18-fluoro-2-deoxy-D-glucose ([F18]FDG) and positron emission tomography
(PET). Twelve patients with newly diagnosed non-Hodgkin’s lymphoma (n = 9) or Hodgkin’s disease (n = 3) participated in this study before
start of oncologic treatment. Each patient underwent two [F18]FDG PET studies within 1 week after overnight fast: once during high fasting
serum FFA concentrations and once after reduction of serum FFA by administration of acipimox. Acipimox is a nicotinic acid derivative that
inhibits lipolysis in peripheral tissues and induces a striking reduction in circulating FFA concentration. In all cases, dynamic PET imaging over
the tumour area was performed for 60 min after injection of [F18]FDG. Both graphical analysis (rMRFDG) and single scan approach (SUV)
were used to compare tumour uptake of [F18]FDG under high fasting FFA concentrations and after pharmacologically decreased FFA
concentrations. Serum FFA concentrations were reduced significantly from 0.92 ± 0.42 mmol l–1 at baseline to 0.26 ± 0.31 mmol l–1 after
acipimox administration (P = 0.0003). Plasma glucose, serum insulin and lactate concentrations were similar during both approaches. The
retention of glucose analogue [F18]FDG in tumour was similar between baseline and acipimox studies. Median rMRFDG of a total of 12 involved
lymph nodes in 12 patients was 21.9 µmol 100 g–1 min–1 (range 8.7–82.5) at baseline and 20.1 µmol 100 g–1 min–1 (range 10.7–81.7) after
acipimox. The respective values for median SUV were 7.8 (range 3.6–18.6) and 6.0 (range 4.1–20.2). As expected, [F18]FDG uptake in
myocardium was clearly enhanced by acipimox due to reduction of circulating FFAs. In conclusion, blood fatty acids appear to have minor
significance for [F18]FDG uptake in lymphoma. This suggests that glucose utilization is uncoupled of FFA metabolism and indicates that
glucose-free fatty acid cycle does not operate in lymphomatous tissue. Glucose appears to be the preferred substrate for energy metabolism
in tumours, in spite of the high supply of FFAs in the fasting state. Although acipimox and other anti-lipolytic drugs have potential for treatment
of catabolic state induced by cancer, they are not likely to interfere with tumour energy metabolism which is fuelled by glucose.
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Impaired glucose tolerance, insulin resistance, increased nitrogen
catabolism and lipolysis are among the main metabolic abnormal-
ities associated with cancer (Tayek, 1992). Glucose is presumably
the predominant fuel for tumour energy metabolism, while
peripheral glucose consumption of cancer patients is decreased
in comparison to healthy weight-matched controls (Minn et al,
1994). The catabolic state of cancer is reflected in increased
proteolysis and lipolysis in skeletal muscle and use of the muscle
degradation products and lactate for liver gluconeogenesis
(Toomey, 1995). The net effect is redistribution of body energy
resources in favour of tumour growth. These metabolic changes
will ultimately cause cachexia, which is characterized by a
network of complex control mechanisms (Kern et al, 1988).

In tumour cells, lipid oxidation is reduced in comparison to
normal cells, although labelled fatty acids may show a moderate
to high accumulation in neoplastic tissue based on increased
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phospholipid use for synthesis of cell membranes (Cederbaum
et al, 1976; Nariai et al, 1994). As a consequence of the degrada-
tion of fat in muscle through increased lipolysis, the free fatty
acids (FFA) are ultimately consumed by the host to compensate for
increased needs of energy metabolism. It has been hypothesized
that this vicious circle of general catabolic state could be inter-
rupted by inhibition of lipolysis. This is the rationale for
anti-lipolytic therapy which aims to counteract negative energy
balance of cancer cachexia (Obeid et al, 1997). Theoretically,
anti-lipolytic drugs should decrease the availability of FFA as a
substrate for tumour metabolism, although little is known about
the net effect of anti-lipolysis in terms of tumour growth and
restoration of host tissues (Mulligan et al, 1992).

The present widespread use of 2-(18F)-fluoro-2-deoxy--
glucose ([F18]FDG) in oncology (Conti et al, 1996) is based on
early observations by Warburg (1930) and others (Gullino et al,
1967) indicating increased metabolic demand for glucose in
neoplastic tissue. [F18]FDG is an analogue of -glucose that
competes with glucose for facilitated intracellular transport and
phosphorylation by hexokinase (Phelps et al, 1979). The phos-
phorylated [F18]FDG is unable to enter the subsequent metabolic
pathways and thus preferentially accumulates in cells with a low
phosphatase activity, such as most cancers (Wahl et al, 1993).
513



514 J Nuutinen et al

Table 1 Characteristics of 12 patients with lymphoma studied by FDG PET

Patient Age Sex Histology (Kiel); grade (WF) Stage IPI Weight kg–1 BMI kg m–2

1 39 M Centroblastic-centrocytic, folliculare; Low IVA 1 76 25
2 39 M Diffuce, mixed; Intermediate IIB 0 79 24
3 37 M Centroblastic-centrocytic, folliculare; Low IIA 0 68 22
4 55 F Centroblastic-centrocytic, folliculare; Low IVA 2 67 26
5 21 F Nodular sclerosis; Hodgkin IIIA 2 75 28
6 50 M Mixed cellularity; Hodgkin IIIBS 2 57 20
7 75 F Lymphoblastic; High IVBE 4 62 22
8 44 M Centroblastic-centrocytic, folliculare; Low IIIA 1 91 26
9 52 F Nodular sclerosis; Hodgkin IIBE 0 59 21

10 34 M Lymphoblastic; High IA 0 87 24
11 72 M Centroblastic-centrocytic; Intermediate IIIB 2 70 23
12 72 M Centroblastic-centrocytic; Intermediate IIA 1 75 24

F = female, M = male. Staging according to the Ann Arbor classification system: A = no B-symptoms, B = with B-symptoms, E = extranodal, S = splenic.
IPI = the international NHL prognostic index. BMI = body mass index.
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Figure 1 The design of the PET protocol
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Based on the simple uptake kinetics of [F18]FDG, quantification
of glucose utilization in normal tissues is feasible by positron
emission tomography (PET) using a three-compartment model
(Phelps et al, 1979). [F18]FDG PET is also applicable for repeated,
non-invasive studies on tumour and host metabolism (Minn et al,
1994; Lapela et al, 1995), although calculation of true glucose
metabolic rate is difficult owing to the heterogenous nature of
tumour tissue (Spence et al, 1998).

Preliminary evidence suggests that FFA utilization of peripheral
tissues is unaffected by tumour which, in turn, preferentially uses
glucose in the fasting state (Norton et al, 1980). To our knowledge,
it has not been studied whether the close interaction of glucose and
fatty acid metabolism seen in skeletal muscle is preserved in
cancer tissue. We used [F18]FDG and PET to study the in vivo
relationship between fatty acid and glucose metabolism in patients
with untreated lymphoma. Our aim was to assess how inhibition of
lipolysis affects uptake of the glucose analogue [F18]FDG in
tumour in patients who have fasted overnight.



Patients

Twelve patients with untreated non-Hodgkin’s lymphoma (NHL)
( = 9) and Hodgkin’s disease ( = 3) admitted to the Turku
University Central Hospital, Department of Oncology and
Radiotherapy between October 1995 and November 1996 partici-
pated in the study. The criteria for eligibility was untreated, histo-
logically verified lymphoproliferative malignancy with at least
one evaluable tumour larger than 2 cm in diameter in a non-
diabetic, cooperative patient with a World Health Organization
performance status better than three. All except two patients had
no prior history of cardiac disease. Of the remaining two, one had
a mild heart dysfunction and one had hypertension. One of the
patients (Table 1, no. 7) had thyroid lymphoma and hypo-
thyroidism (S-TSH 68 mU l–1, S-T4-v < 2 pmol l–1) at the time of
the PET studies.

Eight patients were male and four women. The median age was
47 years (range 21–75). The median body mass index (BMI) in
this normal-weighted population was 24 kg m–2 (range 20–28)
(Olefsky et al, 1991). All patients had complete blood counts and
liver function tests that were within normal limits. Chest and
abdominal computerized tomography (CT) scans and bone
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marrow biopsy were also performed as a part of the routine diag-
nostic work-up. Clinical staging was performed according to the
Ann Arbor classification system (Carbone et al, 1971). One of the
patients had stage I, four stage II, four stage III and three stage IV
lymphoma respectively. Five patients had B-symptoms (weight
loss, unexplained fever, night sweats) and four of these five
patients had experienced during the last 6 months a median weight
loss of 9 kg (range 4–10 kg). The international NHL prognostic
index (IPI) was also calculated (Shipp et al, 1993). The charac-
teristics of the patients are shown in Table 1. Each patient gave a
written informed consent and the study protocol was approved by
the Ethical Committee of the Turku University Central Hospital.

PET study design

Each patient underwent two [F18]FDG PET studies, once in the
fasting state and once after administration of acipimox (Figure 1).
These studies were randomly performed within 1 week (median
4 days, range 1–8). All studies were performed after a 12-h
overnight fast. Patients were also advised to have a low-fat diet on
the day before the PET studies.

The baseline PET study was performed without any premedica-
tion. In the second study, 250 mg of acipimox (Olbetam®,
Farmitalia Carlo Erba, Milan, Italy) was given to patients twice
© Cancer Research Campaign 1999
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orally 1.5 h and 1 h before [F18]FDG injection and imaging.
Acipimox is a nicotinic acid derivative that is safely used for treat-
ment of hypercholesterolaemia and hypertriglyceraemia (Nuutila
et al, 1994; Knuuti et al, 1995). To prevent the vasodilatory
effect of acipimox, seven patients were given a non-steroidal
anti-inflammatory agent (mainly ibuprofen) preceding the first
acipimox dose (Laverazzi et al, 1989).

PET imaging

[F18]FDG was synthesized as described by Hamacher and co-
workers with slight modifications (Hamacher et al, 1986). The
radiochemical purity of the tracer was greater than 99%. An ECAT
931/08–12 PET scanner (Siemens/CTI Corp., Knoxville, TN,
USA) was used for PET imaging. The device acquires 15
contiguous slices simultaneously with a slice thickness of 6.7 mm;
the physical transaxial Full-Width-Half-Maximum in the centre of
the field of view is 6.1 mm (Spinks et al, 1988).

To correct for photon attenuation, a transmission scan was
obtained prior to emission imaging with a removable ring source
containing 68Ge. A median dose of 363 MBq [F18]FDG (range
315–403) was infused with a pump within 2 min into a peripheral
or antebrachial vein of the upper extremity. Another venous line
was inserted antebrachially in the contralateral pre-heated arm for
blood sampling. An emission scan was acquired for 60 min after
tracer administration (4 × 30, 3 × 60, 5 × 180, 8 × 300 s). All data
were corrected for deadtime, decay and photon attenuation and
were reconstructed in a 128 × 128 matrix with a Hann filter
(cut-off frequency 0.5). Serial venous blood samples were taken
for measurement of radioactivity in plasma over total PET
acquisition time. Blood glucose, lactate, FFA and serum insulin
were determined before, midway and after the PET study.

Quantitave analysis of PET studies

The last frame of dynamic PET imaging (i.e. 55–60 min
post-injection) was used to define regions of interest (ROIs) for
quantitative analysis. Radioactivity concentration in a ROI was
calculated with an automated system defining a 3 × 3 pixel
ROI with maximum radioactivity within a larger user-defined ROI
comprising the whole tumour (Minn et al, 1995). The relative
standard deviation (s.d.) of the measured average radioactivity
concentration in the maximum ROI was found to be less than 10%.
The average of maximum ROIs in three consecutive planes was
used in the final analysis, where only one representative tumour
per patient having the highest radioactivity within the field-of-
view was selected.

Tracer accumulation in a ROI at the end of the dynamic study
was reported as the standardized uptake value (SUV), which is the
radioactivity concentration in a ROI divided by the injected dose
normalized to the patient’s weight at a fixed time point (Woodard
et al, 1975). The same formula was also applied for calculation of
the SUV adjusted to the predicted value of lean body mass
(Zasadny et al, 1993) and body surface area (BSA) (Olefsky et al,
1991). In addition, a graphical analysis of the tracer uptake was
used as described earlier (Patlak et al, 1985). The slope of the
linear plot obtained in the graphical analysis is equal to the utiliza-
tion constant of [F18]FDG (influx constant, i), which represents
the fractional rate of tracer transport and phosphorylation per unit
time in tissues with negligible reverse metabolism. In the current
study, the last nine time points, representing the time from 15 to
© Cancer Research Campaign 1999
60 min after injection, were used to determine the slope of the
regression line. The [F18]FDG influx constant was multiplied by
the average plasma glucose level during imaging to obtain a meta-
bolic index for [F18]FDG utilization (the regional metabolic rate
[rMRFDG], µmol 100 g–1 min–1). The value for lumped constant was
set to unity with awareness of difficulties in measuring true
glucose utilization rates in heterogenous tissues (Spence et al,
1998). All SUV and rMRFDG values were calculated blinded
without any knowledge of the clinical or other data.

In those four patients whose heart was within the field-of-view,
large ROIs were drawn covering the whole myocardium (Knuuti
et al, 1992). The fractional utilization constants of [F18]FDG (i)
and rates of regional myocardial glucose utilization (rMGU) were
calculated as explained above. The value of 0.67 for lumped
constant was used in the myocardial analysis (Ratib et al, 1982).

Blood samples

Plasma glucose was determined in duplicate by the glucose
oxidase method (Kadish et al, 1968) using an Analox GM7
(Analox Instruments, Copenhagen, Denmark) glucose analyser.
Serum insulin was measured by radioimmunoassay (Kuzuya et al,
1977), serum FFA level with a fluorometric methods (Miles et al,
1983) and lactate by enzymatic analysis (Marbach et al, 1967).

Histologic classification

Histology of lymphomas was classified according to the Working
Formulation scheme (The Non-Hodgkin’s Lymphoma Pathologic
Classification Project, 1982) and the updated Kiel classification
(Stansfeld et al, 1988). Four of the patients had low-grade, three
intermediate-grade and two had high grade lymphoma. Three
patients had Hodgkin’s disease.

Statistical analysis

The results are expressed as median and range, or mean ± s.d.
where appropriate. Paired samples were compared by paired-
comparisons -test. A -value of less than 0.05 was considered to
be significant.



Metabolic characteristics during PET studies

Plasma glucose, serum insulin and lactate concentrations were
similar during the two PET study approaches. Plasma glucose
values were 5.1 ± 0.7 mmol l–1 (range 3.8–6.7) at baseline and
4.8 ± 0.5 mmol l–1 (range 3.6–5.8) after acipimox administration.
The corresponding insulin concentrations were 5 ± 2 mU l–1 (range
3–9) and 4 ± 1 mU l–1 (range 3–7) respectively, and lactate concen-
trations 1.3 ± 0.3 mmol l–1 (range 0.6–5.7) and 1.4 ± 1.8 mmol l–1

(range 0.6–7.6) respectively. As expected, serum FFA concentra-
tions were significantly reduced after acipimox administration.
The serum FFA values were 0.92 ± 0.42 mmol l–1 (range
0.55–1.88) at baseline and 0.26 ± 0.31 mmol l–1 (range 0.03–1.12)
after acipimox administration ( = 0.0003, Figure 2).

FDG uptake in tumour

The size and location of tumours are shown in Table 2. All
tumours could be easily detected at PET because of increased
British Journal of Cancer (1999) 80(3/4), 513–518



516 J Nuutinen et al

PETBL PETACI

0

0.5

1.0

1.5

2.0

F
FA

 (
m

m
ol

 l–1
)

PETBL PETACI

100

80

60

40

20

0

rM
R

F
D

G

Figure 2 The serum FFA concentration at baseline (PETBL) and after
acipimox administration (PETACI)

Figure 3 Metabolic rate for [F18]FDG (rMRFDG) at baseline (PETBL) and after
administration of acipimox (PETACI) in 12 patients with lymphoma

• -
uptake of [F18]FDG. The tumour visualization was never affected
by administration of acipimox. Median rMRFDG of total of 12
involved lymph nodes was 21.9 µmol 100 g–1 min–1 (range
8.7–82.5) at baseline and 20.1 µmol 100 g–1 min–1 (range
10.7–81.7) after administration of acipimox. The respective
figures for median SUV were 7.8 (range 3.6–18.6) and 6.0 (range
4.1–20.2) (Table 2). The differences in rMRFDG and SUV values
between the two approaches were not statistically significant
(Figure 3). Futhermore, no differences were seen when the tumour
SUV was adjusted according to the predicted lean body mass or
BSA (data not shown). There was a high correlation between
British Journal of Cancer (1999) 80(3/4), 513–518

Table 2 Tumour location, size and FDG uptake of PET studies

Patient Tumour location Lesion size (cm)

1 Axilla 4 × 3
2a Retroperitoneum 13 × 7 × 17
3 Neck 3 × 3.5
4 Axilla 2 × 2 × 3
5 Mediastinum 4 × 4.5 × 5
6a Mediastinum 8 × 9 × 13
7b Gall-bladder 7 × 7 × 8
8 Retroperitoneum 2 × 3 × 3.5
9a Mediastinum 2.5 × 5 × 2

10 Neck 5 × 3
11a Axilla 2 × 3.5 × 7
12 Neck 8 × 10

Median

Lesion size: three perpendicular diameters were measured from C
regional metabolic rate µmol 100 mg–1 min–1. SUVBL and rMRBL: va
rMRACI: values under pharmacologically decreased FFA concentra
b Patient with hypothyroidism.
rMRFDG and SUV both at baseline (2 = 0.89,  < 0.0001) and after
acipimox treatment (2 = 0.82,  < 0.0001).

The trend for higher SUV and rMRFDG under both PET studies
was seen in higher malignancy grades. The median SUV was 5.5
(range 4.4–6.1) in the low-grade, 7.8 (range 3.6–17.6) in the inter-
mediate-grade and 18.4 (range 16.5–20.2) in the high-grade
lymphomas. The respective values for median rMRFDG were 16.1
(range 11.3–19.4), 23.3 (range 8.7–57.4) and 66.8 µmol 100 g–1

min–1 (range 49.9–82.5). Indeed, the grade dependency of
[F18]FDG uptake in lymphoma has been confirmed previously
(Lapela et al, 1995). There was no trend of patients with a history
© Cancer Research Campaign 1999

SUVBL SUVACI rMR BL rMRACI

5.3 4.4 16.2 11.3
8.6 7.0 24.4 22.1
6.9 5.5 18.1 14.4
6.1 5.5 19.4 17.0
10.3 6.0 26.3 21.1
13.2 14.7 44.8 45.2
18.6 16.5 82.5 81.7
5.9 5.4 16.0 11.3
5.0 6.0 10.6 19.1
18.2 20.2 49.9 51.8
3.6 4.1 8.7 10.7
14.8 17.6 57.4 54.3
7.8 6.0 21.9 20.1

T scans. SUV: the standardized uptake value. rMR: the
lues under high fasting FFA concentrations. SUVACI and
tions. aPatients who presented with a history of weight loss.
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of recent weight loss to have a higher tumour FDG uptake than
those without B-symptoms.

[F18]FDG uptake in the heart

In those patients whose heart was located within the field-of-view
the myocardial glucose uptake was 11 ± 12 µmol 100 g–1 min–1

(range 3.4–31.8) at baseline. After acipimox administration
myocardial glucose uptake was significantly higher and averaged
50 ± 24 µmol 100 g–1 min–1 (range 14.0–77.4,  < 0.05).



We used PET to study the relationship between serum FFA and
glucose metabolism in malignant lymphoma. We employed a
nicotinic acid derivative, acipimox to decrease typically high post-
absorptive FFA concentrations and the metabolic response of
tumour was measured by [F18]FDG and PET. The results indicate
that even a striking reduction in circulating FFAs has little
influence on the rate of glucose uptake in tumour as assessed by
[F18]FDG PET. This suggests that, in contrast to normal peripheral
tissues, glucose uptake and FFA metabolism are uncoupled in
malignant lymphoma.

At whole body level, FFAs inhibit glucose uptake, especially
glucose oxidation (Thiebaund et al, 1982). The interaction
between glucose and FFA metabolism was first demonstrated
by Randle et al (1963) in a perfused rat heart. Thereafter, the
glucose–FFA cycle has been shown to be operational and impor-
tant in the human heart (Nuutila et al, 1992; Knuuti et al, 1995) and
skeletal muscle (Nuutila et al, 1994) as well as at whole body level
(Thiebaund et al, 1982). Although several enzymes are involved in
glycolysis, only a few key enzymes regulate the glucose flux.
Phosphofructokinase is an enzyme that controls partially the selec-
tion of fuels. The activity of phosphofructokinase is inhibited by
excess of citrate and adenosine 5′-triphosphate (ATP) produced
by metabolism of FFA and lactate. This leads to accumulation of
glucose 6-phosphate, which restrains further uptake and phos-
phorylation of glucose by allosteric inhibition of hexokinase
(Randle et al, 1964). Conversely, when citrate and ATP levels are
decreased, the inhibitory effects are reduced and the activity of
phosphofructokinase increases, leading to increased glucose trans-
port and phosphorylation. Glycolysis is also regulated by pyruvate
dehydrogenase (PDH), which converts pyruvate to acetyl–CoA
(coenzyme A) that enters the citrate cycle. When PDH is inhibited,
the pyruvate is diverted to the production of lactate (Neely et al,
1974). In malignant tissue, the activities of the key glycolytic
enzymes tend to be enhanced (Weber 1977).

While the function of the glucose–FFA cycle has been well-
established in normal tissues and healthy subjects, the picture is
totally different in cancer patients who show tumour-associated
changes in host metabolism. The depletion of fatty acids from the
apidose tissue and increased fasting lactate levels are commonly
found in patients even with a small tumour burden (Tayek, 1992).
In our patients, the median plasma concentration of both FFA
and lactate was very close to the upper normal limit and some
individual patients showed high values that possibly reflected
increased lipolysis and reduced oxidative metabolism induced by
tumour. This is in line with the high uptake of [F18]FDG in tumour,
which is thought to represent increased anaerobic glucose metabo-
lism and lactate release of malignant tissues. However, since
[F18]FDG is not metabolized beyond the initial phosphorylation
© Cancer Research Campaign 1999
step, it is not possible to determinate whether changes in [F18]FDG
uptake are related to oxidative or non-oxidative glucose disposal.
Experimental studies indicate that oxygen consumption in cancer
cells is lower in comparison to their parent normal tissues and
glucose consumption, in turn, is five- to tenfold higher, leading to
excessive production of lactate (Lehninger et al, 1975). We
hypothesize that, since tumours fail to effectively convert pyruvate
to acetyl–CoA to enter the citrate cycle, there is also a general
failure of tumours to use FFA to meet the needs of the apparently
defective oxidative energy metabolism. The uptake of FFA is thus
directed mainly to the phospholipid pool to provide constituents
for cell membranes of the proliferating tumour and high energy
phosphates are produced through glycolysis even in the presence
of excessive FFA.

The high caloric value of fat renders it the preferred source of
energy in catabolic states such as malignancy and sepsis. Increased
lipolytic activity is commonly seen in the serum of patients with
advanced cancer, but a direct evidence of fatty acids as an impor-
tant substrate for tumour energy metabolism has not been demon-
strated in cancer patients (Toomey et al, 1995). Increased lipid
mobilization and oxidation of fatty acids reflect redistribution of
energy resources between tumour and host, but it is likely that
degradation of lipids through oxidation does not involve tumour
tissue which typically is more or less hypoxic. Although the anti-
lipolytic drug acipimox has not been used to treat cachexia in
patients (Obeid et al, 1997), we could demonstrate a significant
drug-induced decrease in serum FFA without a change in tumour
glucose metabolism. It is thus uncertain whether changes in supply
of FFA have any effect on tumour growth which is fuelled by
glycolysis, independent of other energy resources. Since low-
serum FFA is not associated with increased rate of [F18]FDG in
tumour, we encourage further evaluation of anti-lipolytic drugs for
treatment of cachexia and demonstrate the feasibility of PET for in
vivo evaluation of metabolic effects in tumour and normal tissues.
We underline that the results of the present study do not preclude
the significance of fatty acids for the promotion of tumour prolif-
eration or tumorigenesis (Nogushi et al, 1995).

In lymphoma, elevated accumulation of [F18]FDG was first seen
with a specially collimated γ-camera (Paul, 1987). The use of
[F18]FDG PET for detection of lymphoma has been established by
several groups (Conti et al, 1996) and association between malig-
nancy grade and rate of [F18]FDG uptake has been suggested in our
recent study (Lapela et al, 1995). We suggested earlier that onco-
logic patients should be imaged with [F18]FDG in the fasting state,
and the present study lends further support for this principle since
[F18]FDG signal in tumour is not influenced by competing
substrates such as FFA. Although the relationship between
[F18]FDG uptake and true glucose metabolism in heterogenous
tissues is obscured it does not invalidate current findings which are
based on pairwise comparisons of the same tumours studied twice
within 1 week. Because of the very small differences in the
measured [F18]FDG uptake in tumour, it is unlikely that a larger
number of patients would have changed the results.

In conclusion, we have used [F18]FDG PET to demonstrate the
lack of an operational glucose–FFA cycle in tumour in patients
with lymphoma. In neoplastic tissue, supply of FFA does not regu-
late use of glucose as a substrate for tumour growth. This supports
earlier observations that indicate that tumours favour glycolysis to
meet the needs of their energy metabolism due to limited oxidation
of intracellular metabolites of glucose and FFA. We encourage the
development of anti-lipolytic drugs for treatment of cachexia
British Journal of Cancer (1999) 80(3/4), 513–518
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(Obeid et al, 1997), although no direct effect in terms of decreased
use of glucose could be seen in lymphomatous tissue.
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